
py4dstem
Release 0.14.14

Ben Savitsky & Alex Rakowski

Apr 04, 2024

CONTENTS

1 Contents 3
1.1 What is 4D-STEM? . 3
1.2 Installation . 3
1.3 Examples . 13
1.4 API . 16
1.5 API Index . 253
1.6 Graphical User Interface . 253
1.7 Support & Contributions . 253
1.8 License . 254
1.9 Acknowledgements . 267

2 Indices and tables 269

Python Module Index 271

Index 273

i

ii

py4dstem, Release 0.14.14

py4DSTEM is an open source set of python tools for processing and analysis of four-dimensional scanning transmission
electron microscopy (4D-STEM) data.

CONTENTS 1

py4dstem, Release 0.14.14

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 What is 4D-STEM?

Scanning Transmission Electron Micropscopy (STEM) is a powerful tool for materials characterization. In a traditional
STEM experiment, a beam of high energy electrons is focused to a very fine probe - on the order of, or even smaller than,
the spacing between atoms - and rastered across the surface of the sample. A conventional two-dimensional STEM
image is formed by populating the value of each pixel with the electron flux through a detector at the corresponding
beam position. In a high resolution tool, this enables imaging at the level of atoms.

Four-dimensional scanning transmission electron microscopy (4D-STEM) uses a fast, pixelated electron detector to
collect far more information than a traditional STEM experiment. In 4D-STEM, a pixelated detector is used to record
a 2D diffraction image at every raster position of the beam. A 4D-STEM scan thus results in a 4D data array: two
dimensions in diffraction space (i.e. the detector pixels), and two dimensions in real space (i.e. the rastering of the
beam).

4D-STEM data is information rich. A 4D datacube can be collapsed in real space to yield information comparable to
nanobeam electron diffraction experiment, or in diffraction space to yield a variety of virtual images, corresponding to
both traditional STEM imaging modes as well as more exotic virtual imaging modalities. The structure, symmetries,
and spacings of Bragg disks can be used to extract spatially resolved maps of crystallinity, grain orientations, and lattice
strain. Redundant information in overlapping Bragg disks can be leveraged to calculate the sample potential. Structure
in the diffracted halos of amorphous systems can be used to describe the short and medium range order.

py4DSTEM supports many different modes of 4D-STEM analysis.

1.2 Installation

Table of Contents

• Installation

– Setting up Python

– Recommended Installation

∗ Anaconda

· Windows

· Linux

· Mac (Intel)

· Mac (Apple Silicon M1/M2)

3

py4dstem, Release 0.14.14

– Advanced Installation

∗ Installing optional dependencies:

∗ Anaconda

· Windows

· Linux

· Mac (Intel)

· Mac (Apple Silicon M1/M2)

∗ Pip

· Windows

· Linux

· Mac (Intel)

· Mac (Apple Silicon M1/M2)

∗ Installing from Source

∗ Docker

· Overview

· Installation

– Troubleshooting

– Virtual Environments

1.2.1 Setting up Python

The recommended installation for py4DSTEM uses the Anaconda Python distribution. Alternatives such as Miniconda,
Mamba, pip virtualenv, and poetry will work, but here we assume the use of Anaconda. See Virtual Environments, for
more details. The instructions to download and install Anaconda can be found here.

1.2.2 Recommended Installation

There are three ways to install py4DSTEM:

1. Anaconda (miniconda / mamba)

2. Pip

3. Installing from Source

The easiest way to install py4DSTEM is to use the pre packaged anaconda version. This is an overview of what the
installation process looks like, for OS specific instructions see below.

4 Chapter 1. Contents

https://www.anaconda.com/
https://docs.conda.io/en/latest/miniconda.html
https://mamba.readthedocs.io/en/latest/
https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtual-environments/
https://python-poetry.org
http://www.anaconda.com/download

py4dstem, Release 0.14.14

Anaconda

Windows

Listing 1: Windows base install

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 conda install -c conda-forge py4dstem
4 conda install -c conda-forge pywin32
5 # optional but recomended
6 conda install jupyterlab pymatgen

Linux

Listing 2: Linux base install

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 conda install -c conda-forge py4dstem
4 # optional but recomended
5 conda install jupyterlab pymatgen

Mac (Intel)

Listing 3: Intel Mac base install

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 conda install -c conda-forge py4dstem
4 # optional but recomended
5 conda install jupyterlab pymatgen

Mac (Apple Silicon M1/M2)

1.2. Installation 5

py4dstem, Release 0.14.14

Listing 4: Apple Silicon Mac base install

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 conda install pyqt hdf5
4 conda install -c conda-forge py4dstem
5 # optional but recomended
6 conda install jupyterlab pymatgen

1.2.3 Advanced Installation

Installing optional dependencies:

Some of the features and modules require extra dependencies which can easily be installed using either Anaconda or
Pip.

Anaconda

Windows

Listing 5: Windows Anaconda install ACOM

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 conda install -c conda-forge py4dstem pymatgen
4 conda install -c conda-forge pywin32

Running py4DSTEM code with GPU acceleration requires an NVIDIA GPU (AMD has beta support but hasn’t been
tested) and Nvidia Drivers installed on the system.

Listing 6: Windows Anaconda install GPU

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 conda install -c conda-forge py4dstem cupy cudatoolkit
4 conda install -c conda-forge pywin32

If you are looking to run the ML-AI features you are required to install tensorflow, this can be done with CPU only and
GPU support.

Listing 7: Windows Anaconda install ML-AI CPU

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 conda install -c conda-forge py4dstem
4 pip install tensorflow==2.4.1 tensorflow-addons<=0.14 crystal4D
5 conda install -c conda-forge pywin32

6 Chapter 1. Contents

py4dstem, Release 0.14.14

Listing 8: Windows Anaconda install ML-AI GPU

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 conda install -c conda-forge py4dstem
4 conda install -c conda-forge cupy cudatoolkit=11.0
5 pip install tensorflow==2.4.1 tensorflow-addons<=0.14 crystal4D
6 conda install -c conda-forge pywin32

Linux

Listing 9: Linux Anaconda install ACOM

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 conda install -c conda-forge py4dstem pymatgen

Running py4DSTEM code with GPU acceleration requires an NVIDIA GPU (AMD has beta support but hasn’t been
tested) and Nvidia Drivers installed on the system.

Listing 10: Linux Anaconda install GPU

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 conda install -c conda-forge py4dstem cupy cudatoolkit

If you are looking to run the ML-AI features you are required to install tensorflow, this can be done with CPU only and
GPU support.

Listing 11: Linux Anaconda install ML-AI CPU

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 conda install -c conda-forge py4dstem
4 pip install tensorflow==2.4.1 tensorflow-addons<=0.14 crystal4D

1.2. Installation 7

py4dstem, Release 0.14.14

Listing 12: Linux Anaconda install ML-AI GPU

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 conda install -c conda-forge py4dstem
4 conda install -c conda-forge cupy cudatoolkit=11.0
5 pip install tensorflow==2.4.1 tensorflow-addons<=0.14 crystal4D

Mac (Intel)

Listing 13: Intel Mac Anaconda install ACOM

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 conda install -c conda-forge py4dstem pymatgen

Tensorflow does not support AMD GPUs so while ML-AI features can be run on an Intel Mac they are not GPU
accelerated

Listing 14: Intel Mac Anaconda install ML-AI CPU

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 conda install -c conda-forge py4dstem
4 pip install tensorflow==2.4.1 tensorflow-addons<=0.14 crystal4D

Mac (Apple Silicon M1/M2)

Listing 15: Apple Silicon Mac Anaconda install ACOM

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 conda install -c conda-forge py4dstem pymatgen

Tensorflow’s support of Apple silicon GPUs is limited, and while there are steps that should enable GPU acceleration
they have not been tested, but CPU only has been tested.

Listing 16: Apple Silicon Mac Anaconda install ML-AI CPU

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 conda install -c conda-forge py4dstem
4 pip install tensorflow==2.4.1 tensorflow-addons<=0.14 crystal4D

Attention: GPU Accelerated Tensorflow on Apple Silicon
This is an untested install method and it may not work. If you try and face issues please post an issue on github.

8 Chapter 1. Contents

https://github.com/py4dstem/py4DSTEM/issues

py4dstem, Release 0.14.14

Listing 17: Apple Silicon Mac Anaconda install ML-AI GPU

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 conda install -c apple tensorflow-deps
4 pip install tensorflow-macos==2.5.0 tensorflow-addons<=0.14 crystal4D tensorflow-metal
5 conda install -c conda-forge py4dstem

Pip

Windows

Listing 18: Windows pip install ACOM

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 pip install py4dstem[acom]
4 conda install -c conda-forge pywin32

Running py4DSTEM code with GPU acceleration requires an NVIDIA GPU (AMD has beta support but hasn’t been
tested) and Nvidia Drivers installed on the system.

Listing 19: Windows pip install GPU

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 pip install py4dstem[cuda]
4 conda install -c conda-forge pywin32

If you are looking to run the ML-AI features you are required to install tensorflow, this can be done with CPU only and
GPU support.

Listing 20: Windows pip install ML-AI CPU

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 pip install py4dstem[aiml]
4 conda install -c conda-forge pywin32

1.2. Installation 9

py4dstem, Release 0.14.14

Listing 21: Windows pip install ML-AI GPU

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 conda install -c conda-forge cudatoolkit=11.0
4 pip install py4dstem[aiml-cuda]
5 conda install -c conda-forge pywin32

Linux

Listing 22: Linux pip install ACOM

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 pip install py4dstem[acom]

Running py4DSTEM code with GPU acceleration requires an NVIDIA GPU (AMD has beta support but hasn’t been
tested) and Nvidia Drivers installed on the system.

Listing 23: Linux pip install GPU

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 pip install py4dstem[cuda]

If you are looking to run the ML-AI features you are required to install tensorflow, this can be done with CPU only and
GPU support.

Listing 24: Linux pip install ML-AI CPU

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 pip install py4dstem[aiml]

Listing 25: Linux pip install ML-AI GPU

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 conda install -c conda-forge cudatoolkit=11.0
4 pip install py4dstem[aiml-cuda]

Mac (Intel)

Listing 26: Intel Mac pip install ACOM

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 pip install py4dstem[acom]

Tensorflow does not support AMD GPUs so while ML-AI features can be run on an Intel Mac they are not GPU
accelerated

10 Chapter 1. Contents

py4dstem, Release 0.14.14

Listing 27: Intel Mac pip install ML-AI CPU

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 pip install py4dstem[aiml]

Mac (Apple Silicon M1/M2)

Listing 28: Apple Silicon Mac pip install ACOM

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 pip install py4dstem[acom]
4 conda install -c conda-forge py4dstem pymatgen

Tensorflow’s support of Apple silicon GPUs is limited, and while there are steps that should enable GPU acceleration
they have not been tested, but CPU only has been tested.

Listing 29: Apple Silicon Mac Anaconda install ML-AI CPU

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 pip install py4dstem[aiml]

Attention: GPU Accelerated Tensorflow on Apple Silicon
This is an untested install method and it may not work. If you try and face issues please post an issue on github.

Listing 30: Apple Silicon Mac Anaconda install ML-AI GPU

1 conda create -n py4dstem python=3.9
2 conda activate py4dstem
3 conda install -c apple tensorflow-deps
4 pip install tensorflow-macos==2.5.0 tensorflow-addons<=0.14 crystal4D tensorflow-metal␣

→˓py4dstem

Installing from Source

To checkout the latest bleeding edge features, or contriubte your own features you’ll need to install py4DSTEM from
source. Luckily this is easy and can be done by simply running:

1 git clone
2 git checkout <branch> # e.g. git checkout dev
3 pip install -e .

Alternatively, you can try single step method:

1 pip install git+https://github.com/py4DSTEM/py4DSTEM.git@dev # install the dev branch

1.2. Installation 11

https://github.com/py4dstem/py4DSTEM/issues

py4dstem, Release 0.14.14

Docker

Overview

“Docker is an open platform for developing, shipping, and running applications. Docker enables you to
separate your applications from your infrastructure so you can deliver software quickly. With Docker, you
can manage your infrastructure in the same ways you manage your applications. By taking advantage of
Docker’s methodologies for shipping, testing, and deploying code quickly, you can significantly reduce the
delay between writing code and running it in production.” c.f. Docker website

Installation

There are py4DSTEM Docker images available on dockerhub, which can be pulled and run or built upon. Checkout
the dockerhub repository to see all the versions aviale or simply run the below to get the latest version. While Docker
is extremely powerful and aims to greatly simplify depolying software, it is also a complex and nuanced topic. If you
are interested in using it, and are having troubles getting it to work please file an issue on the github. To use Docker
you’ll first need to install Docker. After which you can run the images with the following commands.

1 docker pull arakowsk/py4dstem:latest
2 docker run <Docker options> py4dstem:latest <commands> <args>

Alternatively, you can use Docker Desktop which is a GUI interface for Docker and may be an easier method for running
the images for less experienced users.

1.2.4 Troubleshooting

If you face any issues, see the common errors below, and if there’s no solution please file an issue on the git repository.

Some common errors:

• make sure you’ve activated the right environment

• when installing subsections sometimes the quotation marks can be tricky dpeending on os, terminal etc.

• GPU drivers - tricky to explain

1.2.5 Virtual Environments

Attention: Virtual environments
A Python virtual environment is its own siloed version of Python, with its own set of packages and modules,
kept separate from any other Python installations on your system. In the instructions above, we created a virtual
environment to make sure packages that have different dependencies don’t conflict with one another. For instance,
as of this writing, some of the scientific Python packages don’t work well with Python 3.9 - but you might have
some other applications on your computer that need Python 3.9. Using virtual environments solves this problem.
In this example, we’re creating and navigating virtual environments using Anaconda.

Because these directions install py4DSTEM to its own virtual environment, each time you want to use py4DSTEM,
you’ll need to activate this environment.

• In the command line, you can do this with conda activate py4dstem.

12 Chapter 1. Contents

https://docs.docker.com/get-started/overview/
https://docs.docker.com/engine/install/
https://www.docker.com/products/docker-desktop/
https://github.com/py4dstem/py4DSTEM/issues

py4dstem, Release 0.14.14

• In the Anaconda Navigator, you can do this by clicking on the Environments tab and then clicking on
py4dstem.

1.3 Examples

1.3.1 First Steps

Once py4DSTEM has been succsesfully installed, you can start using it in Python the usual way. The most popular way
is using Jupyter Notebooks, but py4DSTEM can be run in python scripts, iPython, spyder, etc.

Listing 31: Your first py4DSTEM script

1 # Import the needed packages
2 import py4DSTEM
3

4 # This line displays the current version of py4DSTEM:
5 py4DSTEM.__version__
6

7 # download the dataset
8 py4DSTEM.io.download_file_from_google_drive(
9 '1PmbCYosA1eYydWmmZebvf6uon9k_5g_S',

10 'simulatedAuNanoplatelet_binned.h5'
11)
12 file_data = "simulatedAuNanoplatelet_binned.h5"
13

14 # Load the data
15 datacube = py4DSTEM.io.read(
16 file_data,
17 data_id = 'polyAu_4DSTEM' # The file above has several blocks of data inside
18)
19

20 # plot a diffraction pattern
21 py4DSTEM.show(
22 datacube[10,30],
23 intensity_range='absolute',
24 vmin=20,
25 vmax=200,
26 cmap='viridis',
27)

1.3. Examples 13

py4dstem, Release 0.14.14

Congratulations you’ve just plotted your first diffraction pattern.
If you run into trouble, refer back to the installation instructions Installation. Remember to make sure you’ve
activated the right Python environment.

1.3.2 Next Steps

For a more extensive overview checkout the tutorial github repository to see example notebooks demonstraing the
features of py4DSTEM. These can be downloaded and run locally or run through the browser using binder. Here are
some example plots from different anaylses you’ll learn running the tutorials.

14 Chapter 1. Contents

https://mybinder.org/v2/gh/py4dstem/py4DSTEM_tutorials/main
https://github.com/py4dstem/py4DSTEM_tutorials
https://mybinder.org/v2/gh/py4dstem/py4DSTEM_tutorials/main

py4dstem, Release 0.14.14

1.3. Examples 15

py4dstem, Release 0.14.14

1.4 API

For a full index of py4DSTEM functions and classes check out API Index

1.4.1 py4DSTEM

There are some shortcuts available for regularly used functions and utilities

Table of Contents

• py4DSTEM

– IO

– Plotting

– Utilities

IO

py4DSTEM.read(filepath: str | Path, datapath: str | None = None, tree: bool | str | None = True, verbose: bool |
None = False, **kwargs)

A file reader for native py4DSTEM / EMD files. To read non-native formats, use py4DSTEM.import_file.

For files written by py4DSTEM version 0.14+, the function arguments are those listed here - filepath, datapath,
and tree. See below for descriptions.

Files written by py4DSTEM v0.14+ are EMD 1.0 files, an HDF5 based format. For a description and complete
file specification, see https://emdatasets.com/format/. For the Python implementation of EMD 1.0 read-write
routines which py4DSTEM is build on top of, see https://github.com/py4dstem/emdfile.

To read file written by older verions of py4DSTEM, different keyword arguments should be passed. See the
docstring for py4DSTEM.io.native.legacy.read_py4DSTEM_legacy for a complete list. For example, data_id
may need to be specified to select dataset.

Parameters
• filepath (str or Path) – the file path

• datapath (str or None) – the path within the H5 file to the data group to read from. If
there is a single EMD data tree in the file, datapath may be left as None, and the path will
be set to the root node of that tree. If datapath is None and there are multiple EMD trees,
this function will issue a warning a return a list of paths to the root nodes of all EMD trees
it finds. Otherwise, should be a ‘/’ delimited path to the data node of interest, for exam-
ple passing ‘rootnode/somedata/someotherdata’ will set the node called ‘someotherdata’ as
the point to read from. To print the tree of data nodes present in a file to the screen, use
py4DSTEM.print_h5_tree(filepath).

• tree (True or False or 'noroot') – indicates what data should be loaded, relative to the
target data group specified with datapath. Enables reading the target data node only if tree is
False, reading the target node as well as recursively reading the tree of data underneath it if

16 Chapter 1. Contents

https://emdatasets.com/format/
https://github.com/py4dstem/emdfile

py4dstem, Release 0.14.14

tree is True, or recursively reading the tree of data underneath the target node but excluding
the target node itself if tree is to ‘noroot’.

Returns
(the data)

py4DSTEM.import_file(filepath: str | Path, mem: str | None = 'RAM', binfactor: int | None = 1, filetype: str |
None = None, **kwargs)

Reader for non-native file formats. Parses the filetype, and calls the appropriate reader. Supports Gatan DM3/4,
some EMPAD file versions, Gatan K2 bin/gtg, and mib formats.

Parameters
• filepath (str or Path) – Path to the file.

• mem (str) – Must be “RAM” or “MEMMAP”. Specifies how the data is loaded; “RAM”
transfer the data from storage to RAM, while “MEMMAP” leaves the data in storage and
creates a memory map which points to the diffraction patterns, allowing them to be retrieved
individually from storage.

• binfactor (int) – Diffraction space binning factor for bin-on-load.

• filetype (str) – Used to override automatic filetype detection. options include “dm”,
“empad”, “gatan_K2_bin”, “mib”, “arina”, “abTEM”

• **kwargs – any additional kwargs are passed to the downstream reader - refer to the indi-
vidual filetype reader function call signatures and docstrings for more details.

Returns
(DataCube or Array) returns a DataCube if 4D data is found, otherwise returns an Array

py4DSTEM.save(filepath, data, mode='w', emdpath=None, tree=True)
Saves data to an EMD 1.0 formatted HDF5 file at filepath.

For the full docstring, see py4DSTEM.emdfile.save.

py4DSTEM.print_h5_tree(filepath, show_metadata=False)
Prints the contents of an h5 file from a filepath.

Plotting

py4DSTEM.show(ar, figsize=(5, 5), cmap='gray', scaling='none', intensity_range='ordered', clipvals=None,
vmin=None, vmax=None, min=None, max=None, power=None, power_offset=True,
combine_images=False, ticks=True, bordercolor=None, borderwidth=5, show_image=True,
return_ar_scaled=False, return_intensity_range=False, returncax=False, returnfig=False,
figax=None, hist=False, n_bins=256, mask=None, mask_color='k', mask_alpha=0.0,
masked_intensity_range=False, rectangle=None, circle=None, annulus=None, ellipse=None,
points=None, grid_overlay=None, cartesian_grid=None, polarelliptical_grid=None,
rtheta_grid=None, scalebar=None, calibration=None, rx=None, ry=None, space='Q',
pixelsize=None, pixelunits=None, x0=None, y0=None, a=None, e=None, theta=None, title=None,
show_fft=False, apply_hanning_window=True, show_cbar=False, **kwargs)

General visualization function for 2D arrays.

The simplest use of this function is:

>>> show(ar)

which will generate and display a matplotlib figure showing the 2D array ar. Additional functionality includes:

1.4. API 17

py4dstem, Release 0.14.14

• scaling the image (log scaling, power law scaling)

• displaying the image histogram

• altering the histogram clip values

• masking some subset of the image

• setting the colormap

• adding geometric overlays (e.g. points, circles, rectangles, annuli)

• adding informational overlays (scalebars, coordinate grids, oriented axes or vectors)

• further customization tools

These are each discussed in turn below.

Scaling:
Setting the parameter scaling will scale the display image. Options are ‘none’, ‘auto’, ‘power’, or ‘log’. If
‘power’ is specified, the parameter power must also be passed. The underlying data is not altered. Values
less than or equal to zero are set to zero. If the image histogram is displayed using hist=True, the scaled
image histogram is shown.

Examples:

>>> show(ar,scaling='log')
>>> show(ar,power=0.5)
>>> show(ar,scaling='power',power=0.5,hist=True)

Histogram:
Setting the argument hist=True will display the image histogram, instead of the image. The displayed
histogram will reflect any scaling requested. The number of bins can be set with n_bins. The upper and
lower clip values, indicating where the image display will be saturated, are shown with dashed lines.

Intensity range:
Controlling the lower and upper values at which the display image will be saturated is accomplished
with the intensity_range parameter, or its (soon deprecated) alias clipvals, in combination with
vmin, and vmax. The method by which the upper and lower clip values are determined is controlled by
intensity_range, and must be a string in (‘None’,’ordered’,’minmax’,’absolute’,’std’,’centered’). See
the argument description for intensity_range for a description of the behavior for each. The clip values
can be returned with the return_intensity_range parameter.

Masking:
If a numpy masked array is passed to show, the function will automatically mask the appropriate pixels.
Alternatively, a boolean array of the same shape as the data array may be passed to the mask argument,
and these pixels will be masked. Masked pixels are displayed as a single uniform color, black by default,
and which can be specified with the mask_color argument. Masked pixels are excluded when displaying
the histogram or computing clip values. The mask can also be blended with the hidden data by setting the
mask_alpha argument.

Overlays (geometric):
The function natively supports overlaying points, circles, rectangles, annuli, and ellipses. Each is invoked by
passing a dictionary to the appropriate input variable specifying the geometry and features of the requested
overlay. For example:

>>> show(ar, rectangle={'lims':(10,20,10,20),'color':'r'})

will overlay a single red square, and

18 Chapter 1. Contents

py4dstem, Release 0.14.14

>>> show(ar, annulus={'center':[(28,68),(92,160)],
'radii':[(16,24),(12,36)],
'fill':True,
'alpha':[0.9,0.3],
'color':['r',(0,1,1,1)]})

will overlay two annuli with two different centers, radii, colors, and transparencies. For a description of
the accepted dictionary parameters for each type of overlay, see the visualize functions add_*, where * =
(‘rectangle’,’circle’,’annulus’,’ellipse’,’points’). (These docstrings are under construction!)

Overlays (informational):
Informational overlays supported by this function include coordinate axes (cartesian, polar-elliptical, or r-
theta) and scalebars. These are added by passing the appropriate input argument a dictionary of the desired
parameters, as with geometric overlays. However, there are two key differences between these overlays and
the geometric overlays. First, informational overlays (coordinate systems and scalebars) require information
about the plot - e.g. the position of the origin, the pixel sizes, the pixel units, any elliptical distortions, etc.
The easiest way to pass this information is by pass a Calibration object containing this info to show as the
keyword calibration. Second, once the coordinate information has been passed, informational overlays
can autoselect their own parameters, thus simply passing an empty dict to one of these parameters will add
that overlay.

For example:

>>> show(dp, scalebar={}, calibration=calibration)

will display the diffraction pattern dp with a scalebar overlaid in the bottom left corner given the pixel size
and units described in calibration, and

>>> show(dp, calibration=calibration, scalebar={'length':0.5,'width':2,
'position':'ul','label':True'})

will display a more customized scalebar.

When overlaying coordinate grids, it is important to note that some relevant parameters, e.g. the position
of the origin, may change by scan position. In these cases, the parameters rx,``ry`` must also be passed to
show, to tell the Calibration object where to look for the relevant parameters. For example:

>>> show(dp, cartesian_grid={}, calibration=calibration, rx=2,ry=5)

will overlay a cartesian coordinate grid on the diffraction pattern at scan position (2,5). Adding

>>> show(dp, calibration=calibration, rx=2, ry=5, cartesian_grid={'label':True,
'alpha':0.7,'color':'r'})

will customize the appearance of the grid further. And

>>> show(im, calibration=calibration, cartesian_grid={}, space='R')

displays a cartesian grid over a real space image. For more details, see the documentation for the visual-
ize functions add_*, where * = (‘scalebar’, ‘cartesian_grid’, ‘polarelliptical_grid’, ‘rtheta_grid’). (Under
construction!)

Further customization:
Most parameters accepted by a matplotlib axis will be accepted by show. Pass a valid matplotlib colormap
or a known string indicating a colormap as the argument cmap to specify the colormap. Pass figsize to
specify the figure size. Etc.

1.4. API 19

py4dstem, Release 0.14.14

Further customization can be accomplished by either (1) returning the figure generated by show and then
manipulating it using the normal matplotlib functions, or (2) generating a matplotlib Figure with Axes any
way you like (e.g. with plt.subplots) and then using this function to plot inside a single one of the Axes
of your choice.

Option (1) is accomplished by simply passing this function returnfig=True. Thus:

>>> fig,ax = show(ar, returnfig=True)

will now give you direct access to the figure and axes to continue to alter. Option (2) is accomplished by
passing an existing figure and axis to show as a 2-tuple to the figax argument. Thus:

>>> fig,(ax1,ax2) = plt.subplots(1,2)
>>> show(ar, figax=(fig,ax1))
>>> show(ar, figax=(fig,ax2), hist=True)

will generate a 2-axis figure, and then plot the array ar as an image on the left, while plotting its histogram
on the right.

Parameters
• ar (2D array or a list of 2D arrays) – the data to plot. Normally this is a 2D array

of the data. If a list of 2D arrays is passed, plots a corresponding grid of images.

• figsize (2-tuple) – size of the plot

• cmap (colormap) – any matplotlib cmap; default is gray

• scaling (str) – selects a scaling scheme for the intensity values. Default is none. Accepted
values:

– ’none’: do not scale intensity values

– ’full’: fill entire color range with sorted intensity values

– ’power’: power law scaling

– ’log’: values where ar<=0 are set to 0

• intensity_range (str) –

method for setting clipvalues (min and max intensities).
The original name “clipvals” is now deprecated. Default is ‘ordered’. Accepted values:

– ’ordered’: vmin/vmax are set to fractions of the distribution of pixel values in the array,
e.g. vmin=0.02 will set the minumum display value to saturate the lower 2% of pixels

– ’minmax’: The vmin/vmax values are np.min(ar)/np.max(r)

– ’absolute’: The vmin/vmax values are set to the values of the vmin,vmax arguments re-
ceived by this function

– ’std’: The vmin/vmax values are np.median(ar) -/+ N*np.std(ar), and
N is this functions min,max vals.

– ’centered’: The vmin/vmax values are set to c -/+ m, where by default ‘c’ is zero and m
is the max(abs(ar-c), or the two params can be user specified using the kwargs vmin/vmax
-> c/m.

• vmin (number) – min intensity, behavior depends on clipvals

• vmax (number) – max intensity, behavior depends on clipvals

20 Chapter 1. Contents

py4dstem, Release 0.14.14

• min – alias’ for vmin,vmax, throws deprecation warning

• max – alias’ for vmin,vmax, throws deprecation warning

• power (number) – specifies the scaling power

• power_offset (bool) – If true, image has min value subtracted before power scaling

• ticks (bool) – Turn outer tick marks on or off

• bordercolor (color or None) – if not None, add a border of this color. The color can
be anything matplotlib recognizes as a color.

• borderwidth (number) –

• returnfig (bool) – if True, the function returns the tuple (figure,axis)

• figax (None or 2-tuple) – controls which matplotlib Axes object draws the image. If
None, generates a new figure with a single Axes instance. Otherwise, ax must be a 2-tuple
containing the matplotlib class instances (Figure,Axes), with ar then plotted in the specified
Axes instance.

• hist (bool) – if True, instead of plotting a 2D image in ax, plots a histogram of the inten-
sity values of ar, after any scaling this function has performed. Plots the clipvals as dashed
vertical lines

• n_bins (int) – number of hist bins

• mask (None or boolean array) – if not None, must have the same shape as ‘ar’. Wher-
ever mask==True, plot the pixel normally, and where mask==False, pixel values are set to
mask_color. If hist==True, ignore these values in the histogram. If mask_alpha is spec-
ified, the mask is blended with the array underneath, with 0 yielding an opaque mask and
1 yielding a fully transparent mask. If mask_color is set to 'empty' instead of a mat-
plotlib.color, nothing is done to pixels where mask==False, allowing overlaying multiple
arrays in different regions of an image by invoking the ``figax` kwarg over multiple calls to
show

• mask_color (color) – see ‘mask’

• mask_alpha (float) – see ‘mask’

• masked_intensity_range (bool) – controls if masked pixel values are included when
determining the display value range; False indicates that all pixel values will be used to
determine the intensity range, True indicates only unmasked pixels will be used

• scalebar (None or dict or Bool) – if None, and a DiffractionSlice or RealSlice with
calibrations is passed, adds a scalebar. If scalebar is not displaying the proper calibration,
check .calibration pixel_size and pixel_units. If None and an array is passed, does not add a
scalebar. If a dict is passed, it is propagated to the add_scalebar function which will attempt
to use it to overlay a scalebar. If True, uses calibraiton or pixelsize/pixelunits for scalebar. If
False, no scalebar is added.

• show_fft (bool) – if True, plots 2D-fft of array

• apply_hanning_window (bool) – If True, a 2D Hann window is applied to the array before
applying the FFT

• show_cbar (bool) – if True, adds cbar

• **kwargs – any keywords accepted by matplotlib’s ax.matshow()

Returns
if returnfig==False (default), the figure is plotted and nothing is returned. if returnfig==True,
return the figure and the axis.

1.4. API 21

py4dstem, Release 0.14.14

Utilities

py4DSTEM.check_config(verbose: bool = False, gratuitously_verbose: bool = False)→ None
This function checks the state of required imports to run py4DSTEM.

Default behaviour will provide a summary of install dependencies for each module e.g. Base, ACOM etc.

Parameters
• verbose (bool, optional) – Will provide the status of all possible requriements for

py4DSTEM, and perform any additonal checks. Defaults to False.

• gratuitously_verbose (bool, optional) – Provides more indepth analysis. Defaults
to False.

Returns
None

py4DSTEM.join(a, *p)
Join two or more pathname components, inserting ‘/’ as needed. If any component is an absolute path, all previous
path components will be discarded. An empty last part will result in a path that ends with a separator.

py4DSTEM.tqdmnd(*args, **kwargs)
An N-dimensional extension of tqdm providing an iterator and progress bar over the product of multiple iterators.

Example Usage:

>>> for x,y in tqdmnd(5,6):
>>> <expression>

is equivalent to

>>> for x in range(5):
>>> for y in range(6):
>>> <expression>

with a tqdmnd-style progress bar printed to standard output.

Accepts:
*args: Any number of integers or iterators. Each integer N

is converted to a range(N) iterator. Then a loop is constructed from the Cartesian product of all iter-
ables.

**kwargs: keyword arguments passed through directly to tqdm.
Full details are available at https://tqdm.github.io A few useful ones:

disable (bool): if True, hide the progress bar keep (bool): if True, delete the progress bar after
completion unit (str): unit name for the display of iteration speed unit_scale (bool): whether
to scale the displayed units and add

SI prefixes

desc (str): message displayed in front of the progress bar

Returns
At each iteration, a tuple of indices is returned, corresponding to the values of each input iterator
(in the same order as the inputs).

22 Chapter 1. Contents

https://tqdm.github.io

py4dstem, Release 0.14.14

1.4.2 Classes

Table of Contents

• Classes

– Array

– BraggVectors

– Calibration

– Custom

– Data

– DataCube

– DiffractionSlice

– Metadata

– Node

– PointList

– PointListArray

– Probe

– QPoints

– RealSlice

– VirtualDiffraction

– VirtualImage

Array

class py4DSTEM.Array(data: ndarray, name: str | None = 'array', units: str | None = '', dims: list | None = None,
dim_names: list | None = None, dim_units: list | None = None, slicelabels=None)

A class which stores any N-dimensional array-like data, plus basic metadata: a name and units, as well as cali-
brations for each axis of the array, and names and units for those axis calibrations.

In the simplest usage, only a data array is passed:

>>> ar = Array(np.ones((20,20,256,256)))

will create an array instance whose data is the numpy array passed, and with automatically populated dimension
calibrations in units of pixels.

Additional arguments may be passed to populate the object metadata:

>>> ar = Array(
>>> np.ones((20,20,256,256)),
>>> name = 'test_array',
>>> units = 'intensity',
>>> dims = [
>>> [0,5],

(continues on next page)

1.4. API 23

py4dstem, Release 0.14.14

(continued from previous page)

>>> [0,5],
>>> [0,0.01],
>>> [0,0.01]
>>>],
>>> dim_units = [
>>> 'nm',
>>> 'nm',
>>> 'A^-1',
>>> 'A^-1'
>>>],
>>> dim_names = [
>>> 'rx',
>>> 'ry',
>>> 'qx',
>>> 'qy'
>>>],
>>>)

will create an array with a name and units for its data, where its first two dimensions are in units of nanometers,
have pixel sizes of 5nm, and are described by the handles ‘rx’ and ‘ry’, and where its last two dimensions are in
units of inverse Angstroms, have pixels sizes of 0.01A^-1, and are described by the handles ‘qx’ and ‘qy’.

Arrays in which the length of each pixel is non-constant are also supported. For instance,

>>> x = np.logspace(0,1,100)
>>> y = np.sin(x)
>>> ar = Array(
>>> y,
>>> dims = [
>>> x
>>>]
>>>)

generates an array representing the values of the sine function sampled 100 times along a logarithmic interval
from 1 to 10. In this example, this data could then be plotted with, e.g.

>>> plt.scatter(ar.dims[0], ar.data)

If the slicelabels keyword is passed, the first N-1 dimensions of the array are treated normally, while the final
dimension is used to represent distinct arrays which share a common shape and set of dim vectors. Thus

>>> ar = Array(
>>> np.ones((50,50,4)),
>>> name = 'test_array_stack',
>>> units = 'intensity',
>>> dims = [
>>> [0,2],
>>> [0,2]
>>>],
>>> dim_units = [
>>> 'nm',
>>> 'nm'
>>>],

(continues on next page)

24 Chapter 1. Contents

py4dstem, Release 0.14.14

(continued from previous page)

>>> dim_names = [
>>> 'rx',
>>> 'ry'
>>>],
>>> slicelabels = [
>>> 'a',
>>> 'b',
>>> 'c',
>>> 'd'
>>>]
>>>)

will generate a single Array instance containing 4 arrays which each have a shape (50,50) and a common set of
dim vectors [‘rx’,’ry’], and which can be indexed into with the names assigned in slicelabels using

>>> ar.get_slice('a')

which will return a 2D (non-stack-like) Array instance with shape (50,50) and the dims assigned above. The
Array attribute .rank is equal to the number of dimensions for a non-stack-like Array, and is equal to N-1 for
stack-like arrays.

__init__(data: ndarray, name: str | None = 'array', units: str | None = '', dims: list | None = None,
dim_names: list | None = None, dim_units: list | None = None, slicelabels=None)

Accepts:
data (np.ndarray): the data name (str): the name of the Array units (str): units for the pixel values dims
(variable): calibration vectors for each of the axes of the data

array. Valid values for each element of the list are None, a number, a 2-element list/array, or an
M-element list/array where M is the data array. If None is passed, the dim will be populated
with integer values starting at 0 and its units will be set to pixels. If a number is passed,
the dim is populated with a vector beginning at zero and increasing linearly by this step size.
If a 2-element list/array is passed, the dim is populated with a linear vector with these two
numbers as the first two elements. If a list/array of length M is passed, this is used as the dim
vector, (and must therefore match this dimension’s length). If dims recieves a list of fewer than
N arguments for an N-dimensional data array, the extra dimensions are populated as if None
were passed, using integer pixel values. If the dims parameter is not passed, all dim vectors
are populated this way.

dim_units (list): the units for the calibration dim vectors. If
nothing is passed, dims vectors which have been populated automatically with integers corre-
sponding to pixel numbers will be assigned units of ‘pixels’, and any other dim vectors will be
assigned units of ‘unknown’. If a list with length < the array dimensions, the passed values are
assumed to apply to the first N dimensions, and the remaining values are populated with ‘pixels’
or ‘unknown’ as above.

dim_names (list): labels for each axis of the data array. Values
which are not passed, following the same logic as described above, will be autopopulated with the
name “dim#” where # is the axis number.

slicelabels (None or True or list): if not None, must be True or a
list of strings, indicating a “stack-like” array. In this case, the first N-1 dimensions of the array
are treated normally, in the sense of populating dims, dim_names, and dim_units, while the fi-
nal dimension is treated distinctly: it indexes into distinct arrays which share a set of dimension
attributes, and can be sliced into using the string labels from the slicelabels list, with the syntax

1.4. API 25

py4dstem, Release 0.14.14

array[‘label’] or array.get_slice(‘label’). If slicelabels is True or is a list with length less than the
final dimension length, unassigned dimensions are autopopulated with labels array{i}. The flag
array.is_stack is set to True and the array.rank attribute is set to N-1.

Returns
A new Array instance

get_dim(n)
Return the n’th dim vector

dim(n)
Return the n’th dim vector

set_dim(n: int, dim: list | ndarray, units: str | None = None, name: str | None = None)
Sets the n’th dim vector, using dim as described in the Array documentation. If units and/or name are
passed, sets these values for the n’th dim vector.

Accepts:
n (int): specifies which dim vector dim (list or array): length must be either 2, or equal to the

length of the n’th axis of the data array

units (Optional, str): name: (Optional, str):

get_dim_units(n)
Return the n’th dim vector units

set_dim_units(n: int, units: str)
Sets the n’th dim vector units to units.

Accepts:
n (int): specifies which dim vector units (str): new units

get_dim_name(n)
Get the n’th dim vector name

set_dim_name(n: int, name: str)
Sets the n’th dim vector name to name.

Accepts:
n (int): specifies which dim vector name (str): new name

to_h5(group)
Takes an h5py Group instance and creates a subgroup containing this Array, tags indicating its EMD type
and Python class, and the array’s data and metadata.

Accepts:
group (h5py Group)

Returns
(h5py Group) the new array’s Group

add_to_tree(node)
Add an unrooted node as a child of the current, rooted node. To move an already rooted node/branch, use
.graft(). To create a rooted node, use Root().

26 Chapter 1. Contents

py4dstem, Release 0.14.14

cut_from_tree(root_metadata=True)
Removes a branch from an object tree at this node.

A new root node is created under this object with this object’s name. Metadata from the current root is
transferred/not transferred to the new root according to the value of root_metadata.

Accepts:
root_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies of all
metadata from the old root to the new root.

Returns
(Node) the new root node

force_add_to_tree(node)
Add node node as a child of the current node, whether or not node is rooted. If it’s unrooted, performs a
simple add. If it is rooted, performs a graft, excluding the root metadata from node.

classmethod from_h5(group)
Takes an h5py Group which is open in read mode. Confirms that a a Node of this name exists in this group,
and loads and returns it with it’s metadata.

Accepts:
group (h5py Group)

Returns
(Node)

get_from_tree(name)
Finds and returns an object from an EMD tree using the string key name, with ‘/’ delimiters between
‘parent/child’ nodes. Search from the root node by adding a leading ‘/’; otherwise, searches from the
current node.

graft(node, merge_metadata=True)
Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree) either use that tree’s .graft method, or use this
tree’s ._graft.

Accepts:
node (Node): merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies of
all metadata from the old root to the new root.

Returns
(Node) this tree’s root node

static newnode(method)
Decorator which may be added to node methods which product and return a new node. If such a method is
decorated with

>>> @newnode

1.4. API 27

py4dstem, Release 0.14.14

then the new node is added to the parent node’s tree, and a Metadata instance is added to the new node’s
metadata which stores information about how the node was created, namely: method’s name, the parent’s
class and name, and all the arguments passed to method.

show_tree(root=False)
Display the object tree. If root is False, displays the branch of the tree downstream from this node. If root
is True, displays the full tree from the root node.

tree(arg=None, **kwargs)
Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

BraggVectors

class py4DSTEM.BraggVectors(Rshape, Qshape, name='braggvectors', verbose=False, calibration=None)
Stores localized bragg scattering positions and intensities for a 4D-STEM datacube.

Raw (detector coordinate) vectors are accessible as

>>> braggvectors.raw[scan_x, scan_y]

and calibrated vectors as

>>> braggvectors.cal[scan_x, scan_y]

To set which calibrations are being applied, call

>>> braggvectors.setcal(
>>> center = bool,
>>> ellipse = bool,
>>> pixel = bool,
>>> rotate = bool
>>>)

If .setcal is not called, calibrations will be automatically selected based based on the contents of the instance’s
calibrations property. The calibrations performed in the last call to braggvectors.cal are exposed as

28 Chapter 1. Contents

py4dstem, Release 0.14.14

>>> braggvectors.calstate

After grabbing some vectors

>>> vects = braggvectors.raw[scan_x,scan_y]

the values themselves are accessible as

>>> vects.qx,vects.qy,vects.I
>>> vects['qx'],vects['qy'],vects['intensity']

Alternatively, you can access the centered vectors in pixel units with

>>> vects.get_vectors(
>>> scan_x,
>>> scan_y,
>>> center = bool,
>>> ellipse = bool,
>>> pixel = bool,
>>> rotate = bool
>>>)

which will return the vectors at scan position (scan_x,scan_y) with the requested calibrations applied.

__init__(Rshape, Qshape, name='braggvectors', verbose=False, calibration=None)

set_raw_vectors(x)
Given some PointListArray x of the correct shape, sets this to the raw vectors

property raw

Calling

>>> raw[scan_x, scan_y]

returns those bragg vectors.

property cal

Calling

>>> cal[scan_x, scan_y]

retrieves data. Use .setcal to set the calibrations to be applied, or .calstate to see which calibrations are
currently set. Calibrations are initially all set to False. Call .setcal() (with no arguments) to automatically
detect which calibrations are present and apply those.

setcal(center=None, ellipse=None, pixel=None, rotate=None)
Calling

>>> braggvectors.setcal(
>>> center = bool,
>>> ellipse = bool,
>>> pixel = bool,
>>> rotate = bool,
>>>)

sets the calibrations that will be applied to vectors subsequently retrieved with

1.4. API 29

py4dstem, Release 0.14.14

>>> braggvectors.cal[scan_x, scan_y]

Any arguments left as None will be automatically set based on the calibration measurements available.

calibrate()

Autoupdate the calstate when relevant calibrations are set

get_vectors(scan_x, scan_y, center, ellipse, pixel, rotate)
Returns the bragg vectors at the specified scan position with the specified calibration state.

Parameters
• scan_x (int) –

• scan_y (int) –

• center (bool) –

• ellipse (bool) –

• pixel (bool) –

• rotate (bool) –

Returns
vectors

Return type
BVects

to_h5(group)
Constructs the group, adds the bragg vector pointlists, and adds metadata describing the shape

add_to_tree(node)
Add an unrooted node as a child of the current, rooted node. To move an already rooted node/branch, use
.graft(). To create a rooted node, use Root().

attach(node)
Attach node to the current object’s tree, attaching calibration and detaching calibrations as needed.

cut_from_tree(root_metadata=True)
Removes a branch from an object tree at this node.

A new root node is created under this object with this object’s name. Metadata from the current root is
transferred/not transferred to the new root according to the value of root_metadata.

Accepts:
root_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies of all
metadata from the old root to the new root.

Returns
(Node) the new root node

fit_origin(mask=None, fitfunction='plane', robust=False, robust_steps=3, robust_thresh=2,
mask_check_data=True, plot=True, plot_range=None, cmap='RdBu_r', returncalc=True,
**kwargs)

Fit origin of bragg vectors.

Parameters

30 Chapter 1. Contents

py4dstem, Release 0.14.14

• mask (2b boolean array, optional) – ignore points where mask=True

• fitfunction (str, optional) – must be ‘plane’ or ‘parabola’ or ‘bezier_two’

• robust (bool, optional) – If set to True, fit will be repeated with outliers removed.

• robust_steps (int, optional) – Optional parameter. Number of robust iterations per-
formed after initial fit.

• robust_thresh (int, optional) – Threshold for including points, in units of root-
mean-square (standard deviations) error of the predicted values after fitting.

• mask_check_data (bool) – Get mask from origin measurements equal to zero. (TODO
- replace)

• plot (bool, optional) – plot results

• plot_range (float) – min and max color range for plot (pixels)

• cmap (colormap) – plotting colormap

Returns
Return value depends on returnfitp. If returnfitp==False (default), returns a 4-tuple con-
taining:

• qx0_fit: (ndarray) the fit origin x-position

• qy0_fit: (ndarray) the fit origin y-position

• qx0_residuals: (ndarray) the x-position fit residuals

• qy0_residuals: (ndarray) the y-position fit residuals

Return type
(variable)

fit_p_ellipse(bvm, center, fitradii, mask=None, returncalc=False, **kwargs)

Parameters
• bvm (BraggVectorMap) – a 2D array used for ellipse fitting

• center (2-tuple of floats) – the center (x0,y0) of the annular fitting region

• fitradii (2-tuple of floats) – inner and outer radii (ri,ro) of the fit region

• mask (ar-shaped ndarray of bools) – ignore data wherever mask==True

Returns
p_ellipse if returncal is True

force_add_to_tree(node)
Add node node as a child of the current node, whether or not node is rooted. If it’s unrooted, performs a
simple add. If it is rooted, performs a graft, excluding the root metadata from node.

classmethod from_h5(group)
Takes an h5py Group which is open in read mode. Confirms that a a Node of this name exists in this group,
and loads and returns it with it’s metadata.

Accepts:
group (h5py Group)

Returns
(Node)

1.4. API 31

py4dstem, Release 0.14.14

get_bragg_vector_map(mode='cal', sampling=1, weights=None, weights_thresh=0.005)
Returns a 2D histogram of Bragg vector intensities in diffraction space, aka a Bragg vector map.

Parameters
• mode (str) – Must be ‘cal’ or ‘raw’. Use the calibrated or raw vector positions.

• sampling (number) – The sampling rate of the histogram, in units of the camera’s sam-
pling. sampling = 2 upsamples and sampling = 0.5 downsamples, each by a factor of 2.

• weights (None or array) – If None, use all real space scan positions. Otherwise must
be a real space shaped array representing a weighting factor applied to vector intensi-
ties from each scan position. If weights is boolean uses beam positions where weights
is True. If weights is number-like, scales by the values, and skips positions where
wieghts<weights_thresh.

• weights_thresh (number) – If weights is an array of numbers, pixels where
weights>weight_thresh are skipped.

Returns
An Array with .data representing the data, and .dim[0] and .dim[1] representing the sampling
grid.

Return type
BraggVectorHistogram

get_bvm(mode='cal', sampling=1, weights=None, weights_thresh=0.005)
Returns a 2D histogram of Bragg vector intensities in diffraction space, aka a Bragg vector map.

Parameters
• mode (str) – Must be ‘cal’ or ‘raw’. Use the calibrated or raw vector positions.

• sampling (number) – The sampling rate of the histogram, in units of the camera’s sam-
pling. sampling = 2 upsamples and sampling = 0.5 downsamples, each by a factor of 2.

• weights (None or array) – If None, use all real space scan positions. Otherwise must
be a real space shaped array representing a weighting factor applied to vector intensi-
ties from each scan position. If weights is boolean uses beam positions where weights
is True. If weights is number-like, scales by the values, and skips positions where
wieghts<weights_thresh.

• weights_thresh (number) – If weights is an array of numbers, pixels where
weights>weight_thresh are skipped.

Returns
An Array with .data representing the data, and .dim[0] and .dim[1] representing the sampling
grid.

Return type
BraggVectorHistogram

get_from_tree(name)
Finds and returns an object from an EMD tree using the string key name, with ‘/’ delimiters between
‘parent/child’ nodes. Search from the root node by adding a leading ‘/’; otherwise, searches from the
current node.

get_masked_peaks(mask, update_inplace=False, returncalc=True)
Alias for mask_in_Q.

32 Chapter 1. Contents

py4dstem, Release 0.14.14

get_virtual_image(mode=None, geometry=None, name='bragg_virtual_image', returncalc=True,
center=True, ellipse=True, pixel=True, rotate=True)

Calculates a virtual image based on the values of the Braggvectors integrated over some detector function
determined by mode and geometry.

Parameters
• mode (str) –

defines the type of detector used. Options:
– ’circular’, ‘circle’: uses round detector, like bright field

– ’annular’, ‘annulus’: uses annular detector, like dark field

• geometry (variable) –

expected value depends on the value of mode, as follows:
– ’circle’, ‘circular’: nested 2-tuple, ((qx,qy),radius)

– ’annular’ or ‘annulus’: nested 2-tuple, ((qx,qy),(radius_i,radius_o))

Values can be in pixels or calibrated units. Note that (qx,qy) can be skipped, which
assumes peaks centered at (0,0).

• center (bool) – Apply calibration - center coordinate.

• ellipse (bool) – Apply calibration - elliptical correction.

• pixel (bool) – Apply calibration - pixel size.

• rotate (bool) – Apply calibration - QR rotation.

Returns
virtual_im

Return type
VirtualImage

graft(node, merge_metadata=True)
Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree) either use that tree’s .graft method, or use
this tree’s ._graft.

Accepts:
node (Node): merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies
of all metadata from the old root to the new root.

Returns
(Node) this tree’s root node

histogram(mode='cal', sampling=1, weights=None, weights_thresh=0.005)
Returns a 2D histogram of Bragg vector intensities in diffraction space, aka a Bragg vector map.

Parameters
• mode (str) – Must be ‘cal’ or ‘raw’. Use the calibrated or raw vector positions.

• sampling (number) – The sampling rate of the histogram, in units of the camera’s
sampling. sampling = 2 upsamples and sampling = 0.5 downsamples, each by a factor
of 2.

1.4. API 33

py4dstem, Release 0.14.14

• weights (None or array) – If None, use all real space scan positions. Otherwise
must be a real space shaped array representing a weighting factor applied to vector
intensities from each scan position. If weights is boolean uses beam positions where
weights is True. If weights is number-like, scales by the values, and skips positions
where wieghts<weights_thresh.

• weights_thresh (number) – If weights is an array of numbers, pixels where
weights>weight_thresh are skipped.

Returns
An Array with .data representing the data, and .dim[0] and .dim[1] representing the sam-
pling grid.

Return type
BraggVectorHistogram

mask_in_Q(mask, update_inplace=False, returncalc=True)
Remove peaks which fall inside the diffraction shaped boolean array mask, in raw (uncalibrated) peak
positions.

Parameters
• mask (2d boolean array) – The mask. Must be diffraction space shaped

• update_inplace (bool) – If False (default) copies this BraggVectors instance and
removes peaks from the copied instance. If True, removes peaks from this instance.

• returncalc (bool) – Toggles returning the answer

Returns
bvects

Return type
BraggVectors

mask_in_R(mask, update_inplace=False, returncalc=True)
Remove peaks which fall inside the real space shaped boolean array mask.

Parameters
• mask (2d boolean array) – The mask. Must be real space shaped

• update_inplace (bool) – If False (default) copies this BraggVectors instance and
removes peaks from the copied instance. If True, removes peaks from this instance.

• returncalc (bool) – Toggles returning the answer

Returns
bvects

Return type
BraggVectors

measure_origin(center_guess=None, score_method=None, findcenter='max')
Finds the diffraction shifts of the center beam using the raw Bragg vector measurements.

If a center guess is not specified, first, a guess at the unscattered beam position is determined, either by
taking the CoM of the Bragg vector map, or by taking its maximal pixel. Once a unscattered beam position
is determined, the Bragg peak closest to this position is identified. The shifts in these peaks positions from
their average are returned as the diffraction shifts.

Parameters
• center_guess (2-tuple) – initial guess for the center

34 Chapter 1. Contents

py4dstem, Release 0.14.14

• score_method (str) –

Method used to find center peak
– ’intensity’: finds the most intense Bragg peak near the center

– ’distance’: finds the closest Bragg peak to the center

– ’intensity weighted distance’: determines center through a combination of
weighting distance and intensity

• (str) (findcenter) – position options: ‘CoM’, or ‘max.’ Only used if center_guess
is None. CoM finds the center of mass of bragg ector map, ‘max’ uses its brightest
pixel.

• Returns – (3-tuple): A 3-tuple comprised of:

– qx0 ((R_Nx,R_Ny)-shaped array): the origin x-coord

– qy0 ((R_Nx,R_Ny)-shaped array): the origin y-coord

– braggvectormap ((R_Nx,R_Ny)-shaped array): the Bragg vector map of only the
Bragg peaks identified with the unscattered beam. Useful for diagnostic purposes.

measure_origin_beamstop(center_guess, radii, max_dist=None, max_iter=1, **kwargs)
Find the origin from a set of braggpeaks assuming there is a beamstop, by identifying pairs of conjugate
peaks inside an annular region and finding their centers of mass.

Parameters
• center_guess (2-tuple) – qx0,qy0

• radii (2-tuple) – the inner and outer radii of the specified annular region

• max_dist (number) – the maximum allowed distance between the reflection of two
peaks to consider them conjugate pairs

• max_iter (integer) – for values >1, repeats the algorithm after updating cen-
ter_guess

Returns
the origins

Return type
(2d masked array)

static newnode(method)
Decorator which may be added to node methods which product and return a new node. If such a method
is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a Metadata instance is added to the new node’s
metadata which stores information about how the node was created, namely: method’s name, the parent’s
class and name, and all the arguments passed to method.

plot(index: tuple[int, int] | list[int], cal: str = 'cal', returnfig: bool = False, **kwargs)
Plot Bragg vector, from a specified index. Calls py4DSTEM.process.diffraction.plot_diffraction_pattern(braggvectors.<cal/raw>[index],
**kwargs). Optionally can return the figure.

Parameters
• index (tuple[int,int] | list[int]) – scan position for which Bragg vectors

to plot

1.4. API 35

py4dstem, Release 0.14.14

• cal (str, optional) – Choice to plot calibrated or raw Bragg vectors must be ‘raw’
or ‘cal’, by default ‘cal’

• returnfig (bool, optional) – Boolean to return figure or not, by default False

Returns
matplotlib figure, axes returned if returnfig is True

Return type
tuple (figure, axes)

show_tree(root=False)
Display the object tree. If root is False, displays the branch of the tree downstream from this node. If root
is True, displays the full tree from the root node.

to_strainmap(name: str | None = None)
Generate a StrainMap object from the BraggVectors equivalent to
py4DSTEM.StrainMap(braggvectors=braggvectors)

Parameters
name (str, optional) – The name of the strainmap. Defaults to None which reverts to
default name ‘strainmap’.

Returns
A py4DSTEM StrainMap object generated from the BraggVectors

Return type
py4DSTEM.StrainMap

tree(arg=None, **kwargs)
Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

36 Chapter 1. Contents

py4dstem, Release 0.14.14

Calibration

class py4DSTEM.Calibration(name: str | None = 'calibration', root: Root | None = None)
Stores calibration measurements.

Usage

For some calibration instance c

>>> c['x'] = y

will set the value of some calibration item called ‘x’ to y, and

>>> _y = c['x']

will return the value currently stored as ‘x’ and assign it to _y. Additionally, for calibration items in the list l
given below, the syntax

>>> c.set_p(p)
>>> p = c.get_p()

is equivalent to

>>> c.p = p
>>> p = c.p

is equivalent to

>>> c['p'] = p
>>> p = c['p']

where in the first line of each couplet the parameter p is set and in the second it’s retrieved, for parameters p in
the list

l = [
Q_pixel_size, * R_pixel_size, * Q_pixel_units, * R_pixel_units, * qx0, qy0, qx0_mean, qy0_mean,
qx0shift, qy0shift, origin, * origin_meas, origin_meas_mask, origin_shift, a, * b, * theta, * p_ellipse, *
ellipse, * QR_rotation_degrees, * QR_flip, * QR_rotflip, * probe_semiangle, probe_param, probe_center,
probe_convergence_semiangle_pixels, probe_convergence_semiangle_mrad,

]

There are two advantages to using the getter/setter syntax for parameters in l (e.g. either c.set_p or c.p) instead
of the normal dictionary-like getter/setter syntax (i.e. c[‘p’]). These are (1) enabling retrieving parameters by
beam scan position, and (2) enabling propagation of any calibration changes to downstream data objects which
are affected by the altered calibrations. See below.

1.4. API 37

py4dstem, Release 0.14.14

Get a parameter by beam scan position

Some parameters support retrieval by beam scan position. In these cases, calling

>>> c.get_p(rx,ry)

will return the value of parameter p at beam position (rx,ry). This works only for the above syntax. Using either
of

>>> c.p
>>> c['p']

will return an R-space shaped array.

Trigger downstream calibrations

Some objects store their own internal calibration state, which depends on the calibrations stored here. For exam-
ple, a DataCube stores dimension vectors which calibrate its 4 dimensions, and which depend on the pixel sizes
and the origin position.

Modifying certain parameters therefore can trigger other objects which depend on these parameters to re-calibrate
themselves by calling their .calibrate() method, if the object has one. Methods marked with a * in the list l
above have this property. Only objects registered with the Calibration instance will have their .calibrate method
triggered by changing these parameters. An object data can be registered by calling

>>> c.register_target(data)

and deregistered with

>>> c.deregister_target(data)

If an object without a .calibrate method is registerd when a * method is called, nothing happens.

The .calibrate methods are triggered by setting some parameter p using either

>>> c.set_p(val)

or

>>> c.p = val

syntax. Setting the parameter with

>>> c['p'] = val

will not trigger re-calibrations.

38 Chapter 1. Contents

py4dstem, Release 0.14.14

Calibration + Data

Data in py4DSTEM is stored in filetree like representations, and Calibration instances are the top-level objects
in these trees, in that they live here:

Root
|–metadata | |– *—> calibration <—* | |–some_object(e.g.datacube) | |–another_object(e.g.max_dp) | |–etc.
|–etc. :

Every py4DSTEM Data object has a tree with a calibration, and calling

>>> data.calibration

will return the that Calibration instance. See also the docstring for the Data class.

Attaching an object to a different Calibration

To modify the calibration associated with some object data, use

>>> c.attach(data)

where c is the new calibration instance. This (1) moves data into the top level of c’s data tree, which means the
new calibration will now be accessible normally at

>>> data.calibration

and (2) if and only if data was registered with its old calibration, de-registers it there and registers it with the
new calibration. If data was not registered with the old calibration and it should be registered with the new one,
c.register_target(data) should be called.

To attach data to a different location in the calibration instance’s tree, use node.attach(data). See the Data.attach
docstring.

__init__(name: str | None = 'calibration', root: Root | None = None)

Parameters
name (optional, str) –

attach(data)
Attach data to this calibration instance, placing it in the top level of the Calibration instance’s tree. If
data was in a different data tree, remove it. If data was registered with a different calibration instance,
de-register it there and register it here. If data was not previously registerd and it should be, after attaching
it run self.register_target(data).

register_target(new_target)
Register an object to recieve calls to it calibrate method when certain calibrations get updated

unregister_target(target)
Unlink an object from recieving calls to calibrate when certain calibration values are changed

set_origin_meas(x)

Parameters
x (2-tuple or 3 uple of 2D R-shaped arrays) – qx0,qy0,[mask]

1.4. API 39

py4dstem, Release 0.14.14

set_probe_param(x)

Parameters
x (3-tuple) – (probe size, x0, y0)

to_h5(group)
Saves the metadata dictionary _params to group, then adds the calibration’s target’s list

classmethod from_h5(group)
Takes a valid group for an HDF5 file object which is open in read mode. Determines if it’s a valid Metadata
representation, and if so loads and returns it as a Calibration instance. Otherwise, raises an exception.

Accepts:
group (HDF5 group)

Returns
A Calibration instance

Custom

class py4DSTEM.Custom(name='custom')

__init__(name='custom')

to_h5(group)
Constructs an h5 group, adds metadata, and adds all attributes which point to EMD nodes.

Accepts:
group (h5py Group)

Returns
(h5py Group) the new node’s Group

add_to_tree(node)
Add an unrooted node as a child of the current, rooted node. To move an already rooted node/branch, use
.graft(). To create a rooted node, use Root().

cut_from_tree(root_metadata=True)
Removes a branch from an object tree at this node.

A new root node is created under this object with this object’s name. Metadata from the current root is
transferred/not transferred to the new root according to the value of root_metadata.

Accepts:
root_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies of all
metadata from the old root to the new root.

Returns
(Node) the new root node

force_add_to_tree(node)
Add node node as a child of the current node, whether or not node is rooted. If it’s unrooted, performs a
simple add. If it is rooted, performs a graft, excluding the root metadata from node.

40 Chapter 1. Contents

py4dstem, Release 0.14.14

classmethod from_h5(group)
Takes an h5py Group which is open in read mode. Confirms that a a Node of this name exists in this group,
and loads and returns it with it’s metadata.

Accepts:
group (h5py Group)

Returns
(Node)

get_from_tree(name)
Finds and returns an object from an EMD tree using the string key name, with ‘/’ delimiters between
‘parent/child’ nodes. Search from the root node by adding a leading ‘/’; otherwise, searches from the
current node.

graft(node, merge_metadata=True)
Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree) either use that tree’s .graft method, or use
this tree’s ._graft.

Accepts:
node (Node): merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies
of all metadata from the old root to the new root.

Returns
(Node) this tree’s root node

static newnode(method)
Decorator which may be added to node methods which product and return a new node. If such a method
is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a Metadata instance is added to the new node’s
metadata which stores information about how the node was created, namely: method’s name, the parent’s
class and name, and all the arguments passed to method.

show_tree(root=False)
Display the object tree. If root is False, displays the branch of the tree downstream from this node. If root
is True, displays the full tree from the root node.

tree(arg=None, **kwargs)
Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata

(continues on next page)

1.4. API 41

py4dstem, Release 0.14.14

(continued from previous page)

>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

Data

class py4DSTEM.Data(calibration=None)
The purpose of the Data class is to ensure calibrations are linked to data containing class instances, while allowing
multiple objects to share a single Calibration. The calibrations of a Data instance data is accessible as

>>> data.calibration

In py4DSTEM, Data containing objects are stored internally in filetree like representations, defined by the
EMD1.0 and emdfile specifications, e.g.

Root
|–metadata | |–calibration | |–some_object(e.g.datacube) | |–another_object(e.g.max_dp) | |–etc. |
|–one_more_object(e.g.crystal) | |–etc. :

Calibrations are metadata which always live in the root of such a tree. Running data.calibration returns the
calibrations from the tree root, and therefore the same calibration instance is referred to be all objects in the same
tree. The root itself is accessible from any Data instance as

>>> data.root

To examine the tree of a Data instance, in a Python interpreter do

>>> data.tree(True)

to display the whole data tree, and

>>> data.tree()

to display the tree of from the current node on, i.e. the branch downstream of data.

Calling

>>> data.calibration

will raise a warning and return None if no root calibrations are found.

Some objects should be modified when the calibrations change - these objects must have .calibrate() method,
which is called any time relevant calibration parameters change if the object has been registered with the cali-
brations.

To transfer data from it’s current tree to another existing tree, use

>>> data.attach(some_other_data)

42 Chapter 1. Contents

py4dstem, Release 0.14.14

which will move the data to the new tree. If the data was registered with it’s old calibrations, this will also
de-register it there and register it with the new calibrations such that .calibrate() is called when it should be.

See also the Calibration docstring.

__init__(calibration=None)

attach(node)
Attach node to the current object’s tree, attaching calibration and detaching calibrations as needed.

DataCube

class py4DSTEM.DataCube(data: ndarray, name: str | None = 'datacube', slicelabels: bool | list | None = None,
calibration: Calibration | None = None)

Storage and processing methods for 4D-STEM datasets.

__init__(data: ndarray, name: str | None = 'datacube', slicelabels: bool | list | None = None, calibration:
Calibration | None = None)

Accepts:
data (np.ndarray): the data name (str): the name of the datacube calibration (None or Calibration or
‘pass’): default (None)

creates and attaches a new Calibration instance to root metadata, or, passing a Calibration
instance uses this instead.

slicelabels (None or list): names for slices if this is a
stack of datacubes

Returns
A new DataCube instance.

calibrate()

Calibrate the coordinate axes of the datacube. Using the calibrations at self.calibration, sets the 4 dim
vectors (Qx,Qy,Rx,Ry) according to the pixel size, units and origin positions, then updates the meshgrids
representing Q and R space.

copy()

Copys datacube

add(data, name='')
Adds a block of data to the DataCube’s tree. If data is an instance of an EMD/py4DSTEM class, add it to
the tree. If it’s a numpy array, turn it into an Array instance, then save to the tree.

set_scan_shape(Rshape)
Reshape the data given the real space scan shape.

Accepts:
Rshape (2-tuple)

swap_RQ()

Swaps the first and last two dimensions of the 4D datacube.

swap_Rxy()

Swaps the real space x and y coordinates.

1.4. API 43

py4dstem, Release 0.14.14

swap_Qxy()

Swaps the diffraction space x and y coordinates.

crop_Q(ROI)
Crops the data in diffraction space about the region specified by ROI.

Accepts:
ROI (4-tuple): Specifies (Qx_min,Qx_max,Qy_min,Qy_max)

crop_R(ROI)
Crops the data in real space about the region specified by ROI.

Accepts:
ROI (4-tuple): Specifies (Rx_min,Rx_max,Ry_min,Ry_max)

bin_Q(N , dtype=None)
Bins the data in diffraction space by bin factor N

Parameters
• N (int) – The binning factor

• dtype (a datatype (optional)) – Specify the datatype for the output. If not
passed, the datatype is left unchanged

Returns
datacube

Return type
DataCube

pad_Q(N=None, output_size=None)
Pads the data in diffraction space by pad factor N, or to match output_size.

Accepts:
N (float, or Sequence[float]): the padding factor output_size ((int,int)): the padded output size

resample_Q(N=None, output_size=None, method='bilinear', conserve_array_sums=False)
Resamples the data in diffraction space by resampling factor N, or to match output_size, using either
‘fourier’ or ‘bilinear’ interpolation.

Accepts:
N (float, or Sequence[float]): the resampling factor output_size ((int,int)): the resampled output size
method (str): ‘fourier’ or ‘bilinear’ (default)

bin_Q_mmap(N , dtype=<class 'numpy.float32'>)
Bins the data in diffraction space by bin factor N for memory mapped data

Accepts:
N (int): the binning factor dtype: the data type

bin_R(N)

Bins the data in real space by bin factor N

Accepts:
N (int): the binning factor

thin_R(N)

Reduces the data in real space by skipping every N patterns in the x and y directions.

Accepts:
N (int): the thinning factor

44 Chapter 1. Contents

py4dstem, Release 0.14.14

filter_hot_pixels(thresh, ind_compare=1, return_mask=False)
This function performs pixel filtering to remove hot / bright pixels. We first compute a moving local
ordering filter, applied to the mean diffraction image. This ordering filter will return a single value from
the local sorted intensity values, given by ind_compare. ind_compare=0 would be the highest intensity,
=1 would be the second hightest, etc. Next, a mask is generated for all pixels which are least a value thresh
higher than the local ordering filter output. Finally, we loop through all diffraction images, and any pixels
defined by mask are replaced by their 3x3 local median.

Parameters
• datacube (DataCube) –

• thresh (float) – threshold for replacing hot pixels, if pixel value minus local order-
ing filter exceeds it.

• ind_compare (int) – which median filter value to compare against. 0 = brightest
pixel, 1 = next brightest, etc.

• return_mask (bool) – if True, returns the filter mask

Returns
datacube (DataCube) mask (optional, boolean Array) the bad pixel mask

median_filter_masked_pixels(mask, kernel_width: int = 3)
This function fixes a datacube where the same pixels are consistently bad. It requires a mask that identifies
all the bad pixels in the dataset. Then for each diffraction pattern, a median kernel is applied around each
bad pixel with the specified width.

get_vacuum_probe(ROI=None, align=True, mask=None, threshold=0.0, expansion=12, opening=3,
verbose=False, returncalc=True)

Computes a vacuum probe.

Which diffraction patterns are included in the calculation is specified by the ROI parameter. Diffraction
patterns are aligned before averaging if align is True (default). A global mask is applied to each diffraction
pattern before aligning/averaging if mask is specified. After averaging, a final masking step is applied
according to the parameters threshold, expansion, and opening.

Parameters
• ROI (optional, boolean array or len 4 list/tuple) – If unspecified, uses

the whole datacube. If a boolean array is passed must be real-space shaped, and
True pixels are used. If a 4-tuple is passed, uses the region inside the limits
(rx_min,rx_max,ry_min,ry_max)

• align (optional, bool) – if True, aligns the probes before averaging

• mask (optional, array) – mask applied to each diffraction pattern before align-
ment and averaging

• threshold (float) – in the final masking step, values less than
max(probe)*threshold are considered outside the probe

• expansion (int) – number of pixels by which the final mask is expanded after thresh-
olding

• opening (int) – size of binary opening applied to the final mask to eliminate stray
bright pixels

• verbose (bool) – toggles verbose output

• returncalc (bool) – if True, returns the answer

1.4. API 45

py4dstem, Release 0.14.14

Returns
probe – the vacuum probe

Return type
Probe, optional

get_probe_size(dp=None, thresh_lower=0.01, thresh_upper=0.99, N=100, plot=False, returncal=True,
write_to_cal=True, **kwargs)

Gets the center and radius of the probe in the diffraction plane.

The algorithm is as follows: First, create a series of N binary masks, by thresholding the diffraction pattern
DP with a linspace of N thresholds from thresh_lower to thresh_upper, measured relative to the maximum
intensity in DP. Using the area of each binary mask, calculate the radius r of a circular probe. Because the
central disk is typically very intense relative to the rest of the DP, r should change very little over a wide
range of intermediate values of the threshold. The range in which r is trustworthy is found by taking the
derivative of r(thresh) and finding identifying where it is small. The radius is taken to be the mean of these
r values. Using the threshold corresponding to this r, a mask is created and the CoM of the DP times this
mask it taken. This is taken to be the origin x0,y0.

Parameters
• dp (str or array) – specifies the diffraction pattern in which to find the central

disk. A position averaged, or shift-corrected and averaged, DP works best. If mode is
None, the diffraction pattern stored in the tree from ‘get_dp_mean’ is used. If mode is
a string it specifies the name of another virtual diffraction pattern in the tree. If mode
is an array, the array is used to calculate probe size.

• thresh_lower (float, 0 to 1) – the lower limit of threshold values

• thresh_upper (float, 0 to 1) – the upper limit of threshold values

• N (int) – the number of thresholds / masks to use

• plot (bool) – if True plots results

• plot_params (dict) – dictionary to modify defaults in plot

• return_calc (bool) – if True returns 3-tuple described below

• write_to_cal (bool) – if True, looks for a Calibration instance and writes the mea-
sured probe radius there

Returns
A 3-tuple containing:

• r: (float) the central disk radius, in pixels

• x0: (float) the x position of the central disk center

• y0: (float) the y position of the central disk center

Return type
(3-tuple)

find_Bragg_disks(template, data=None, radial_bksb=False, filter_function=None, corrPower=1,
sigma=None, sigma_dp=0, sigma_cc=2, subpixel='multicorr', upsample_factor=16,
minAbsoluteIntensity=0, minRelativeIntensity=0.005, relativeToPeak=0,
minPeakSpacing=60, edgeBoundary=20, maxNumPeaks=70, CUDA=False,
CUDA_batched=True, distributed=None, ML=False, ml_model_path=None,
ml_num_attempts=1, ml_batch_size=8, name='braggvectors', returncalc=True)

Finds the Bragg disks in the diffraction patterns represented by data by cross/phase correlatin with tem-
plate.

46 Chapter 1. Contents

py4dstem, Release 0.14.14

Behavior depends on data. If it is None (default), runs on the whole DataCube, and stores the output in its
tree. Otherwise, nothing is stored in tree, but some value is returned. Valid entries are:

• a 2-tuple of numbers (rx,ry): run on this diffraction image,
and return a QPoints instance

• a 2-tuple of arrays (rx,ry): run on these diffraction images,
and return a list of QPoints instances

• an Rspace shapped 2D boolean array: run on the diffraction images
specified by the True counts and return a list of QPoints instances

For disk detection on a full DataCube, the calculation can be performed on the CPU, GPU or a cluster.
By default the CPU is used. If CUDA is set to True, tries to use the GPU. If CUDA_batched is also set
to True, batches the FFT/IFFT computations on the GPU. For distribution to a cluster, distributed must be
set to a dictionary, with contents describing how distributed processing should be performed - see below
for details.

For each diffraction pattern, the algorithm works in 4 steps:

(1) any pre-processing is performed to the diffraction image. This is accomplished by passing a callable
function to the argument filter_function, a bool to the argument radial_bksb, or a value >0 to
sigma_dp. If none of these are passed, this step is skipped.

(2) the diffraction image is cross correlated with the template. Phase/hybrid correlations can be used
instead by setting the corrPower argument. Cross correlation can be skipped entirely, and the sub-
sequent steps performed directly on the diffraction image instead of the cross correlation, by passing
None to template.

(3) the maxima of the cross correlation are located and their positions and intensities stored. The cross
correlation may be passed through a gaussian filter first by passing the sigma_cc argument. The
method for maximum detection can be set with the subpixel parameter. Options, from something
like fastest/least precise to slowest/most precise are ‘pixel’, ‘poly’, and ‘multicorr’.

(4) filtering is applied to remove untrusted or undesired positive counts, based on their intensity (min-
RelativeIntensity,`relativeToPeak`, minAbsoluteIntensity) their proximity to one another or the image
edge (minPeakSpacing, edgeBoundary), and the total number of peaks per pattern (maxNumPeaks).

Parameters
• template (2D array) – the vacuum probe template, in real space. For Probe in-

stances, this is probe.kernel. If None, does not perform a cross correlation.

• data (variable) – see above

• radial_bksb (bool) – if True, computes a radial background given by the median of
the (circular) polar transform of each each diffraction pattern, and subtracts this back-
ground from the pattern before applying any filter function and computing the cross
correlation. The origin position must be set in the datacube’s calibrations. Currently
only supported for full datacubes on the CPU.

• filter_function (callable) – filtering function to apply to each diffraction pattern
before peak finding. Must be a function of only one argument (the diffraction pattern)
and return the filtered diffraction pattern. The shape of the returned DP must match the
shape of the probe kernel (but does not need to match the shape of the input diffraction
pattern, e.g. the filter can be used to bin the diffraction pattern). If using distributed
disk detection, the function must be able to be pickled with by dill.

• corrPower (float between 0 and 1, inclusive) – the cross correlation
power. A value of 1 corresponds to a cross correlation, 0 corresponds to a phase
correlation, and intermediate values correspond to hybrid correlations.

1.4. API 47

py4dstem, Release 0.14.14

• sigma (float) – alias for sigma_cc

• sigma_dp (float) – if >0, a gaussian smoothing filter with this standard deviation is
applied to the diffraction pattern before maxima are detected

• sigma_cc (float) – if >0, a gaussian smoothing filter with this standard deviation is
applied to the cross correlation before maxima are detected

• subpixel (str) – Whether to use subpixel fitting, and which algorithm to use. Must
be in (‘none’,’poly’,’multicorr’).

– ’none’: performs no subpixel fitting

– ’poly’: polynomial interpolation of correlogram peaks (default)

– ’multicorr’: uses the multicorr algorithm with DFT upsampling

• upsample_factor (int) – upsampling factor for subpixel fitting (only used when
subpixel=’multicorr’)

• minAbsoluteIntensity (float) – the minimum acceptable correlation peak inten-
sity, on an absolute scale

• minRelativeIntensity (float) – the minimum acceptable correlation peak inten-
sity, relative to the intensity of the brightest peak

• relativeToPeak (int) – specifies the peak against which the minimum relative in-
tensity is measured – 0=brightest maximum. 1=next brightest, etc.

• minPeakSpacing (float) – the minimum acceptable spacing between detected peaks

• (int) (edgeBoundary) – the diffraction image edge, in pixels.

• maxNumPeaks (int) – the maximum number of peaks to return

• CUDA (bool) – If True, import cupy and use an NVIDIA GPU to perform disk detection

• CUDA_batched (bool) – If True, and CUDA is selected, the FFT and IFFT steps of
disk detection are performed in batches to better utilize GPU resources.

• distributed (dict) – contains information for parallel processing using an IPyPar-
allel or Dask distributed cluster. Valid keys are:

– ipyparallel (dict):

– client_file (str): path to client json for connecting to your
existing IPyParallel cluster

– dask (dict): client (object): a dask client that connects to
your existing Dask cluster

– data_file (str): the absolute path to your original data
file containing the datacube

– cluster_path (str): defaults to the working directory during
processing

if distributed is None, which is the default, processing will be in serial

• name (str) – name for the output BraggVectors

• returncalc (bool) – if True, returns the answer

Returns
See above.

48 Chapter 1. Contents

py4dstem, Release 0.14.14

Return type
variable

get_beamstop_mask(threshold=0.25, distance_edge=2.0, include_edges=True, sigma=0,
use_max_dp=False, scale_radial=None, name='mask_beamstop', returncalc=True)

This function uses the mean diffraction pattern plus a threshold to create a beamstop mask.

Parameters
• threshold (float) – Value from 0 to 1 defining initial threshold for beamstop mask,

taken from the sorted intensity values - 0 is the dimmest pixel, while 1 uses the brighted
pixels.

• distance_edge (float) – How many pixels to expand the mask.

• include_edges (bool) – If set to True, edge pixels will be included in the mask.

• sigma (float) – Gaussain blur std to apply to image before thresholding.

• use_max_dp (bool) – Use the max DP instead of the mean DP.

• scale_radial (float) – Scale from center of image by this factor (can help with
edge)

• name (string) – Name of the output array.

• returncalc (bool) – Set to true to return the result.

Returns
if returncalc is True, returns the beamstop mask

Return type
(Optional)

get_radial_bkgrnd(rx, ry, sigma=2)
Computes and returns a background image for the diffraction pattern at (rx,ry), populated by radial rings of
constant intensity about the origin, with the value of each ring given by the median value of the diffraction
pattern at that radial distance.

Parameters
• rx (int) – The x-coord of the beam position

• ry (int) – The y-coord of the beam position

• sigma (number) – If >0, applying a gaussian smoothing in the radial direction before
returning

Returns
background – The radial background

Return type
ndarray

get_radial_bksb_dp(rx, ry, sigma=2)
Computes and returns the diffraction pattern at beam position (rx,ry) with a radial background subtracted.
See the docstring for datacube.get_radial_background for more info.

Parameters
• rx (int) – The x-coord of the beam position

• ry (int) – The y-coord of the beam position

1.4. API 49

py4dstem, Release 0.14.14

• sigma (number) – If >0, applying a gaussian smoothing in the radial direction before
returning

Returns
data – The radial background subtracted diffraction image

Return type
ndarray

get_local_ave_dp(rx, ry, radial_bksb=False, sigma=2, braggmask=False, braggvectors=None,
braggmask_radius=None)

Computes and returns the diffraction pattern at beam position (rx,ry) after weighted local averaging with
its nearest-neighbor patterns, using a 3x3 gaussian kernel for the weightings.

Parameters
• rx (int) – The x-coord of the beam position

• ry (int) – The y-coord of the beam position

• radial_bksb (bool) – It True, apply a radial background subtraction to each pattern
before averaging

• sigma (number) – If radial_bksb is True, use this sigma for radial smoothing of the
background

• braggmask (bool) – If True, masks bragg scattering at each scan position before
averaging. braggvectors and braggmask_radius must be specified.

• braggvectors (BraggVectors) – The Bragg vectors to use for masking

• braggmask_radius (number) – The radius about each Bragg point to mask

Returns
data – The radial background subtracted diffraction image

Return type
ndarray

get_braggmask(braggvectors, rx, ry, radius)
Returns a boolean mask which is False in a radius of radius around each bragg scattering vector at scan
position (rx,ry).

Parameters
• braggvectors (BraggVectors) – The bragg vectors

• rx (int) – The x-coord of the beam position

• ry (int) – The y-coord of the beam position

• radius (number) – mask pixels about each bragg vector to this radial distance

Returns
mask

Return type
boolean ndarray

add_to_tree(node)
Add an unrooted node as a child of the current, rooted node. To move an already rooted node/branch, use
.graft(). To create a rooted node, use Root().

50 Chapter 1. Contents

py4dstem, Release 0.14.14

attach(node)
Attach node to the current object’s tree, attaching calibration and detaching calibrations as needed.

cut_from_tree(root_metadata=True)
Removes a branch from an object tree at this node.

A new root node is created under this object with this object’s name. Metadata from the current root is
transferred/not transferred to the new root according to the value of root_metadata.

Accepts:
root_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies of all
metadata from the old root to the new root.

Returns
(Node) the new root node

dim(n)
Return the n’th dim vector

force_add_to_tree(node)
Add node node as a child of the current node, whether or not node is rooted. If it’s unrooted, performs a
simple add. If it is rooted, performs a graft, excluding the root metadata from node.

classmethod from_h5(group)
Takes an h5py Group which is open in read mode. Confirms that a a Node of this name exists in this group,
and loads and returns it with it’s metadata.

Accepts:
group (h5py Group)

Returns
(Node)

static get_calibrated_detector_geometry(calibration, mode, geometry, centered, calibrated)
Determine the detector geometry in pixels, given some mode and geometry in calibrated units, where the
calibration state is specified by { centered, calibrated}

Parameters
• calibration (Calibration) – Used to retrieve the center positions. If None, con-

firms that centered and calibrated are False then passes, otherwise raises an exception

• mode (str) – see the DataCube.get_virtual_image docstring

• geometry (variable) – see the DataCube.get_virtual_image docstring

• centered (bool) – see the DataCube.get_virtual_image docstring

• calibrated (bool) – see the DataCube.get_virtual_image docstring

Returns
geo – the geometry in detector pixels

Return type
tuple

get_dim(n)
Return the n’th dim vector

1.4. API 51

py4dstem, Release 0.14.14

get_dim_name(n)
Get the n’th dim vector name

get_dim_units(n)
Return the n’th dim vector units

get_dp_max(returncalc=True)
Calculates the max diffraction pattern.

Calls DataCube.get_virtual_diffraction - see that method’s docstring for more custimizable virtual diffrac-
tion.

Parameters
returncalc (bool) – toggles returning the answer

Returns
max_dp

Return type
VirtualDiffraction

get_dp_mean(returncalc=True)
Calculates the mean diffraction pattern.

Calls DataCube.get_virtual_diffraction - see that method’s docstring for more custimizable virtual diffrac-
tion.

Parameters
returncalc (bool) – toggles returning the answer

Returns
mean_dp

Return type
VirtualDiffraction

get_dp_median(returncalc=True)
Calculates the max diffraction pattern.

Calls DataCube.get_virtual_diffraction - see that method’s docstring for more custimizable virtual diffrac-
tion.

Parameters
returncalc (bool) – toggles returning the answer

Returns
max_dp

Return type
VirtualDiffraction

get_from_tree(name)
Finds and returns an object from an EMD tree using the string key name, with ‘/’ delimiters between
‘parent/child’ nodes. Search from the root node by adding a leading ‘/’; otherwise, searches from the
current node.

get_virtual_diffraction(method, mask=None, shift_center=False, subpixel=False, verbose=True,
name='virtual_diffraction', returncalc=True)

Function to calculate virtual diffraction images.

Parameters

52 Chapter 1. Contents

py4dstem, Release 0.14.14

• method (str) – defines method used for averaging/combining diffraction patterns.
Options are (‘mean’, ‘median’, ‘max’)

• mask (None or 2D array) – if None (default), all pixels are used. Otherwise, must
be a boolean or floating point or complex array with the same shape as real space.
For bool arrays, only True pixels are used in the computation. Otherwise a weighted
average is performed.

• shift_center (bool) – toggles shifting the diffraction patterns to account for beam
shift. Currently only supported for ‘max’ and ‘mean’ modes. Default is False.

• subpixel (bool) – if shift_center is True, toggles subpixel shifts via Fourier interpo-
lation. Ignored if shift_center is False.

• verbose (bool) – toggles progress bar

• name (string) – name for the output DiffractionImage instance

• returncalc (bool) – toggles returning the output

Returns
diff_im

Return type
DiffractionImage

get_virtual_image(mode, geometry, centered=False, calibrated=False, shift_center=False,
subpixel=False, verbose=True, dask=False, return_mask=False,
name='virtual_image', returncalc=True, test_config=False)

Calculate a virtual image.

The detector is determined by the combination of the mode and geometry arguments, supporting point,
circular, rectangular, annular, and custom mask detectors. The values passed to geometry may be given
with respect to an origin at the corner of the detector array or with respect to the calibrated center position,
and in units of pixels or real calibrated units, depending on the values of the centered and calibrated
arguments, respectively. The mask may be shifted pattern-by-pattern to account for diffraction scan shifts
using the shift_center argument.

The computed virtual image is stored in the datacube’s tree, and is also returned by default.

Parameters
• mode (str) – defines geometry mode for calculating virtual image, and the expected

input for the geometry argument. options:

– ’point’: uses a single pixel detector

– ’circle’, ‘circular’: uses a round detector, like bright field

– ’annular’, ‘annulus’: uses an annular detector, like dark field

– ’rectangle’, ‘square’, ‘rectangular’: uses rectangular detector

– ’mask’: any diffraction-space shaped 2D array, representing a flexible detector

• geometry (variable) – the expected value of this argument is determined by mode
as follows:

– ’point’: 2-tuple, (qx,qy), ints

– ’circle’, ‘circular’: nested 2-tuple, ((qx,qy),radius),

– ’annular’, ‘annulus’: nested 2-tuple, ((qx,qy),(radius_i,radius_o)),

– ’rectangle’, ‘square’, ‘rectangular’: 4-tuple, (xmin,xmax,ymin,ymax)

1.4. API 53

py4dstem, Release 0.14.14

– mask: any boolean or floating point 2D array with the same
size as datacube.Qshape

• centered (bool) – if False, the origin is in the upper left corner. If True, the ori-
gin is set to the mean origin in the datacube calibrations, so that a bright-field im-
age could be specified with, e.g., geometry=((0,0),R). The origin can set with dat-
acube.calibration.set_origin(). For mode=”mask”, has no effect. Default is False.

• calibrated (bool) – if True, geometry is specified in units of ‘A^-1’ instead of pix-
els. The datacube’s calibrations must have its “Q_pixel_units” parameter set to “A^-
1”. For mode=”mask”, has no effect. Default is False.

• shift_center (bool) – if True, the mask is shifted at each real space position to
account for any shifting of the origin of the diffraction images. The datacube’s cali-
bration[‘origin’] parameter must be set. The shift applied to each pattern is the differ-
ence between the local origin position and the mean origin position over all patterns,
rounded to the nearest integer for speed. Default is False. If shift_center is True,
centered is automatically set to True.

• subpixel (bool) – if True, applies subpixel shifts to virtual image

• verbose (bool) – toggles a progress bar

• dask (bool) – if True, use dask to distribute the calculation

• return_mask (bool) – if False (default) returns a virtual image as usual. Otherwise
does not compute or return a virtual image, instead finding and returning the mask
that will be used in subsequent calls to this function using these same parameters. In
this case, must be either True or a 2-tuple of integers corresponding to (rx,ry). If True
is passed, returns the mask used if shift_center is set to False. If a 2-tuple is passed,
returns the mask used at scan position (rx,ry) if shift_center is set to True. Nothing is
added to the datacube’s tree.

• name (str) – the output object’s name

• returncalc (bool) – if True, returns the output

• test_config (bool) – if True, prints the Boolean values of (cen-
tered,`calibrated`,`shift_center`). Does not compute the virtual image.

Returns
virt_im

Return type
VirtualImage (optional, if returncalc is True)

graft(node, merge_metadata=True)
Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree) either use that tree’s .graft method, or use
this tree’s ._graft.

Accepts:
node (Node): merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies
of all metadata from the old root to the new root.

Returns
(Node) this tree’s root node

54 Chapter 1. Contents

py4dstem, Release 0.14.14

make_bragg_mask(Qshape, g1, g2, radius, origin, max_q, return_sum=True, include_origin=True,
rotation_deg=0, **kwargs)

Creates and returns a mask consisting of circular disks about the points of a 2D lattice.

Parameters
• Qshape (2 tuple) – the shape of diffraction space

• g1 (len 2 array or tuple) – the lattice vectors

• g2 (len 2 array or tuple) – the lattice vectors

• radius (number) – the disk radius

• origin (len 2 array or tuple) – the origin

• max_q (nuumber) – the maxima distance to tile to

• return_sum (bool) – if False, return a 3D array, where each slice contains a single
disk; if False, return a single 2D masks of all disks

• include_origin (bool) – if False, removes origin disk

• rotation_deg (float) – rotate g1 and g2 vectors

Returns
(2 or 3D array) the mask

static make_detector(shape, mode, geometry)
Generate a 2D mask representing a detector function.

Parameters
• shape (2-tuple) – defines shape of mask. Should be the shape of diffraction space.

• mode (str) – defines geometry mode for calculating virtual image. See the docstring
for DataCube.get_virtual_image

• geometry (variable) – defines geometry for calculating virtual image. See the doc-
string for DataCube.get_virtual_image

Returns
detector_mask

Return type
2d array

static newnode(method)
Decorator which may be added to node methods which product and return a new node. If such a method
is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a Metadata instance is added to the new node’s
metadata which stores information about how the node was created, namely: method’s name, the parent’s
class and name, and all the arguments passed to method.

position_detector(mode, geometry, data=None, centered=None, calibrated=None, shift_center=False,
subpixel=True, scan_position=None, invert=False, color='r', alpha=0.7, **kwargs)

Position a virtual detector by displaying a mask over a diffraction space image. Calling
.get_virtual_image() using the same mode and geometry parameters will compute a virtual image using
this detector.

Parameters

1.4. API 55

py4dstem, Release 0.14.14

• mode (str) – see the DataCube.get_virtual_image docstring

• geometry (variable) – see the DataCube.get_virtual_image docstring

• data (None or 2d-array or 2-tuple of ints) – The diffraction image to
overlay the mask on. If None (default), looks for a max or mean or median diffrac-
tion image in this order and if found, uses it, otherwise, uses the diffraction pattern at
scan position (0,0). If a 2d array is passed, must be diffraction space shaped array. If
a 2-tuple is passed, uses the diffraction pattern at scan position (rx,ry).

• centered (bool) – see the DataCube.get_virtual_image docstring

• calibrated (bool) – see the DataCube.get_virtual_image docstring

• shift_center (None or bool or 2-tuple of ints) – If None (default) and
data is either None or an array, the mask is not shifted. If None and data is a 2-
tuple, shifts the mask according to the origin at the scan position (rx,ry) specified in
data. If False, does not shift the mask. If True and data is a 2-tuple, shifts the mask
accordingly, and if True and data is any other value, raises an error. If shift_center is
a 2-tuple, shifts the mask according to the origin value at this 2-tuple regardless of the
value of data (enabling e.g. overlaying the mask for a specific scan position on a max
or mean diffraction image.)

• subpixel (bool) – if True, applies subpixel shifts to virtual image

• invert (bool) – if True, invert the masked pixel (i.e. pixels outside the detector are
overlaid with a mask)

• color (any matplotlib color specification) – the mask color

• alpha (number) – the mask transparency

• kwargs (dict) – Any additional arguments are passed on to the show() function

set_dim(n: int, dim: list | ndarray, units: str | None = None, name: str | None = None)
Sets the n’th dim vector, using dim as described in the Array documentation. If units and/or name are
passed, sets these values for the n’th dim vector.

Accepts:
n (int): specifies which dim vector dim (list or array): length must be either 2, or equal to the

length of the n’th axis of the data array

units (Optional, str): name: (Optional, str):

set_dim_name(n: int, name: str)
Sets the n’th dim vector name to name.

Accepts:
n (int): specifies which dim vector name (str): new name

set_dim_units(n: int, units: str)
Sets the n’th dim vector units to units.

Accepts:
n (int): specifies which dim vector units (str): new units

show_tree(root=False)
Display the object tree. If root is False, displays the branch of the tree downstream from this node. If root
is True, displays the full tree from the root node.

56 Chapter 1. Contents

py4dstem, Release 0.14.14

to_h5(group)
Takes an h5py Group instance and creates a subgroup containing this Array, tags indicating its EMD type
and Python class, and the array’s data and metadata.

Accepts:
group (h5py Group)

Returns
(h5py Group) the new array’s Group

tree(arg=None, **kwargs)
Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

DiffractionSlice

class py4DSTEM.DiffractionSlice(data: ndarray, name: str | None = 'diffractionslice', units: str | None =
'intensity', slicelabels: bool | list | None = None, calibration=None)

Stores a diffraction-space shaped 2D data array.

__init__(data: ndarray, name: str | None = 'diffractionslice', units: str | None = 'intensity', slicelabels: bool
| list | None = None, calibration=None)

Accepts:
data (np.ndarray): the data name (str): the name of the diffslice units (str): units of the pixel values
slicelabels(None or list): names for slices if this is a 3D stack

Returns
(DiffractionSlice instance)

add_to_tree(node)
Add an unrooted node as a child of the current, rooted node. To move an already rooted node/branch, use
.graft(). To create a rooted node, use Root().

1.4. API 57

py4dstem, Release 0.14.14

attach(node)
Attach node to the current object’s tree, attaching calibration and detaching calibrations as needed.

cut_from_tree(root_metadata=True)
Removes a branch from an object tree at this node.

A new root node is created under this object with this object’s name. Metadata from the current root is
transferred/not transferred to the new root according to the value of root_metadata.

Accepts:
root_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies of all
metadata from the old root to the new root.

Returns
(Node) the new root node

dim(n)
Return the n’th dim vector

force_add_to_tree(node)
Add node node as a child of the current node, whether or not node is rooted. If it’s unrooted, performs a
simple add. If it is rooted, performs a graft, excluding the root metadata from node.

classmethod from_h5(group)
Takes an h5py Group which is open in read mode. Confirms that a a Node of this name exists in this group,
and loads and returns it with it’s metadata.

Accepts:
group (h5py Group)

Returns
(Node)

get_dim(n)
Return the n’th dim vector

get_dim_name(n)
Get the n’th dim vector name

get_dim_units(n)
Return the n’th dim vector units

get_from_tree(name)
Finds and returns an object from an EMD tree using the string key name, with ‘/’ delimiters between
‘parent/child’ nodes. Search from the root node by adding a leading ‘/’; otherwise, searches from the
current node.

graft(node, merge_metadata=True)
Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree) either use that tree’s .graft method, or use
this tree’s ._graft.

Accepts:
node (Node): merge_metadata (True, False, or ‘copy’): if True adds the old root’s

58 Chapter 1. Contents

py4dstem, Release 0.14.14

metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies
of all metadata from the old root to the new root.

Returns
(Node) this tree’s root node

static newnode(method)
Decorator which may be added to node methods which product and return a new node. If such a method
is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a Metadata instance is added to the new node’s
metadata which stores information about how the node was created, namely: method’s name, the parent’s
class and name, and all the arguments passed to method.

set_dim(n: int, dim: list | ndarray, units: str | None = None, name: str | None = None)
Sets the n’th dim vector, using dim as described in the Array documentation. If units and/or name are
passed, sets these values for the n’th dim vector.

Accepts:
n (int): specifies which dim vector dim (list or array): length must be either 2, or equal to the

length of the n’th axis of the data array

units (Optional, str): name: (Optional, str):

set_dim_name(n: int, name: str)
Sets the n’th dim vector name to name.

Accepts:
n (int): specifies which dim vector name (str): new name

set_dim_units(n: int, units: str)
Sets the n’th dim vector units to units.

Accepts:
n (int): specifies which dim vector units (str): new units

show_tree(root=False)
Display the object tree. If root is False, displays the branch of the tree downstream from this node. If root
is True, displays the full tree from the root node.

to_h5(group)
Takes an h5py Group instance and creates a subgroup containing this Array, tags indicating its EMD type
and Python class, and the array’s data and metadata.

Accepts:
group (h5py Group)

Returns
(h5py Group) the new array’s Group

tree(arg=None, **kwargs)
Usages -

1.4. API 59

py4dstem, Release 0.14.14

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

Metadata

class py4DSTEM.Metadata(name: str | None = 'metadata', data: dict | None = None)
Stores metadata in the form of a flat (non-nested) dictionary. Keys are arbitrary strings. Values may be strings,
numbers, arrays, or lists of the above types.

Usage:

>>> meta = Metadata()
>>> meta['param'] = value
>>> val = meta['param']

If the parameter has not been set, the getter methods return None.

__init__(name: str | None = 'metadata', data: dict | None = None)

Parameters
name (Optional, string) –

copy(name=None)

to_h5(group)
Accepts an h5py Group which is open in write or append mode. Writes a new group with this object’s
name and saves its metadata in it.

Accepts:
group (h5py Group)

classmethod from_h5(group)
Accepts an h5py Group which is open in read mode, confirms that it represents an EMD MetadataDict
group, then loads and returns it as a Metadata instance.

Accepts:
group (HDF5 group)

60 Chapter 1. Contents

py4dstem, Release 0.14.14

Returns
(Metadata)

Node

class py4DSTEM.Node(name: str | None = 'node')
Nodes contain attributes and methods paralleling the EMD 1.0 file specification in Python runtime objects.

EMD 1.0 is a singly-rooted file format. That is to say: An EMD data object can and must exist in one and
only one EMD tree. An EMD file can contain any number of EMD trees, each containing data and metadata
which is, within the limits of the EMD group specifications, of some arbitrary complexity. An EMD 1.0 file thus
represents, stores, and enables access to some arbitrary data in long term storage on a file system in the form
of an HDF5 file. The Node class provides machinery for building trees of data and metadata which mirror the
EMD tree format but which exist in a live Python instance, rather than on the file system. This facilitates ease of
transfer between Python and the file system.

Nodes are intended to be used a base class on which other, more complex classes can be biult. Nodes themselves
contain the machinery for managing a tree heirarchy of other Nodes and Metadata instances, and for reading and
writing those trees. They do not contain any particular data. Classes storing data and analysis methods which
inherit from Node will inherit its tree management and EMD i/o functionality.

Below, the 4 elements of the node class are each described in turn: roots, trees, metadata, and i/o.

ROOTS

EMD data objects can and must exist in one and only one EMD tree, each of which must have a single, named
root node. To parallel this in our runtime objects, each Node has a root property, which can be found by calling
self.root.

By default new nodes have their root set to None. If a node with .root == None is saved to file, it is placed inside
a new root with the same name as the object itself, and this is then saved to the file as a new (minimal) EMD tree.

A new root node can be instantiated by calling

>>> rootnode = Root(name=some_name).

Objects added to an existing rooted tree (including a new root node) automatically have their root assigned to the
root of that tree. Adding objects to trees is discussed below.

TREES

The tree associated with a node can be manipulated with the .tree method. If we have some rooted node node1
and some unrooted node node2, the unrooted node can be added to the existing tree as a child of the rooted node
with

>>> node1.tree(node2)

If we have a rooted node node1 and another rooted node node2, we can’t simply add node2 with the code above,
as this would create a conflict between the two roots. In this case, we can move node2 from its current tree to the
new tree using

>>> node1.tree(graft=node2)

The .tree method has various additional functionalities, including printing the tree, retrieving objects from the
tree, and cutting branches from the tree. These are summarized below:

1.4. API 61

py4dstem, Release 0.14.14

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keep root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string), i.e. in most cases, the keyword can be dropped. So

>>> .tree()
>>> .tree(node)
>>> .tree(True)
>>> .tree('some/node')

will, respectively, print the tree from the current node to screen, add the node node to the tree, pring the tree from
the root node to screen, and return the node at the emdpath ‘some/node’.

If a node needs to be added to a tree and it may or may not already have its own root, calling

>>> .tree(add=node, force=True)

or

>>> .tree(node, force=True)

will add the node to the tree, using a simple add if node has no root, and grafting it if it does have a root.

METADATA

Nodes can contain any number of Metadata instances, each of which wraps a Python dictionary of some arbi-
trary complexity (to within the limits of the Metadata group EMD specification, which limits permissible values
somewhat).

The code:

>>> md1 = Metadata(name='md1')
>>> md2 = Metadata(name='md2')
>>> <<< some code populating md1 + md2 >>>
>>> node.metadata = md1
>>> node.metadata = md2

will create two Metadata objects, populate them with data, then add them to the node. Note that Node.metadata
is not a Python attribute, it is specially defined property, such that the last line of code does not overwrite the
line before it - rather, assigning to the .metadata property adds the new metadata object to a running dictionary
of arbitrarily many metadata objects. Both of these two metadata instances can therefore still be retrieved, using:

62 Chapter 1. Contents

py4dstem, Release 0.14.14

>>> x = node.metadata['md1']
>>> y = node.metadata['md2']

Note, however, that if the second metadata instance has an identical name to the first instance, then in will
overwrite the old instance.

I/O

TODO

__init__(name: str | None = 'node')

show_tree(root=False)
Display the object tree. If root is False, displays the branch of the tree downstream from this node. If root
is True, displays the full tree from the root node.

add_to_tree(node)
Add an unrooted node as a child of the current, rooted node. To move an already rooted node/branch, use
.graft(). To create a rooted node, use Root().

force_add_to_tree(node)
Add node node as a child of the current node, whether or not node is rooted. If it’s unrooted, performs a
simple add. If it is rooted, performs a graft, excluding the root metadata from node.

get_from_tree(name)
Finds and returns an object from an EMD tree using the string key name, with ‘/’ delimiters between
‘parent/child’ nodes. Search from the root node by adding a leading ‘/’; otherwise, searches from the
current node.

graft(node, merge_metadata=True)
Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree) either use that tree’s .graft method, or use
this tree’s ._graft.

Accepts:
node (Node): merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies
of all metadata from the old root to the new root.

Returns
(Node) this tree’s root node

cut_from_tree(root_metadata=True)
Removes a branch from an object tree at this node.

A new root node is created under this object with this object’s name. Metadata from the current root is
transferred/not transferred to the new root according to the value of root_metadata.

Accepts:
root_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies of all
metadata from the old root to the new root.

Returns
(Node) the new root node

1.4. API 63

py4dstem, Release 0.14.14

tree(arg=None, **kwargs)
Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

static newnode(method)
Decorator which may be added to node methods which product and return a new node. If such a method
is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a Metadata instance is added to the new node’s
metadata which stores information about how the node was created, namely: method’s name, the parent’s
class and name, and all the arguments passed to method.

classmethod from_h5(group)
Takes an h5py Group which is open in read mode. Confirms that a a Node of this name exists in this group,
and loads and returns it with it’s metadata.

Accepts:
group (h5py Group)

Returns
(Node)

to_h5(group)
Takes an h5py Group instance and creates a subgroup containing this node, tags indicating the groups
EMD type and Python class, and any metadata in this node.

Accepts:
group (h5py Group)

Returns
(h5py Group) the new node’s Group

64 Chapter 1. Contents

py4dstem, Release 0.14.14

PointList

class py4DSTEM.PointList(data: ndarray, name: str | None = 'pointlist')
A wrapper around structured numpy arrays, with read/write functionality in/out of EMD formatted HDF5 files.

__init__(data: ndarray, name: str | None = 'pointlist')

Instantiate a PointList.

Parameters
• data (structured numpy ndarray) – the data; the dtype of this array will specify

the fields of the PointList.

• name (str) – name for the PointList

Returns
a PointList instance

add(data)
Appends a numpy structured array. Its dtypes must agree with the existing data.

remove(mask)
Removes points wherever mask==True

sort(field, order='ascending')
Sorts the point list according to field, which must be a field in self.dtype. order should be ‘descending’ or
‘ascending’.

copy(name=None)
Returns a copy of the PointList. If name=None, sets to {name}_copy

add_fields(new_fields, name='')
Creates a copy of the PointList, but with additional fields given by new_fields.

Parameters
• new_fields – a list of 2-tuples, (‘name’, dtype)

• name – a name for the new pointlist

add_data_by_field(data, fields=None)
Add a list of data arrays to the PointList, in the fields given by fields. If fields is not specified, assumes the
data arrays are in the same order as self.fields

Parameters
data (list) – arrays of data to add to each field

add_to_tree(node)
Add an unrooted node as a child of the current, rooted node. To move an already rooted node/branch, use
.graft(). To create a rooted node, use Root().

cut_from_tree(root_metadata=True)
Removes a branch from an object tree at this node.

A new root node is created under this object with this object’s name. Metadata from the current root is
transferred/not transferred to the new root according to the value of root_metadata.

Accepts:

1.4. API 65

py4dstem, Release 0.14.14

root_metadata (True, False, or ‘copy’): if True adds the old root’s
metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies of all
metadata from the old root to the new root.

Returns
(Node) the new root node

force_add_to_tree(node)
Add node node as a child of the current node, whether or not node is rooted. If it’s unrooted, performs a
simple add. If it is rooted, performs a graft, excluding the root metadata from node.

classmethod from_h5(group)
Takes an h5py Group which is open in read mode. Confirms that a a Node of this name exists in this group,
and loads and returns it with it’s metadata.

Accepts:
group (h5py Group)

Returns
(Node)

get_from_tree(name)
Finds and returns an object from an EMD tree using the string key name, with ‘/’ delimiters between
‘parent/child’ nodes. Search from the root node by adding a leading ‘/’; otherwise, searches from the
current node.

graft(node, merge_metadata=True)
Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree) either use that tree’s .graft method, or use
this tree’s ._graft.

Accepts:
node (Node): merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies
of all metadata from the old root to the new root.

Returns
(Node) this tree’s root node

static newnode(method)
Decorator which may be added to node methods which product and return a new node. If such a method
is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a Metadata instance is added to the new node’s
metadata which stores information about how the node was created, namely: method’s name, the parent’s
class and name, and all the arguments passed to method.

show_tree(root=False)
Display the object tree. If root is False, displays the branch of the tree downstream from this node. If root
is True, displays the full tree from the root node.

66 Chapter 1. Contents

py4dstem, Release 0.14.14

tree(arg=None, **kwargs)
Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

to_h5(group)
Takes an h5py Group instance and creates a subgroup containing this PointList, tags indicating its EMD
type and Python class, and the pointlist’s data and metadata.

Accepts:
group (h5py Group)

Returns
(h5py Group) the new pointlist’s group

PointListArray

class py4DSTEM.PointListArray(dtype, shape, name: str | None = 'pointlistarray')
An 2D array of PointLists which share common coordinates.

__init__(dtype, shape, name: str | None = 'pointlistarray')

Creates an empty PointListArray.

Parameters
• dtype – the dtype of the numpy structured arrays which will comprise the data of each

PointList

• shape (2-tuple of ints) – the shape of the array of PointLists

• name (str) – a name for the PointListArray

Returns
a PointListArray instance

get_pointlist(i, j, name=None)
Returns the pointlist at i,j

1.4. API 67

py4dstem, Release 0.14.14

copy(name='')
Returns a copy of itself.

add_fields(new_fields, name='')
Creates a copy of the PointListArray, but with additional fields given by new_fields.

Parameters
• new_fields – a list of 2-tuples, (‘name’, dtype)

• name – a name for the new pointlist

to_h5(group)
Takes an h5py Group instance and creates a subgroup containing this PointListArray, tags indicating its
EMD type and Python class, and the pointlistarray’s data and metadata.

Accepts:
group (h5py Group)

Returns
(h5py Group) the new pointlistarray’s group

add_to_tree(node)
Add an unrooted node as a child of the current, rooted node. To move an already rooted node/branch, use
.graft(). To create a rooted node, use Root().

cut_from_tree(root_metadata=True)
Removes a branch from an object tree at this node.

A new root node is created under this object with this object’s name. Metadata from the current root is
transferred/not transferred to the new root according to the value of root_metadata.

Accepts:
root_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies of all
metadata from the old root to the new root.

Returns
(Node) the new root node

force_add_to_tree(node)
Add node node as a child of the current node, whether or not node is rooted. If it’s unrooted, performs a
simple add. If it is rooted, performs a graft, excluding the root metadata from node.

classmethod from_h5(group)
Takes an h5py Group which is open in read mode. Confirms that a a Node of this name exists in this group,
and loads and returns it with it’s metadata.

Accepts:
group (h5py Group)

Returns
(Node)

68 Chapter 1. Contents

py4dstem, Release 0.14.14

get_from_tree(name)
Finds and returns an object from an EMD tree using the string key name, with ‘/’ delimiters between
‘parent/child’ nodes. Search from the root node by adding a leading ‘/’; otherwise, searches from the
current node.

graft(node, merge_metadata=True)
Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree) either use that tree’s .graft method, or use
this tree’s ._graft.

Accepts:
node (Node): merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies
of all metadata from the old root to the new root.

Returns
(Node) this tree’s root node

static newnode(method)
Decorator which may be added to node methods which product and return a new node. If such a method
is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a Metadata instance is added to the new node’s
metadata which stores information about how the node was created, namely: method’s name, the parent’s
class and name, and all the arguments passed to method.

show_tree(root=False)
Display the object tree. If root is False, displays the branch of the tree downstream from this node. If root
is True, displays the full tree from the root node.

tree(arg=None, **kwargs)
Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

1.4. API 69

py4dstem, Release 0.14.14

Probe

class py4DSTEM.Probe(data: ndarray, name: str | None = 'probe')
Stores a vacuum probe.

Both a vacuum probe and a kernel for cross-correlative template matching derived from that probe are stored and
can be accessed at

>>> p.probe
>>> p.kernel

respectively, for some Probe instance p. If a kernel has not been computed the latter expression returns None.

__init__(data: ndarray, name: str | None = 'probe')

Accepts:
data (2D or 3D np.ndarray): the vacuum probe, or

the vacuum probe + kernel

name (str): a name

Returns
(Probe)

classmethod from_vacuum_data(data, mask=None, threshold=0.2, expansion=12, opening=3)
Generates and returns a vacuum probe Probe instance from either a 2D vacuum image or a 3D stack of
vacuum diffraction patterns.

The probe is multiplied by mask, if it’s passed. An additional masking step zeros values outside of a mask
determined by threshold, expansion, and opening, generated by first computing the binary image probe <
max(probe)*threshold, then applying a binary expansion and then opening to this image. No alignment is
performed - i.e. it is assumed that the beam was stationary during acquisition of the stack. To align the
images, use the DataCube .get_vacuum_probe method.

Parameters
• data (2D or 3D array) – the vacuum diffraction data. For 3D stacks, use shape

(N,Q_Nx,Q_Ny)

• mask (boolean array, optional) – mask applied to the probe

• threshold (float) – threshold determining mask which zeros values outside of
probe

• expansion (int) – number of pixels by which the zeroing mask is expanded to cap-
ture the full probe

• opening (int) – size of binary opening used to eliminate stray bright pixels

Returns
probe – the vacuum probe

Return type
Probe

classmethod generate_synthetic_probe(radius, width, Qshape)
Makes a synthetic probe, with the functional form of a disk blurred by a sigmoid (a logistic function).

Parameters
• radius (float) – the probe radius

70 Chapter 1. Contents

py4dstem, Release 0.14.14

• width (float) – the blurring of the probe edge. width represents the full width of the
blur, with x=-w/2 to x=+w/2 about the edge spanning values of ~0.12 to 0.88

• Qshape (2 tuple) – the diffraction plane dimensions

Returns
probe – the probe

Return type
Probe

measure_disk(thresh_lower=0.01, thresh_upper=0.99, N=100, returncalc=True, data=None)
Finds the center and radius of an average probe image.

A naive algorithm. Creates a series of N binary masks by thresholding the probe image a linspace of N
thresholds from thresh_lower to thresh_upper, relative to the image max/min. For each mask, we find the
square root of the number of True valued pixels divided by pi to estimate a radius. Because the central
disk is intense relative to the remainder of the image, the computed radii are expected to vary very little
over a wider range threshold values. A range of r values considered trustworthy is estimated by taking
the derivative r(thresh)/dthresh identifying where it is small, and the mean of this range is returned as the
radius. A center is estimated using a binary thresholded image in combination with the center of mass
operator.

Parameters
• thresh_lower (float, 0 to 1) – the lower limit of threshold values

• thresh_upper (float, 0 to 1)) – the upper limit of threshold values

• N (int) – the number of thresholds / masks to use

• returncalc (True) – toggles returning the answer

• data (2d array, optional) – if passed, uses this 2D array in place of the probe
image when performing the computation. This also supresses storing the results in the
Probe’s calibration metadata

Returns
r, x0, y0 – the radius and origin

Return type
(3-tuple)

get_kernel(mode='flat', origin=None, data=None, returncalc=True, **kwargs)
Creates a cross-correlation kernel from the vacuum probe.

Specific behavior and valid keyword arguments depend on the mode specified. In each case, the center of
the probe is shifted to the origin and the kernel normalized such that it sums to 1. This is the only processing
performed if mode is ‘flat’. Otherwise, a centrosymmetric region of negative intensity is added around the
probe intended to promote edge-filtering-like behavior during cross correlation, with the functional form of
the subtracted region defined by mode and the relevant **kwargs. For normalization, flat probes integrate
to 1, and the remaining probes integrate to 1 before subtraction and 0 after. Required keyword arguments
are:

• ‘flat’: No required arguments. This mode is recommended for bullseye or other structured probes

• ‘gaussian’: Required arg sigma (number), the width (standard deviation) of a centered gaussian to be
subtracted.

• ‘sigmoid’: Required arg radii (2-tuple), the inner and outer radii (ri,ro) of an annular region with a
sine-squared sigmoidal radial profile to be subtracted.

1.4. API 71

py4dstem, Release 0.14.14

• ‘sigmoid_log’: Required arg radii (2-tuple), the inner and outer radii (ri,ro) of an annular region with
a logistic sigmoidal radial profile to be subtracted.

Parameters
• mode (str) – must be in ‘flat’,’gaussian’,’sigmoid’,’sigmoid_log’

• origin (2-tuple, optional) – specify the origin. If not passed, looks for a value
for the probe origin in metadata. If not found there, calls .measure_disk.

• data (2d array, optional) – if specified, uses this array instead of the probe im-
age to compute the kernel

• **kwargs – see descriptions above

Returns
kernel

Return type
2D array

static get_probe_kernel_flat(probe, origin=None, bilinear=False)
Creates a cross-correlation kernel from the vacuum probe by normalizing and shifting the center.

Parameters
• probe (2d array) – the vacuum probe

• origin (2-tuple (optional)) – the origin of diffraction space. If not specified,
finds the origin using get_probe_radius.

• bilinear (bool (optional)) – By default probe is shifted via a Fourier transform.
Setting this to True overrides it and uses bilinear shifting. Not recommended!

Returns
kernel – the cross-correlation kernel corresponding to the probe, in real space

Return type
ndarray

static get_probe_kernel_edge_gaussian(probe, sigma, origin=None, bilinear=True)
Creates a cross-correlation kernel from the probe, subtracting a gaussian from the normalized probe such
that the kernel integrates to zero, then shifting the center of the probe to the array corners.

Parameters
• probe (ndarray) – the diffraction pattern corresponding to the probe over vacuum

• sigma (float) – the width of the gaussian to subtract, relative to the standard devia-
tion of the probe

• origin (2-tuple (optional)) – the origin of diffraction space. If not specified,
finds the origin using get_probe_radius.

• bilinear (bool) – By default probe is shifted via a Fourier transform. Setting this
to True overrides it and uses bilinear shifting. Not recommended!

Returns
kernel – the cross-correlation kernel

Return type
ndarray

72 Chapter 1. Contents

py4dstem, Release 0.14.14

static get_probe_kernel_edge_sigmoid(probe, radii, origin=None, type='sine_squared',
bilinear=True)

Creates a convolution kernel from an average probe, subtracting an annular trench about the probe such
that the kernel integrates to zero, then shifting the center of the probe to the array corners.

Parameters
• probe (ndarray) – the diffraction pattern corresponding to the probe over vacuum

• radii (2-tuple) – the sigmoid inner and outer radii

• origin (2-tuple (optional)) – the origin of diffraction space. If not specified,
finds the origin using get_probe_radius.

• type (string) – must be ‘logistic’ or ‘sine_squared’

• bilinear (bool) – By default probe is shifted via a Fourier transform. Setting this
to True overrides it and uses bilinear shifting. Not recommended!

Returns
kernel – the cross-correlation kernel

Return type
2d array

add_to_tree(node)
Add an unrooted node as a child of the current, rooted node. To move an already rooted node/branch, use
.graft(). To create a rooted node, use Root().

attach(node)
Attach node to the current object’s tree, attaching calibration and detaching calibrations as needed.

cut_from_tree(root_metadata=True)
Removes a branch from an object tree at this node.

A new root node is created under this object with this object’s name. Metadata from the current root is
transferred/not transferred to the new root according to the value of root_metadata.

Accepts:
root_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies of all
metadata from the old root to the new root.

Returns
(Node) the new root node

dim(n)
Return the n’th dim vector

force_add_to_tree(node)
Add node node as a child of the current node, whether or not node is rooted. If it’s unrooted, performs a
simple add. If it is rooted, performs a graft, excluding the root metadata from node.

classmethod from_h5(group)
Takes an h5py Group which is open in read mode. Confirms that a a Node of this name exists in this group,
and loads and returns it with it’s metadata.

Accepts:
group (h5py Group)

1.4. API 73

py4dstem, Release 0.14.14

Returns
(Node)

get_dim(n)
Return the n’th dim vector

get_dim_name(n)
Get the n’th dim vector name

get_dim_units(n)
Return the n’th dim vector units

get_from_tree(name)
Finds and returns an object from an EMD tree using the string key name, with ‘/’ delimiters between
‘parent/child’ nodes. Search from the root node by adding a leading ‘/’; otherwise, searches from the
current node.

graft(node, merge_metadata=True)
Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree) either use that tree’s .graft method, or use
this tree’s ._graft.

Accepts:
node (Node): merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies
of all metadata from the old root to the new root.

Returns
(Node) this tree’s root node

static newnode(method)
Decorator which may be added to node methods which product and return a new node. If such a method
is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a Metadata instance is added to the new node’s
metadata which stores information about how the node was created, namely: method’s name, the parent’s
class and name, and all the arguments passed to method.

set_dim(n: int, dim: list | ndarray, units: str | None = None, name: str | None = None)
Sets the n’th dim vector, using dim as described in the Array documentation. If units and/or name are
passed, sets these values for the n’th dim vector.

Accepts:
n (int): specifies which dim vector dim (list or array): length must be either 2, or equal to the

length of the n’th axis of the data array

units (Optional, str): name: (Optional, str):

set_dim_name(n: int, name: str)
Sets the n’th dim vector name to name.

Accepts:
n (int): specifies which dim vector name (str): new name

74 Chapter 1. Contents

py4dstem, Release 0.14.14

set_dim_units(n: int, units: str)
Sets the n’th dim vector units to units.

Accepts:
n (int): specifies which dim vector units (str): new units

show_tree(root=False)
Display the object tree. If root is False, displays the branch of the tree downstream from this node. If root
is True, displays the full tree from the root node.

to_h5(group)
Takes an h5py Group instance and creates a subgroup containing this Array, tags indicating its EMD type
and Python class, and the array’s data and metadata.

Accepts:
group (h5py Group)

Returns
(h5py Group) the new array’s Group

tree(arg=None, **kwargs)
Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

QPoints

class py4DSTEM.QPoints(data: ndarray, name: str | None = 'qpoints')
Stores a set of diffraction space points, with fields ‘qx’, ‘qy’ and ‘intensity’

__init__(data: ndarray, name: str | None = 'qpoints')

Accepts:
data (structured numpy ndarray): should have three fields, which

will be renamed ‘qx’,’qy’,’intensity’

name (str): the name of the QPoints instance

1.4. API 75

py4dstem, Release 0.14.14

Returns
A new QPoints instance

add(data)
Appends a numpy structured array. Its dtypes must agree with the existing data.

add_data_by_field(data, fields=None)
Add a list of data arrays to the PointList, in the fields given by fields. If fields is not specified, assumes the
data arrays are in the same order as self.fields

Parameters
data (list) – arrays of data to add to each field

add_fields(new_fields, name='')
Creates a copy of the PointList, but with additional fields given by new_fields.

Parameters
• new_fields – a list of 2-tuples, (‘name’, dtype)

• name – a name for the new pointlist

add_to_tree(node)
Add an unrooted node as a child of the current, rooted node. To move an already rooted node/branch, use
.graft(). To create a rooted node, use Root().

attach(node)
Attach node to the current object’s tree, attaching calibration and detaching calibrations as needed.

copy(name=None)
Returns a copy of the PointList. If name=None, sets to {name}_copy

cut_from_tree(root_metadata=True)
Removes a branch from an object tree at this node.

A new root node is created under this object with this object’s name. Metadata from the current root is
transferred/not transferred to the new root according to the value of root_metadata.

Accepts:
root_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies of all
metadata from the old root to the new root.

Returns
(Node) the new root node

force_add_to_tree(node)
Add node node as a child of the current node, whether or not node is rooted. If it’s unrooted, performs a
simple add. If it is rooted, performs a graft, excluding the root metadata from node.

classmethod from_h5(group)
Takes an h5py Group which is open in read mode. Confirms that a a Node of this name exists in this group,
and loads and returns it with it’s metadata.

Accepts:
group (h5py Group)

Returns
(Node)

76 Chapter 1. Contents

py4dstem, Release 0.14.14

get_from_tree(name)
Finds and returns an object from an EMD tree using the string key name, with ‘/’ delimiters between
‘parent/child’ nodes. Search from the root node by adding a leading ‘/’; otherwise, searches from the
current node.

graft(node, merge_metadata=True)
Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree) either use that tree’s .graft method, or use
this tree’s ._graft.

Accepts:
node (Node): merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies
of all metadata from the old root to the new root.

Returns
(Node) this tree’s root node

static newnode(method)
Decorator which may be added to node methods which product and return a new node. If such a method
is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a Metadata instance is added to the new node’s
metadata which stores information about how the node was created, namely: method’s name, the parent’s
class and name, and all the arguments passed to method.

remove(mask)
Removes points wherever mask==True

show_tree(root=False)
Display the object tree. If root is False, displays the branch of the tree downstream from this node. If root
is True, displays the full tree from the root node.

sort(field, order='ascending')
Sorts the point list according to field, which must be a field in self.dtype. order should be ‘descending’ or
‘ascending’.

to_h5(group)
Takes an h5py Group instance and creates a subgroup containing this PointList, tags indicating its EMD
type and Python class, and the pointlist’s data and metadata.

Accepts:
group (h5py Group)

Returns
(h5py Group) the new pointlist’s group

tree(arg=None, **kwargs)
Usages -

1.4. API 77

py4dstem, Release 0.14.14

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

RealSlice

class py4DSTEM.RealSlice(data: ndarray, name: str | None = 'realslice', units: str | None = 'intensity',
slicelabels: bool | list | None = None, calibration=None)

Stores a real-space shaped 2D data array.

__init__(data: ndarray, name: str | None = 'realslice', units: str | None = 'intensity', slicelabels: bool | list |
None = None, calibration=None)

Accepts:
data (np.ndarray): the data name (str): the name of the realslice slicelabels(None or list): names for
slices if this is a stack of

realslices

Returns
A new RealSlice instance

add_to_tree(node)
Add an unrooted node as a child of the current, rooted node. To move an already rooted node/branch, use
.graft(). To create a rooted node, use Root().

attach(node)
Attach node to the current object’s tree, attaching calibration and detaching calibrations as needed.

cut_from_tree(root_metadata=True)
Removes a branch from an object tree at this node.

A new root node is created under this object with this object’s name. Metadata from the current root is
transferred/not transferred to the new root according to the value of root_metadata.

Accepts:
root_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies of all
metadata from the old root to the new root.

78 Chapter 1. Contents

py4dstem, Release 0.14.14

Returns
(Node) the new root node

dim(n)
Return the n’th dim vector

force_add_to_tree(node)
Add node node as a child of the current node, whether or not node is rooted. If it’s unrooted, performs a
simple add. If it is rooted, performs a graft, excluding the root metadata from node.

classmethod from_h5(group)
Takes an h5py Group which is open in read mode. Confirms that a a Node of this name exists in this group,
and loads and returns it with it’s metadata.

Accepts:
group (h5py Group)

Returns
(Node)

get_dim(n)
Return the n’th dim vector

get_dim_name(n)
Get the n’th dim vector name

get_dim_units(n)
Return the n’th dim vector units

get_from_tree(name)
Finds and returns an object from an EMD tree using the string key name, with ‘/’ delimiters between
‘parent/child’ nodes. Search from the root node by adding a leading ‘/’; otherwise, searches from the
current node.

graft(node, merge_metadata=True)
Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree) either use that tree’s .graft method, or use
this tree’s ._graft.

Accepts:
node (Node): merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies
of all metadata from the old root to the new root.

Returns
(Node) this tree’s root node

static newnode(method)
Decorator which may be added to node methods which product and return a new node. If such a method
is decorated with

>>> @newnode

1.4. API 79

py4dstem, Release 0.14.14

then the new node is added to the parent node’s tree, and a Metadata instance is added to the new node’s
metadata which stores information about how the node was created, namely: method’s name, the parent’s
class and name, and all the arguments passed to method.

set_dim(n: int, dim: list | ndarray, units: str | None = None, name: str | None = None)
Sets the n’th dim vector, using dim as described in the Array documentation. If units and/or name are
passed, sets these values for the n’th dim vector.

Accepts:
n (int): specifies which dim vector dim (list or array): length must be either 2, or equal to the

length of the n’th axis of the data array

units (Optional, str): name: (Optional, str):

set_dim_name(n: int, name: str)
Sets the n’th dim vector name to name.

Accepts:
n (int): specifies which dim vector name (str): new name

set_dim_units(n: int, units: str)
Sets the n’th dim vector units to units.

Accepts:
n (int): specifies which dim vector units (str): new units

show_tree(root=False)
Display the object tree. If root is False, displays the branch of the tree downstream from this node. If root
is True, displays the full tree from the root node.

to_h5(group)
Takes an h5py Group instance and creates a subgroup containing this Array, tags indicating its EMD type
and Python class, and the array’s data and metadata.

Accepts:
group (h5py Group)

Returns
(h5py Group) the new array’s Group

tree(arg=None, **kwargs)
Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

80 Chapter 1. Contents

py4dstem, Release 0.14.14

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

VirtualDiffraction

class py4DSTEM.VirtualDiffraction(data: ndarray, name: str | None = 'virtualdiffraction')
Stores a diffraction-space shaped 2D image with metadata indicating how this image was generated from a self.

__init__(data: ndarray, name: str | None = 'virtualdiffraction')

Parameters
• data (np.ndarray) – the 2D data

• name (str) – the name

Returns
A new VirtualDiffraction instance

add_to_tree(node)
Add an unrooted node as a child of the current, rooted node. To move an already rooted node/branch, use
.graft(). To create a rooted node, use Root().

attach(node)
Attach node to the current object’s tree, attaching calibration and detaching calibrations as needed.

cut_from_tree(root_metadata=True)
Removes a branch from an object tree at this node.

A new root node is created under this object with this object’s name. Metadata from the current root is
transferred/not transferred to the new root according to the value of root_metadata.

Accepts:
root_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies of all
metadata from the old root to the new root.

Returns
(Node) the new root node

dim(n)
Return the n’th dim vector

force_add_to_tree(node)
Add node node as a child of the current node, whether or not node is rooted. If it’s unrooted, performs a
simple add. If it is rooted, performs a graft, excluding the root metadata from node.

classmethod from_h5(group)
Takes an h5py Group which is open in read mode. Confirms that a a Node of this name exists in this group,
and loads and returns it with it’s metadata.

Accepts:
group (h5py Group)

1.4. API 81

py4dstem, Release 0.14.14

Returns
(Node)

get_dim(n)
Return the n’th dim vector

get_dim_name(n)
Get the n’th dim vector name

get_dim_units(n)
Return the n’th dim vector units

get_from_tree(name)
Finds and returns an object from an EMD tree using the string key name, with ‘/’ delimiters between
‘parent/child’ nodes. Search from the root node by adding a leading ‘/’; otherwise, searches from the
current node.

graft(node, merge_metadata=True)
Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree) either use that tree’s .graft method, or use
this tree’s ._graft.

Accepts:
node (Node): merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies
of all metadata from the old root to the new root.

Returns
(Node) this tree’s root node

static newnode(method)
Decorator which may be added to node methods which product and return a new node. If such a method
is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a Metadata instance is added to the new node’s
metadata which stores information about how the node was created, namely: method’s name, the parent’s
class and name, and all the arguments passed to method.

set_dim(n: int, dim: list | ndarray, units: str | None = None, name: str | None = None)
Sets the n’th dim vector, using dim as described in the Array documentation. If units and/or name are
passed, sets these values for the n’th dim vector.

Accepts:
n (int): specifies which dim vector dim (list or array): length must be either 2, or equal to the

length of the n’th axis of the data array

units (Optional, str): name: (Optional, str):

set_dim_name(n: int, name: str)
Sets the n’th dim vector name to name.

Accepts:
n (int): specifies which dim vector name (str): new name

82 Chapter 1. Contents

py4dstem, Release 0.14.14

set_dim_units(n: int, units: str)
Sets the n’th dim vector units to units.

Accepts:
n (int): specifies which dim vector units (str): new units

show_tree(root=False)
Display the object tree. If root is False, displays the branch of the tree downstream from this node. If root
is True, displays the full tree from the root node.

to_h5(group)
Takes an h5py Group instance and creates a subgroup containing this Array, tags indicating its EMD type
and Python class, and the array’s data and metadata.

Accepts:
group (h5py Group)

Returns
(h5py Group) the new array’s Group

tree(arg=None, **kwargs)
Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

VirtualImage

class py4DSTEM.VirtualImage(data: ndarray, name: str | None = 'virtualimage')
A container for storing virtual image data and metadata, including the real-space shaped 2D image and metadata
indicating how this image was generated from a datacube.

__init__(data: ndarray, name: str | None = 'virtualimage')

Parameters
• data (np.ndarray) – the 2D data

• name (str) – the name

1.4. API 83

py4dstem, Release 0.14.14

add_to_tree(node)
Add an unrooted node as a child of the current, rooted node. To move an already rooted node/branch, use
.graft(). To create a rooted node, use Root().

attach(node)
Attach node to the current object’s tree, attaching calibration and detaching calibrations as needed.

cut_from_tree(root_metadata=True)
Removes a branch from an object tree at this node.

A new root node is created under this object with this object’s name. Metadata from the current root is
transferred/not transferred to the new root according to the value of root_metadata.

Accepts:
root_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies of all
metadata from the old root to the new root.

Returns
(Node) the new root node

dim(n)
Return the n’th dim vector

force_add_to_tree(node)
Add node node as a child of the current node, whether or not node is rooted. If it’s unrooted, performs a
simple add. If it is rooted, performs a graft, excluding the root metadata from node.

classmethod from_h5(group)
Takes an h5py Group which is open in read mode. Confirms that a a Node of this name exists in this group,
and loads and returns it with it’s metadata.

Accepts:
group (h5py Group)

Returns
(Node)

get_dim(n)
Return the n’th dim vector

get_dim_name(n)
Get the n’th dim vector name

get_dim_units(n)
Return the n’th dim vector units

get_from_tree(name)
Finds and returns an object from an EMD tree using the string key name, with ‘/’ delimiters between
‘parent/child’ nodes. Search from the root node by adding a leading ‘/’; otherwise, searches from the
current node.

graft(node, merge_metadata=True)
Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree) either use that tree’s .graft method, or use
this tree’s ._graft.

84 Chapter 1. Contents

py4dstem, Release 0.14.14

Accepts:
node (Node): merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies
of all metadata from the old root to the new root.

Returns
(Node) this tree’s root node

static newnode(method)
Decorator which may be added to node methods which product and return a new node. If such a method
is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a Metadata instance is added to the new node’s
metadata which stores information about how the node was created, namely: method’s name, the parent’s
class and name, and all the arguments passed to method.

set_dim(n: int, dim: list | ndarray, units: str | None = None, name: str | None = None)
Sets the n’th dim vector, using dim as described in the Array documentation. If units and/or name are
passed, sets these values for the n’th dim vector.

Accepts:
n (int): specifies which dim vector dim (list or array): length must be either 2, or equal to the

length of the n’th axis of the data array

units (Optional, str): name: (Optional, str):

set_dim_name(n: int, name: str)
Sets the n’th dim vector name to name.

Accepts:
n (int): specifies which dim vector name (str): new name

set_dim_units(n: int, units: str)
Sets the n’th dim vector units to units.

Accepts:
n (int): specifies which dim vector units (str): new units

show_tree(root=False)
Display the object tree. If root is False, displays the branch of the tree downstream from this node. If root
is True, displays the full tree from the root node.

to_h5(group)
Takes an h5py Group instance and creates a subgroup containing this Array, tags indicating its EMD type
and Python class, and the array’s data and metadata.

Accepts:
group (h5py Group)

Returns
(h5py Group) the new array’s Group

1.4. API 85

py4dstem, Release 0.14.14

tree(arg=None, **kwargs)
Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

1.4.3 io

Table of Contents

• io

– filereaders

– google_drive_downloader

– importfile

– legacy

– parsefiletype

filereaders

py4DSTEM.io.filereaders.empad.read_empad(filename, mem='RAM', binfactor=1, metadata=False,
**kwargs)

Reads the EMPAD file at filename, returning a DataCube.

EMPAD files are shaped as 130x128 arrays, consisting of 128x128 arrays of data followed by two rows of meta-
data. For each frame, its position in the scan is embedded in the metadata. By extracting the scan position of the
first and last frames, the function determines the scan size. Then, the full dataset is loaded and cropped to the
128x128 valid region.

Accepts:
filename (str) path to the EMPAD file EMPAD_shape (kwarg, tuple) Manually specify the shape of the
data for files that do not

86 Chapter 1. Contents

py4dstem, Release 0.14.14

contain metadata in the .raw file. This will typically be:
(# scan pixels x, # scan pixels y, 130, 128)

Returns
data (DataCube) the 4D datacube, excluding the metadata rows.

py4DSTEM.io.filereaders.read_K2.read_gatan_K2_bin(fp, mem='MEMMAP', binfactor=1,
metadata=False, **kwargs)

Read a K2 binary 4D-STEM file.

Parameters
• fp – str Path to the file

• mem (str, optional) – Specifies how the data should be stored; must be “RAM” or
“MEMMAP”. See docstring for py4DSTEM.file.io.read. Default is “MEMMAP”.

• binfactor – (int, optional): Bin the data, in diffraction space, as it’s loaded. See doc-
string for py4DSTEM.file.io.read. Must be 1, retained only for compatibility.

• metadata (bool, optional) – if True, returns the file metadata as a Metadata instance.

Returns
The return value depends on usage:

• if metadata==False, returns the 4D-STEM dataset as a DataCube

• if metadata==True, returns the metadata as a Metadata instance

Note that metadata is read either way - in the latter case ONLY metadata is read and returned,
in the former case a DataCube is returned with the metadata attached at datacube.metadata

Return type
(variable)

class py4DSTEM.io.filereaders.read_K2.K2DataArray(filepath, sync_block_IDs=True,
hidden_stripe_noise_reduction=True)

K2DataArray provides an interface to a set of Gatan K2IS binary output files. This object behaves similar to a
numpy memmap into the data, and supports 4-D indexing and slicing. Slices into this object return np.ndarray
objects.

The object is created by passing the path to any of: (i) the folder containing the raw data, (ii) the *.gtg metadata
file, or (iii) one of the raw data *.bin files. In any case, there should be only one dataset (8 *.bin’s and a *.gtg) in
the folder.

===== Filtering and Noise Reduction ===== This object is read-only—you cannot edit the data on disk, which
means that some DataCube functions like swap_RQ() will not work.

The K2IS has a “resolution” of 1920x1792, but actually saves hidden stripes in the raw data. By setting the
hidden_stripe_noise_reduction flag to True, the electronic noise in these stripes is used to reduce the readout
noise. (This is on by default.)

If you want to take a separate background to subtract, set dark_reference to specify this background. This is
then subtracted from the frames as they are called out (no matter where the object is referenced! So, for instance,
Bragg disk detection will operate on the background- subtracted diffraction patterns!). However, mixing the auto-
background and specified background is potentially dangerous and (currently!) not allowed. To switch back from
user-background to auto-background, just delete the user background, i.e. del(dc.data4D.dark_reference)

1.4. API 87

py4dstem, Release 0.14.14

Note: If you call dc.data4D[:,:,:,:] on a DataCube with a K2DataArray this will read the entire stack into
memory. To reduce RAM pressure, only call small slices or loop over each diffraction pattern.

__init__(filepath, sync_block_IDs=True, hidden_stripe_noise_reduction=True)

py4DSTEM.io.filereaders.read_mib.load_mib(file_path, mem='MEMMAP', binfactor=1, reshape=True,
flip=True, scan=(256, 256), **kwargs)

Read a MIB file and return as py4DSTEM DataCube.

The scan size is not encoded in the MIB metadata - by default it is set to (256,256), and can be modified by
passing the keyword scan.

py4DSTEM.io.filereaders.read_mib.manageHeader(fname)
Get necessary information from the header of the .mib file. :param fname: Filename for header file. :type fname:
str

Returns
hdr – (DataOffset,NChips,PixelDepthInFile,sensorLayout,Timestamp,shuttertime,bitdepth)

Return type
tuple

Examples

#Output for 6bit 256*256 data: #(768, 4, ‘R64’, ‘2x2’, ‘2019-06-14 11:46:12.607836’, 0.0002, 6) #Output for
12bit single frame nor RAW: #(768, 4, ‘U16’, ‘2x2’, ‘2019-06-06 11:12:42.001309’, 0.001, 12)

py4DSTEM.io.filereaders.read_mib.parse_hdr(fp)
Parse information from mib file header info from _manageHeader function. :param fp: Filepath to .mib file.
:type fp: str

Returns
hdr_info – Dictionary containing header info extracted from .mib file. The entries of the
dictionary are as follows: ‘width’: int

pixels, detector number of pixels in x direction,

’height’: int
pixels detector number of pixels in y direction,

’Assembly Size’: str
configuration of the detector chips, e.g. ‘2x2’ for quad,

’offset’: int
number of characters in the header before the first frame starts,

’data-type’: str
always ‘unsigned’,

’data-length’: str
identifying dtype,

’Counter Depth (number)’: int
counter bit depth,

’raw’: str
regular binary ‘MIB’ or raw binary ‘R64’,

88 Chapter 1. Contents

py4dstem, Release 0.14.14

’byte-order’: str
always ‘dont-care’,

’record-by’: str
’image’ or ‘vector’ - only ‘image’ encountered,

’title’: str
path of the mib file without extension, e.g. ‘/dls/e02/data/2020/cm26481-
1/Merlin/testing/20200204 115306/test’,

’date’: str
date created, e.g. ‘20200204’,

’time’: str
time created, e.g. ‘11:53:32.295336’,

’data offset’: int
number of characters at the header.

Return type
dict

py4DSTEM.io.filereaders.read_mib.get_mib_memmap(fp, mmap_mode='r')
Reads the binary mib file into a numpy memmap object and returns as dask array object. :param fp: MIB file
name / path :type fp: str :param mmap_mode: memmpap read mode - default is ‘r’ :type mmap_mode: str

Returns
data_da – data as a dask array object

Return type
dask array

py4DSTEM.io.filereaders.read_mib.get_mib_depth(hdr_info, fp)
Determine the total number of frames based on .mib file size. :param hdr_info: Dictionary containing header
info extracted from .mib file. :type hdr_info: dict :param fp: Path to .mib file. :type fp: filepath

Returns
depth – Number of frames in the stack

Return type
int

py4DSTEM.io.filereaders.read_mib.get_hdr_bits(hdr_info)
Gets the number of character bits for the header for each frame given the data type. :param hdr_info: output of
the parse_hdr function :type hdr_info: dict

Returns
hdr_bits – number of characters in the header

Return type
int

1.4. API 89

py4dstem, Release 0.14.14

google_drive_downloader

py4DSTEM.io.google_drive_downloader.gdrive_download(id_, destination=None, overwrite=False,
filename=None, verbose=True)

Downloads a file or collection of files from google drive.

Parameters
• id (str) – File ID for the desired file. May be either a key from the list of files and col-

lections of files accessible at get_sample_file_ids(), or a complete url, or the portions of
a google drive link specifying it’s google file ID, i.e. for the address https://drive.google.
com/file/d/1bHv3u61Cr-y_GkdWHrJGh1lw2VKmt3UM/, the id string ‘1bHv3u61Cr-
y_GkdWHrJGh1lw2VKmt3UM’.

• destination (None or str) – The location files are downloaded to. If a collection of
files has been specified, creates a new directory at the specified destination and downloads
the collection there. If None, downloads to the current working directory. Otherwise must
be a string or Path pointint to a valid location on the filesystem.

• overwrite (bool) – Turns overwrite protection on/off.

• filename (None or str) – Used only if id_ is a url or gdrive id. In these cases, specifies
the name of the output file. If left as None, saves to ‘gdrivedownload.file’. If id_ is a key
from the sample file id list, this parameter is ignored.

• verbose (bool) – Toggles verbose output

importfile

py4DSTEM.io.importfile.import_file(filepath: str | Path, mem: str | None = 'RAM', binfactor: int | None = 1,
filetype: str | None = None, **kwargs)

Reader for non-native file formats. Parses the filetype, and calls the appropriate reader. Supports Gatan DM3/4,
some EMPAD file versions, Gatan K2 bin/gtg, and mib formats.

Parameters
• filepath (str or Path) – Path to the file.

• mem (str) – Must be “RAM” or “MEMMAP”. Specifies how the data is loaded; “RAM”
transfer the data from storage to RAM, while “MEMMAP” leaves the data in storage
and creates a memory map which points to the diffraction patterns, allowing them to be
retrieved individually from storage.

• binfactor (int) – Diffraction space binning factor for bin-on-load.

• filetype (str) – Used to override automatic filetype detection. options include “dm”,
“empad”, “gatan_K2_bin”, “mib”, “arina”, “abTEM”

• **kwargs – any additional kwargs are passed to the downstream reader - refer to the
individual filetype reader function call signatures and docstrings for more details.

Returns
(DataCube or Array) returns a DataCube if 4D data is found, otherwise returns an Array

90 Chapter 1. Contents

https://drive.google.com/file/d/1bHv3u61Cr-y_GkdWHrJGh1lw2VKmt3UM/
https://drive.google.com/file/d/1bHv3u61Cr-y_GkdWHrJGh1lw2VKmt3UM/

py4dstem, Release 0.14.14

legacy

This is the h5py package, a Python interface to the HDF5 scientific data format.

py4DSTEM.io.legacy.read_legacy_12.read_legacy12(filepath, **kwargs)
File reader for older legacy py4DSTEM (v<0.13) formated HDF5 files.

Different file versions Precise behavior is detemined by which arguments are passed – see below.

Parameters
• filepath (str or pathlib.Path) – When passed a filepath only, this function checks

if the path points to a valid py4DSTEM file, then prints its contents to screen.

• data_id (int/str/list, optional) – Specifies which data to load. Use integers to
specify the data index, or strings to specify data names. A list or tuple returns a list of
DataObjects. Returns the specified data.

• topgroup (str, optional) – Stricty, a py4DSTEM file is considered to be everything
inside a toplevel subdirectory within the HDF5 file, so that if desired one can place many
py4DSTEM files inside a single H5. In this case, when loading data, the topgroup argu-
ment is passed to indicate which py4DSTEM file to load. If an H5 containing multiple
py4DSTEM files is passed without a topgroup specified, the topgroup names are printed
to screen.

• mem (str, optional) – Only used if a single DataCube is loaded. In this case, mem
specifies how the data should be stored; must be “RAM” or “MEMMAP”. See docstring
for py4DSTEM.file.io.read. Default is “RAM”.

• binfactor (int, optional) – Only used if a single DataCube is loaded. In this case,
a binfactor of > 1 causes the data to be binned by this amount as it’s loaded.

• dtype (dtype, optional) – Used when binning data, ignored otherwise. Defaults to
whatever the type of the raw data is, to avoid enlarging data size. May be useful to avoid
‘wraparound’ errors.

Returns
The output depends on usage:

• If no input arguments with return values (i.e. data_id or metadata) are passed, nothing is
returned.

• Otherwise, a single DataObject or list of DataObjects are returned, based on the value of
the argument data_id.

Return type
(variable)

py4DSTEM.io.legacy.read_legacy_13.read_legacy13(filepath, root: str | None = None, tree: bool | str |
None = True)

File reader for legacy py4DSTEM (v=0.13.x) formated HDF5 files.

Parameters
• filepath (str or Path) – the file path

• root (str) – the path to the data group in the HDF5 file to read from. To ex-
amine an HDF5 file written by py4DSTEM in order to determine this path, call
py4DSTEM.print_h5_tree(filepath). If left unspecified, looks in the file and if it finds
a single top-level object, loads it. If it finds multiple top-level objects, prints a warning
and returns a list of root paths to the top-level object found.

1.4. API 91

py4dstem, Release 0.14.14

• tree (bool or str) – indicates what data should be loaded, relative to the root group
specified above. Must be in (True or False or noroot). If set to False, the only the data
in the root group is loaded, plus any associated calibrations. If set to True, loads the root
group, and all other data groups nested underneath it in the file tree. If set to ‘noroot’,
loads all other data groups nested under the root group in the file tree, but does not load the
data inside the root group (allowing, e.g., loading all the data nested under a DataCube13
without loading the whole datacube).

Returns
(the data)

py4DSTEM.io.legacy.read_legacy_13.print_v13h5_tree(filepath, show_metadata=False)
Prints the contents of an h5 file from a filepath.

py4DSTEM.io.legacy.read_legacy_13.print_v13h5pyFile_tree(f , tablevel=0, linelevels=[],
show_metadata=False)

Prints the contents of an h5 file from an open h5py File instance.

py4DSTEM.io.legacy.read_utils.get_py4DSTEM_topgroups(filepath)
Returns a list of toplevel groups in an HDF5 file which are valid py4DSTEM file trees.

py4DSTEM.io.legacy.read_utils.is_py4DSTEM_version13(filepath)
Returns True for data written by a py4DSTEM v0.13.x release.

py4DSTEM.io.legacy.read_utils.is_py4DSTEM_file(filepath)
Returns True iff filepath points to a py4DSTEM formatted (EMD type 2) file.

py4DSTEM.io.legacy.read_utils.get_py4DSTEM_version(filepath, topgroup='4DSTEM_experiment')
Returns the version (major,minor,release) of a py4DSTEM file.

py4DSTEM.io.legacy.read_utils.get_UUID(filepath, topgroup='4DSTEM_experiment')
Returns the UUID of a py4DSTEM file, or if unavailable returns -1.

py4DSTEM.io.legacy.read_utils.version_is_geq(current, minimum)

Returns True iff current version (major,minor,release) is greater than or equal to minimum.”

py4DSTEM.io.legacy.read_utils.get_N_dataobjects(filepath, topgroup='4DSTEM_experiment')
Returns a 7-tuple of ints with the numbers of: DataCubes, CountedDataCubes, DiffractionSlices, RealSlices,
PointLists, PointListArrays, total DataObjects.

parsefiletype

1.4.4 preprocess

Table of Contents

• preprocess

– darkreference

– electroncount

– preprocess

– radialbkgrd

– utils

92 Chapter 1. Contents

py4dstem, Release 0.14.14

darkreference

py4DSTEM.preprocess.darkreference.get_bksbtr_DP(datacube, darkref , Rx, Ry)
Returns a background subtracted diffraction pattern.

Parameters
• datacube (DataCube) – data to background subtract

• darkref (ndarray) – dark reference. must have shape (datacube.Q_Nx, dat-
acube.Q_Ny)

• Rx (int) – the scan position of the diffraction pattern of interest

• Ry (int) – the scan position of the diffraction pattern of interest

Returns
(ndarray) the background subtracted diffraction pattern

py4DSTEM.preprocess.darkreference.get_darkreference(datacube, N_frames, width_x=0, width_y=0,
side_x='end', side_y='end')

Gets a dark reference image.

Select N_frames random frames (DPs) from datacube. Find streaking noise in the horizontal and vertical direc-
tions, by finding the average values along a thin strip of width_x/width_y pixels along the detector edges. Which
edges are used is controlled by side_x/side_y, which must be ‘start’ or ‘end’. Streaks along only one direction
can be used by setting width_x or width_y to 0, which disables correcting streaks in this direction.

Note that the data is cast to float before computing the background, and should similarly be cast to float before
performing a subtraction. This avoids integer clipping and wraparound errors.

Parameters
• datacube (DataCube) – data to background subtract

• N_frames (int) – number of random diffraction patterns to use

• width_x (int) – width of the ROI strip for finding streaking in x

• width_y (int) – see above

• side_x (str) – use a strip from the start or end of the array. Must be ‘start’ or ‘end’,
defaults to ‘end’

• side_y (str) – see above

Returns
a 2D ndarray of shape (datacube.Q_Nx, datacube.Ny) giving the background.

Return type
(ndarray)

py4DSTEM.preprocess.darkreference.get_background_streaks(datacube, N_frames, width, side='end',
direction='x')

Gets background streaking in either the x- or y-direction, by finding the average of a strip of pixels along the
edge of the detector over a random selection of diffraction patterns, and returns a dark reference array.

Note that the data is cast to float before computing the background, and should similarly be cast to float before
performing a subtraction. This avoids integer clipping and wraparound errors.

Parameters
• datacube (DataCube) – data to background subtract

• N_frames (int) – number of random frames to use

1.4. API 93

py4dstem, Release 0.14.14

• width (int) – width of the ROI strip for background identification

• side (str, optional) – use a strip from the start or end of the array. Must be ‘start’ or
‘end’, defaults to ‘end’

• directions (str) – the direction of background streaks to find. Must be either ‘x’ or
‘y’ defaults to ‘x’

Returns
a 2D ndarray of shape (datacube.Q_Nx,datacube.Q_Ny), giving the the x- or y-direction back-
ground streaking.

Return type
(ndarray)

py4DSTEM.preprocess.darkreference.get_background_streaks_x(datacube, width, N_frames,
side='start')

Gets background streaking, by finding the average of a strip of pixels along the y-edge of the detector over a
random selection of diffraction patterns.

See docstring for get_background_streaks() for more info.

py4DSTEM.preprocess.darkreference.get_background_streaks_y(datacube, N_frames, width,
side='start')

Gets background streaking, by finding the average of a strip of pixels along the x-edge of the detector over a
random selection of diffraction patterns.

See docstring for get_background_streaks_1D() for more info.

electroncount

py4DSTEM.preprocess.electroncount.electron_count(datacube, darkreference, Nsamples=40,
thresh_bkgrnd_Nsigma=4, thresh_xray_Nsigma=10,
binfactor=1, sub_pixel=True, output='pointlist')

Performs electron counting.

The algorithm is as follows: From a random sampling of frames, calculate an x-ray and background threshold
value. In each frame, subtract the dark reference, then apply the two thresholds. Find all local maxima with
respect to the nearest neighbor pixels. These are considered electron strike events.

Thresholds are specified in units of standard deviations, either of a gaussian fit to the histogram background
noise (for thresh_bkgrnd) or of the histogram itself (for thresh_xray). The background (lower) threshold is more
important; we will always be missing some real electron counts and incorrectly counting some noise as electron
strikes - this threshold controls their relative balance. The x-ray threshold may be set fairly high.

Parameters
• datacube – a 4D numpy.ndarray pointing to the datacube. Note: the R/Q axes are flipped

with respect to py4DSTEM DataCube objects

• darkreference – a 2D numpy.ndarray with the dark reference

• Nsamples – the number of frames to use in dark reference and threshold calculation.

• thresh_bkgrnd_Nsigma – the background threshold is mean(guassian fit) +
(this #)*std(gaussian fit) where the gaussian fit is to the background noise.

• thresh_xray_Nsigma – the X-ray threshold is mean(hist) +/- (this
#)*std(hist) where hist is the histogram of all pixel values in the Nsamples
random frames

94 Chapter 1. Contents

py4dstem, Release 0.14.14

• binfactor – the binnning factor

• sub_pixel (bool) – controls whether subpixel refinement is performed

• output (str) – controls output format; must be ‘datacube’ or ‘pointlist’

Returns
(variable) if output==’pointlist’, returns a PointListArray of all electron counts in each frame.
If output==’datacube’, returns a 4D array of bools, with True indicating electron strikes

py4DSTEM.preprocess.electroncount.electron_count_GPU(datacube, darkreference, Nsamples=40,
thresh_bkgrnd_Nsigma=4,
thresh_xray_Nsigma=10, binfactor=1,
sub_pixel=True, output='pointlist')

Performs electron counting on the GPU.

Uses pytorch to interface between numpy and cuda. Requires cuda and pytorch. This function expects datacube
to be a np.memmap object. See electron_count() for additional documentation.

py4DSTEM.preprocess.electroncount.calculate_thresholds(datacube, darkreference, Nsamples=20,
thresh_bkgrnd_Nsigma=4,
thresh_xray_Nsigma=10,
return_params=False)

Calculate the upper and lower thresholds for thresholding what to register as an electron count.

Both thresholds are determined from the histogram of detector pixel values summed over Nsamples frames. The
thresholds are set to:

thresh_xray_Nsigma = mean(histogram) + thresh_upper * std(histogram)
thresh_bkgrnd_N_sigma = mean(guassian fit) + thresh_lower * std(gaussian fit)

For more info, see the electron_count docstring.

Parameters
• datacube – a 4D numpy.ndarrau pointing to the datacube

• darkreference – a 2D numpy.ndarray with the dark reference

• Nsamples – the number of frames to use in dark reference and threshold calculation.

• thresh_bkgrnd_Nsigma – the background threshold is mean(guassian fit) +
(this #)*std(gaussian fit) where the gaussian fit is to the background noise.

• thresh_xray_Nsigma – the X-ray threshold is mean(hist) + (this #)*std(hist)
where hist is the histogram of all pixel values in the Nsamples random frames

• return_params – bool, if True return n,hist of the histogram and popt of the gaussian fit

Returns
A 5-tuple containing:

• thresh_bkgrnd: the background threshold

• thresh_xray: the X-ray threshold

• n: returned iff return_params==True. The histogram values

• hist: returned iff return_params==True. The histogram bin edges

• popt: returned iff return_params==True. The fit gaussian parameters, (A, mu, sigma).

Return type
(5-tuple)

1.4. API 95

py4dstem, Release 0.14.14

py4DSTEM.preprocess.electroncount.torch_bin(array, device, factor=2)
Bin data on the GPU using torch.

Parameters
• array – a 2D numpy array

• device – a torch device class instance

• factor (int) – the binning factor

Returns
the binned array

Return type
(array)

py4DSTEM.preprocess.electroncount.counted_datacube_to_pointlistarray(counted_datacube,
subpixel=False)

Converts an electron counted datacube to PointListArray.

Parameters
• counted_datacube – a 4D array of bools, with true indicating an electron strike.

• subpixel (bool) – controls if subpixel electron strike positions are expected

Returns
a PointListArray of electron strike events

Return type
(PointListArray)

py4DSTEM.preprocess.electroncount.counted_pointlistarray_to_datacube(counted_pointlistarray,
shape, subpixel=False)

Converts an electron counted PointListArray to a datacube.

Parameters
• counted_pointlistarray (PointListArray) – a PointListArray of electron strike

events

• shape (4-tuple) – a length 4 tuple of ints containing (R_Nx,R_Ny,Q_Nx,Q_Ny)

• subpixel (bool) – controls if subpixel electron strike positions are expected

Returns
a 4D array of bools, with true indicating an electron strike.

Return type
(4D array of bools)

preprocess

py4DSTEM.preprocess.preprocess.set_scan_shape(datacube, R_Nx, R_Ny)
Reshape the data given the real space scan shape.

py4DSTEM.preprocess.preprocess.swap_RQ(datacube)
Swaps real and reciprocal space coordinates, so that if

>>> datacube.data.shape
(Rx,Ry,Qx,Qy)

96 Chapter 1. Contents

py4dstem, Release 0.14.14

Then

>>> swap_RQ(datacube).data.shape
(Qx,Qy,Rx,Ry)

py4DSTEM.preprocess.preprocess.swap_Rxy(datacube)
Swaps real space x and y coordinates, so that if

>>> datacube.data.shape
(Ry,Rx,Qx,Qy)

Then

>>> swap_Rxy(datacube).data.shape
(Rx,Ry,Qx,Qy)

py4DSTEM.preprocess.preprocess.swap_Qxy(datacube)
Swaps reciprocal space x and y coordinates, so that if

>>> datacube.data.shape
(Rx,Ry,Qy,Qx)

Then

>>> swap_Qxy(datacube).data.shape
(Rx,Ry,Qx,Qy)

py4DSTEM.preprocess.preprocess.bin_data_diffraction(datacube, bin_factor, dtype=None)
Performs diffraction space binning of data by bin_factor.

Parameters
• N (int) – The binning factor

• dtype (a datatype (optional)) – Specify the datatype for the output. If not passed,
the datatype is left unchanged

py4DSTEM.preprocess.preprocess.bin_data_mmap(datacube, bin_factor, dtype=<class 'numpy.float32'>)
Performs diffraction space binning of data by bin_factor.

py4DSTEM.preprocess.preprocess.bin_data_real(datacube, bin_factor)
Performs diffraction space binning of data by bin_factor.

py4DSTEM.preprocess.preprocess.thin_data_real(datacube, thinning_factor)
Reduces data size by a factor of thinning_factor`^2 by skipping every `thinning_factor beam positions in both x
and y.

py4DSTEM.preprocess.preprocess.filter_hot_pixels(datacube, thresh, ind_compare=1,
return_mask=False)

This function performs pixel filtering to remove hot / bright pixels. A mean diffraction pattern is calculated, then
a moving local ordering filter is applied to it, finding and sorting the intensities of the 21 pixels nearest each
pixel (where 21 = (the pixel itself) + (nearest neighbors) + (next nearest neighbors) = (1) + (8) + (12) = 21; the
next nearest neighbors exclude the corners of the NNN square of pixels). This filter then returns a single value
at each pixel given by the N’th highest value of these 21 sorted values, where N is specified by ind_compare.
ind_compare=0 specifies the highest intensity, =1 is the second hightest, etc. Next, a mask is generated which is
True for all pixels which are least a value thresh higher than the local ordering filter output. Thus for the default
ind_compare value of 1, the mask will be True wherever the mean diffraction pattern is higher than the second

1.4. API 97

py4dstem, Release 0.14.14

brightest pixel in it’s local window by at least a value of thresh. Finally, we loop through all diffraction images,
and any pixels defined by mask are replaced by their 3x3 local median.

Parameters
• datacube (DataCube) – The 4D atacube

• thresh (float) – Threshold for replacing hot pixels, if pixel value minus local ordering
filter exceeds it.

• ind_compare (int) – Which median filter value to compare against. 0 = brightest pixel,
1 = next brightest, etc.

• return_mask (bool) – If True, returns the filter mask

Returns
• datacube (Datacube)

• mask (bool) – (optional) the bad pixel mask

py4DSTEM.preprocess.preprocess.median_filter_masked_pixels(datacube, mask, kernel_width: int = 3)
This function fixes a datacube where the same pixels are consistently bad. It requires a mask that identifies all
the bad pixels in the dataset. Then for each diffraction pattern, a median kernel is applied around each bad pixel
with the specified width.

Parameters
• datacube – Datacube to be filtered

• mask – a boolean mask that specifies the bad pixels in the datacube

• (optional) (kernel_width) – specifies the width of the median kernel

Return type
filtered datacube

py4DSTEM.preprocess.preprocess.datacube_diffraction_shift(datacube, xshifts, yshifts, periodic=True,
bilinear=False)

This function shifts each 2D diffraction image by the values defined by (xshifts,yshifts). The shift values can be
scalars (same shift for all images) or arrays with the same dimensions as the probe positions in datacube.

Parameters
• datacube (DataCube) – py4DSTEM DataCube

• xshifts (float) – Array or scalar value for the x dim shifts

• yshifts (float) – Array or scalar value for the y dim shifts

• periodic (bool) – Flag for periodic boundary conditions. If set to false, boundaries are
assumed to be periodic.

• bilinear – Flag for bilinear image shifts. If set to False, Fourier shifting is used.

py4DSTEM.preprocess.preprocess.resample_data_diffraction(datacube, resampling_factor=None,
output_size=None, method='bilinear',
conserve_array_sums=False)

Performs diffraction space resampling of data by resampling_factor or to match output_size.

py4DSTEM.preprocess.preprocess.pad_data_diffraction(datacube, pad_factor=None, output_size=None)
Performs diffraction space padding of data by pad_factor or to match output_size.

98 Chapter 1. Contents

py4dstem, Release 0.14.14

radialbkgrd

Functions for generating radially averaged backgrounds

py4DSTEM.preprocess.radialbkgrd.get_1D_polar_background(data, p_ellipse, center=None,
maskUpdateIter=3,
min_relative_threshold=4,
smoothing=False,
smoothingWindowSize=3,
smoothingPolyOrder=4,
smoothing_log=True,
min_background_value=0.001,
return_polararr=False)

Gets the median polar background for a diffraction pattern

Parameters
• data (ndarray) – the data for which to find the polar eliptical background, usually a

diffraction pattern

• p_ellipse (5-tuple) – the ellipse parameters (qx0,qy0,a,b,theta)

• center (2-tuple or None) – if None, the center point from p_ellipse is used. Oth-
erwise, the center point in p_ellipse is ignored, and this argument is used as (qx0,qy0)
instead.

• maskUpdate_iter (integer) –

• min_relative_threshold (float) –

• smoothing (bool) – if true, applies a Savitzky-Golay smoothing filter

• smoothingWindowSize (integer) – size of the smoothing window, must be odd number

• smoothingPolyOrder (number) – order of the polynomial smoothing to be applied

• smoothing_log (bool) – if true log smoothing is performed

• min_background_value (float) – if log smoothing is true, a zero value will be replaced
with a small nonzero float

• return_polar_arr (bool) – if True the polar transform with the masked high intensity
peaks will be returned

Returns
• background1D: 1D polar elliptical background

• r_bins: the elliptically transformed radius associated with background1D

• polarData (optional): the masked polar transform from which the background is com-
puted, returned iff return_polar_arr==True

Return type
2- or 3-tuple of ndarrays

py4DSTEM.preprocess.radialbkgrd.get_2D_polar_background(data, background1D, r_bins, p_ellipse,
center=None)

Gets 2D polar elliptical background from linear 1D background

Parameters
• data (ndarray) – the data for which to find the polar eliptical background, usually a

diffraction pattern

1.4. API 99

py4dstem, Release 0.14.14

• background1D (ndarray) – a vector representing the radial elliptical background

• r_bins (ndarray) – a vector of the elliptically transformed radius associated with back-
ground1D

• p_ellipse (5-tuple) – the ellipse parameters (qx0,qy0,a,b,theta)

• center (2-tuple or None) – if None, the center point from p_ellipse is used. Oth-
erwise, the center point in p_ellipse is ignored, and this argument is used as (qx0,qy0)
instead.

Returns
2D polar elliptical median background image

Return type
ndarray

utils

py4DSTEM.preprocess.utils.bin2D(array, factor, dtype=<class 'numpy.float64'>)
Bin a 2D ndarray by binfactor.

Parameters
• array (2D numpy array) –

• factor (int) – the binning factor

• dtype (numpy dtype) – datatype for binned array. default is numpy default for np.zeros()

Returns
the binned array

py4DSTEM.preprocess.utils.make_Fourier_coords2D(Nx, Ny, pixelSize=1)

Generates Fourier coordinates for a (Nx,Ny)-shaped 2D array.
Specifying the pixelSize argument sets a unit size.

py4DSTEM.preprocess.utils.get_shifted_ar(ar, xshift, yshift, periodic=True, bilinear=False, device='cpu')

Shifts array ar by the shift vector (xshift,yshift), using the either

the Fourier shift theorem (i.e. with sinc interpolation), or bilinear resampling. Boundary conditions can be
periodic or not.

Parameters
• ar (float) – input array

• xshift (float) – shift along axis 0 (x) in pixels

• yshift (float) – shift along axis 1 (y) in pixels

• periodic (bool) – flag for periodic boundary conditions

• bilinear (bool) – flag for bilinear image shifts

• device – calculation device will be perfomed on. Must be ‘cpu’ or ‘gpu’

py4DSTEM.preprocess.utils.get_maxima_2D(ar, subpixel='poly', upsample_factor=16, sigma=0,
minAbsoluteIntensity=0, minRelativeIntensity=0,
relativeToPeak=0, minSpacing=0, edgeBoundary=1,
maxNumPeaks=1, _ar_FT=None)

Finds the maximal points of a 2D array.

100 Chapter 1. Contents

py4dstem, Release 0.14.14

Parameters
• ar (array) –

• subpixel (str) – specifies the subpixel resolution algorithm to use. must be in
(‘pixel’,’poly’,’multicorr’), which correspond to pixel resolution, subpixel resolution by
fitting a parabola, and subpixel resultion by Fourier upsampling.

• upsample_factor – the upsampling factor for the ‘multicorr’ algorithm

• sigma – if >0, applies a gaussian filter

• maxNumPeaks – the maximum number of maxima to return

• minAbsoluteIntensity – minSpacing, edgeBoundary, maxNumPeaks: filtering ap-
plied after maximum detection and before subpixel refinement

• minRelativeIntensity – minSpacing, edgeBoundary, maxNumPeaks: filtering ap-
plied after maximum detection and before subpixel refinement

• relativeToPeak – minSpacing, edgeBoundary, maxNumPeaks: filtering applied after
maximum detection and before subpixel refinement

:param
[minSpacing, edgeBoundary, maxNumPeaks: filtering applied] after maximum detection and before sub-
pixel refinement

Parameters
_ar_FT (complex array) – None, uses this argument as the Fourier transform of ar, instead
of recomputing it

Returns
a structured array with fields ‘x’,’y’,’intensity’

py4DSTEM.preprocess.utils.filter_2D_maxima(maxima, minAbsoluteIntensity=0, minRelativeIntensity=0,
relativeToPeak=0, minSpacing=0, edgeBoundary=1,
maxNumPeaks=1)

Parameters
• maxima – a numpy structured array with fields ‘x’, ‘y’, ‘intensity’

• minAbsoluteIntensity – delete counts with intensity below this value

• minRelativeIntensity – delete counts with intensity below this value times the inten-
sity of the i’th peak, where i is given by relativeToPeak

• relativeToPeak – see above

• minSpacing – if two peaks are within this euclidean distance from one another, delete
the less intense of the two

• edgeBoundary – delete peaks within this distance of the image edge

• maxNumPeaks – an integer. defaults to 1

Returns
a numpy structured array with fields ‘x’, ‘y’, ‘intensity’

py4DSTEM.preprocess.utils.linear_interpolation_2D(ar, x, y)
Calculates the 2D linear interpolation of array ar at position x,y using the four nearest array elements.

1.4. API 101

py4dstem, Release 0.14.14

1.4.5 process

Table of Contents

• process

– calibration

– classification

– diffraction

– diskdetection

– fit

– latticevectors

– phase

– probe

– rdf

– utils

– virtualdiffraction

– virtualimage

– wholepatternfit

calibration

Functions related to elliptical calibration, such as fitting elliptical distortions.

The user-facing representation of ellipses is in terms of the following 5 :param x0: :param y0 the center of the ellipse:
:param a the semimajor axis length: :param b the semiminor axis length: :param theta the: to the x-axis, in radians
:type theta the: positive, right handed

More details about the elliptical parameterization used can be found in the module docstring for pro-
cess/utils/elliptical_coords.py.

py4DSTEM.process.calibration.ellipse.fit_ellipse_1D(ar, center=None, fitradii=None, mask=None)
For a 2d array ar, fits a 1d elliptical curve to the data inside an annulus centered at center with inner and outer
radii at fitradii. The data to fit make optionally be additionally masked with the boolean array mask. See module
docstring for more info.

Parameters
• ar (ndarray) – array containing the data to fit

• center (2-tuple of floats) – the center (x0,y0) of the annular fitting region

• fitradii (2-tuple of floats) – inner and outer radii (ri,ro) of the fit region

• mask (ar-shaped ndarray of bools) – ignore data wherever mask==True

Returns
A 5-tuple containing the ellipse parameters:

• x0: the center x-position

102 Chapter 1. Contents

py4dstem, Release 0.14.14

• y0: the center y-position

• a: the semimajor axis length

• b: the semiminor axis length

• theta: the tilt of the ellipse semimajor axis with respect to the x-axis, in radians

Return type
(5-tuple of floats)

py4DSTEM.process.calibration.ellipse.ellipse_err(p, x, y, val)
For a point (x,y) in a 2d cartesian space, and a function taking the value val at point (x,y), and some 1d ellipse
in this space given by

A(x-x0)^2 + B(x-x0)(y-y0) + C(y-y0)^2 = 1

this function computes the error associated with the function’s value at (x,y) given by its deviation from the
ellipse times val.

Note that this function is for internal use, and uses ellipse parameters p given in canonical form (x0,y0,A,B,C),
which is different from the ellipse parameterization used in all the user-facing functions, for reasons of numerical
stability.

py4DSTEM.process.calibration.ellipse.fit_ellipse_amorphous_ring(data, center, fitradii, p0=None,
mask=None)

Fit the amorphous halo of a diffraction pattern, including any elliptical distortion.

The fit function is:

f(x,y; I0,I1,sigma0,sigma1,sigma2,c_bkgd,x0,y0,A,B,C) =
Norm(r; I0,sigma0,0) +
Norm(r; I1,sigma1,R)*Theta(r-R)
Norm(r; I1,sigma2,R)*Theta(R-r) + c_bkgd

where

• (x,y) are cartesian coordinates,

• r is the radial coordinate,

• (I0,I1,sigma0,sigma1,sigma2,c_bkgd,x0,y0,R,B,C) are parameters,

• Norm(x;I,s,u) is a gaussian in the variable x with maximum amplitude I, standard deviation s, and mean u

• Theta(x) is a Heavyside step function

• R is the radial center of the double sided gaussian, derived from (A,B,C) and set to the mean of the semiaxis
lengths

The function thus contains a pair of gaussian-shaped peaks along the radial direction of a polar-elliptical
parametrization of a 2D plane. The first gaussian is centered at the origin. The second gaussian is centered
about some finite R, and is ‘two-faced’: it’s comprised of two half-gaussians of different standard deviations,
stitched together at their mean value of R. This Janus (two-faced ;p) gaussian thus comprises an elliptical ring
with different inner and outer widths.

The parameters of the fit function are

• I0: the intensity of the first gaussian function

• I1: the intensity of the Janus gaussian

• sigma0: std of first gaussian

• sigma1: inner std of Janus gaussian

1.4. API 103

py4dstem, Release 0.14.14

• sigma2: outer std of Janus gaussian

• c_bkgd: a constant offset

• x0,y0: the origin

• A,B,C: The ellipse parameters, in the form Ax^2 + Bxy + Cy^2 = 1

Parameters
• data (2d array) – the data

• center (2-tuple of numbers) – the center (x0,y0)

• fitradii (2-tuple of numbers) – the inner and outer radii of the fitting annulus

• p0 (11-tuple) – initial guess parameters. If p0 is None, the function will compute a
guess at all parameters. If p0 is a 11-tuple it must be populated by some mix of num-
bers and None; any parameters which are set to None will be guessed by the func-
tion. The parameters are the 11 parameters of the fit function described above, p0 =
(I0,I1,sigma0,sigma1,sigma2,c_bkgd,x0,y0,A,B,C). Note that x0,y0 are redundant; their
guess values are the x0,y0 values passed to the main function, but if they are passed as
elements of p0 these will take precendence.

• mask (2d array of bools) – only fit to datapoints where mask is True

Returns
Returns a 2-tuple.

The first element is the ellipse parameters need to elliptically parametrize diffraction space,
and is itself a 5-tuple:

• x0: x center

• y0: y center,

• a: the semimajor axis length

• b: the semiminor axis length

• theta: tilt of a-axis w.r.t x-axis, in radians

The second element is the full set of fit parameters to the double sided gaussian function,
described above, and is an 11-tuple

Return type
(2-tuple comprised of a 5-tuple and an 11-tuple)

py4DSTEM.process.calibration.ellipse.double_sided_gaussian_fiterr(p, x, y, val)
Returns the fit error associated with a point (x,y) with value val, given parameters p.

py4DSTEM.process.calibration.ellipse.double_sided_gaussian(p, x, y)
Return the value of the double-sided gaussian function at point (x,y) given parameters p, described in detail in
the fit_ellipse_amorphous_ring docstring.

py4DSTEM.process.calibration.ellipse.constrain_degenerate_ellipse(data, p_ellipse, r_inner,
r_outer, phi_known, fitrad=6)

When fitting an ellipse to data containing 4 diffraction spots in a narrow annulus about the central beam, the
answer is degenerate: an infinite number of ellipses correctly fit this data. Starting from one ellipse in the
degenerate family of ellipses, this function selects the ellipse which will yield a final angle of phi_known between
a pair of the diffraction peaks after performing elliptical distortion correction.

104 Chapter 1. Contents

py4dstem, Release 0.14.14

Note that there are two possible angles which phi_known might refer to, because the angle of interest is well
defined up to a complementary angle. This function is written such that phi_known should be the smaller of
these two angles.

Parameters
• data (ndarray) –

• p_ellipse (5-tuple) – the ellipse parameters (x0,y0,a,b,theta)

• r_inner (float) – the fitting annulus inner radius

• r_outer (float) – the fitting annulus outer radius

• phi_known (float) – the known angle between a pair of diffraction peaks, in radians

• fitrad (float) – the region about the fixed data point used to refine its position

Returns
A 2-tuple containing:

• a_constrained: (float) the first semiaxis of the selected ellipse

• b_constrained: (float) the second semiaxis of the selected ellipse

Return type
(2-tuple)

py4DSTEM.process.calibration.origin.fit_origin(data, mask=None, fitfunction='plane', returnfitp=False,
robust=False, robust_steps=3, robust_thresh=2)

Fits the position of the origin of diffraction space to a plane or parabola, given some 2D arrays
(qx0_meas,qy0_meas) of measured center positions, optionally masked by the Boolean array mask. The 2D
data arrays may be passed directly as a 2-tuple to the arg data, or, if data is either a DataCube or Calibration
instance, they will be retreived automatically. If a DataCube or Calibration are passed, fitted origin and residuals
are stored there directly.

Parameters
• data (2-tuple of 2d arrays) – the measured origin position (qx0,qy0)

• mask (2b boolean array, optional) – ignore points where mask=False

• fitfunction (str, optional) – must be ‘plane’ or ‘parabola’ or ‘bezier_two’ or ‘con-
stant’

• returnfitp (bool, optional) – if True, returns the fit parameters

• robust (bool, optional) – If set to True, fit will be repeated with outliers removed.

• robust_steps (int, optional) – Optional parameter. Number of robust iterations
performed after initial fit.

• robust_thresh (int, optional) – Threshold for including points, in units of root-
mean-square (standard deviations) error of the predicted values after fitting.

Returns
Return value depends on returnfitp. If returnfitp==False (default), returns a 4-tuple con-
taining:

• qx0_fit: (ndarray) the fit origin x-position

• qy0_fit: (ndarray) the fit origin y-position

• qx0_residuals: (ndarray) the x-position fit residuals

1.4. API 105

py4dstem, Release 0.14.14

• qy0_residuals: (ndarray) the y-position fit residuals

If returnfitp==True, returns a 2-tuple. The first element is the 4-tuple described above.
The second element is a 4-tuple (popt_x,popt_y,pcov_x,pcov_y) giving fit parameters and co-
variance matrices with respect to the chosen fitting function.

Return type
(variable)

py4DSTEM.process.calibration.origin.get_origin_single_dp(dp, r, rscale=1.2)
Find the origin for a single diffraction pattern, assuming (a) there is no beam stop, and (b) the center beam
contains the highest intensity.

Parameters
• dp (ndarray) – the diffraction pattern

• r (number) – the approximate disk radius

• rscale (number) – factor by which r is scaled to generate a mask

Returns
The origin

Return type
(2-tuple)

py4DSTEM.process.calibration.origin.get_origin(datacube, r=None, rscale=1.2, dp_max=None,
mask=None, fast_center=False)

Find the origin for all diffraction patterns in a datacube, assuming (a) there is no beam stop, and (b) the center
beam contains the highest intensity. Stores the origin positions in the Calibration associated with datacube, and
optionally also returns them.

Parameters
• datacube (DataCube) – the data

• r (number or None) – the approximate radius of the center disk. If None (default), tries
to compute r using the get_probe_size method. The data used for this is controlled by
dp_max.

• rscale (number) – expand ‘r’ by this amount to form a mask about the center disk when
taking its center of mass

• dp_max (ndarray or None) – the diffraction pattern or dp-shaped array used to compute
the center disk radius, if r is left unspecified. Behavior depends on type:

– if dp_max==None (default), computes and uses the maximal diffraction pattern. Note
that for a large datacube, this may be a slow operation.

– otherwise, this should be a (Q_Nx,Q_Ny) shaped array

• mask (ndarray or None) – if not None, should be an (R_Nx,R_Ny) shaped boolean ar-
ray. Origin is found only where mask==True, and masked arrays are returned for qx0,qy0

• fast_center – (bool) Skip the center of mass refinement step.

Returns
the origin, (x,y) at each scan position

Return type
(2-tuple of (R_Nx,R_Ny)-shaped ndarrays)

106 Chapter 1. Contents

py4dstem, Release 0.14.14

py4DSTEM.process.calibration.origin.get_origin_friedel(datacube: DataCube, mask=None,
upsample_factor=1, device='cpu',
return_cpu=True)

Fit the origin for each diffraction pattern, with or without a beam stop. The method we have developed here is a
heavily modified version of masked cross correlation, where we use Friedel symmetry of the diffraction pattern
to find the common center.

More details about how the correlation step can be found in: https://doi.org/10.1109/TIP.2011.2181402

Parameters
• datacube ((DataCube)) – The 4D dataset.

• mask ((np array, optional)) – Boolean mask which is False under the beamstop and
True in the diffraction pattern. One approach to generating this mask is to apply a suitable
threshold on the average diffraction pattern and use binary opening/closing to remove any
holes. If no mask is provided, this method will likely not work with a beamstop.

• upsample_factor ((int)) – Upsample factor for subpixel fitting of the image shifts.

• device (string) – ‘cpu’ or ‘gpu’ to select device

• return_cpu (bool) – Return arrays on cpu.

Returns
(tuple of np arrays) measured center position of each diffraction pattern

Return type
qx0, qy0

py4DSTEM.process.calibration.probe.get_probe_size(DP, thresh_lower=0.01, thresh_upper=0.99,
N=100)

Gets the center and radius of the probe in the diffraction plane.

The algorithm is as follows: First, create a series of N binary masks, by thresholding the diffraction pattern DP
with a linspace of N thresholds from thresh_lower to thresh_upper, measured relative to the maximum intensity
in DP. Using the area of each binary mask, calculate the radius r of a circular probe. Because the central disk is
typically very intense relative to the rest of the DP, r should change very little over a wide range of intermediate
values of the threshold. The range in which r is trustworthy is found by taking the derivative of r(thresh) and
finding identifying where it is small. The radius is taken to be the mean of these r values. Using the threshold
corresponding to this r, a mask is created and the CoM of the DP times this mask it taken. This is taken to be the
origin x0,y0.

Parameters
• DP (2D array) – the diffraction pattern in which to find the central disk. A position

averaged, or shift-corrected and averaged, DP works best.

• thresh_lower (float, 0 to 1) – the lower limit of threshold values

• thresh_upper (float, 0 to 1) – the upper limit of threshold values

• N (int) – the number of thresholds / masks to use

Returns
A 3-tuple containing:

• r: (float) the central disk radius, in pixels

• x0: (float) the x position of the central disk center

• y0: (float) the y position of the central disk center

1.4. API 107

https://doi.org/10.1109/TIP.2011.2181402

py4dstem, Release 0.14.14

Return type
(3-tuple)

py4DSTEM.process.calibration.qpixelsize.get_Q_pixel_size(q_meas, q_known, units='A')
Computes the size of the Q-space pixels.

Parameters
• q_meas (number) – a measured distance in q-space in pixels

• q_known (number) – the corresponding known real space distance

• unit (str) – the units of the real space value of q_known

Returns
the detector pixel size, the associated units

Return type
(number,str)

py4DSTEM.process.calibration.qpixelsize.get_dq_from_indexed_peaks(qs, hkl, a)
Get dq, the size of the detector pixels in the diffraction plane, in inverse length units, using a set of measured
peak distances from the optic axis, their Miller indices, and the known unit cell size.

Parameters
• qs (array) – the measured peak positions

• hkl (list/tuple of length-3 tuples) – the Miller indices of the peak positions
qs. The length of qs and hkl must be the same. To ignore any peaks, for this peak set
(h,k,l)=(0,0,0).

• a (number) – the unit cell size

Returns
A 4-tuple containing:

• dq: (number) the detector pixel size

• qs_fit: (array) the fit positions of the peaks

• hkl_fit: (list/tuple of length-3 tuples) the Miller indices of the fit peaks

• mask: (array of bools) False wherever hkl[i]==(0,0,0)

Return type
(4-tuple)

py4DSTEM.process.calibration.rotation.compare_QR_rotation(im_R, im_Q, QR_rotation, R_rotation=0,
R_position=None, Q_position=None,
R_pos_anchor='center',
Q_pos_anchor='center', R_length=0.33,
Q_length=0.33, R_width=0.001,
Q_width=0.001,
R_head_length_adjust=1,
Q_head_length_adjust=1,
R_head_width_adjust=1,
Q_head_width_adjust=1, R_color='r',
Q_color='r', figsize=(10, 5),
returnfig=False)

Visualize a rotational offset between an image in real space, e.g. a STEM virtual image, and an image in diffrac-
tion space, e.g. a defocused CBED shadow image of the same region, by displaying an arrow overlaid over each

108 Chapter 1. Contents

py4dstem, Release 0.14.14

of these two images with the specified QR rotation applied. The QR rotation is defined as the counter-clockwise
rotation from real space to diffraction space, in degrees.

Parameters
• im_R (numpy array or other 2D image-like object (e.g. a
VirtualImage)) – A real space image, e.g. a STEM virtual image

• im_Q (numpy array or other 2D image-like object) – A diffraction space im-
age, e.g. a defocused CBED image

• QR_rotation (number) – The counterclockwise rotation from real space to diffraction
space, in degrees

• R_rotation (number) – The orientation of the arrow drawn in real space, in degrees

• R_position (None or 2-tuple) – The position of the anchor point for the R-space
arrow. If None, defaults to the center of the image

• Q_position (None or 2-tuple) – The position of the anchor point for the Q-space
arrow. If None, defaults to the center of the image

• R_pos_anchor ('center' or 'tail' or 'head') – The anchor point for the R-space ar-
row, i.e. the point being specified by the R_position parameter

• Q_pos_anchor ('center' or 'tail' or 'head') – The anchor point for the Q-space ar-
row, i.e. the point being specified by the Q_position parameter

• R_length (number or None) – The length of the R-space arrow, as a fraction of the
mean size of the image

• Q_length (number or None) – The length of the Q-space arrow, as a fraction of the
mean size of the image

• R_width (number) – The width of the R-space arrow

• Q_width (number) – The width of the R-space arrow

• R_head_length_adjust (number) – Scaling factor for the R-space arrow head length

• Q_head_length_adjust (number) – Scaling factor for the Q-space arrow head length

• R_head_width_adjust (number) – Scaling factor for the R-space arrow head width

• Q_head_width_adjust (number) – Scaling factor for the Q-space arrow head width

• R_color (color) – Color of the R-space arrow

• Q_color (color) – Color of the Q-space arrow

• figsize (2-tuple) – The figure size

• returnfig (bool) – Toggles returning the figure and axes

py4DSTEM.process.calibration.rotation.get_Qvector_from_Rvector(vx, vy, QR_rotation)
For some vector (vx,vy) in real space, and some rotation QR between real and reciprocal space, determine the
corresponding orientation in diffraction space. Returns both R and Q vectors, normalized.

Parameters
• vx (numbers) – the (x,y) components of a real space vector

• vy (numbers) – the (x,y) components of a real space vector

• QR_rotation (number) – the offset angle between real and reciprocal space.

• Specifically –

1.4. API 109

py4dstem, Release 0.14.14

• to (the counterclockwise rotation of real space with respect) –

• degrees. (diffraction space. In) –

Returns
4-tuple consisting of:

• vx_R: the x component of the normalized real space vector

• vy_R: the y component of the normalized real space vector

• vx_Q: the x component of the normalized reciprocal space vector

• vy_Q: the y component of the normalized reciprocal space vector

Return type
(4-tuple)

py4DSTEM.process.calibration.rotation.get_Rvector_from_Qvector(vx, vy, QR_rotation)
For some vector (vx,vy) in diffraction space, and some rotation QR between real and reciprocal space, determine
the corresponding orientation in diffraction space. Returns both R and Q vectors, normalized.

Parameters
• vx (numbers) – the (x,y) components of a reciprocal space vector

• vy (numbers) – the (x,y) components of a reciprocal space vector

• QR_rotation (number) – the offset angle between real and reciprocal space. Specifically,
the counterclockwise rotation of real space with respect to diffraction space. In degrees.

Returns
4-tuple consisting of:

• vx_R: the x component of the normalized real space vector

• vy_R: the y component of the normalized real space vector

• vx_Q: the x component of the normalized reciprocal space vector

• vy_Q: the y component of the normalized reciprocal space vector

Return type
(4-tuple)

classification

class py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification(braggpeaks,
Qx,
Qy,
X_is_boolean=True,
max_dist=None)

A class for classifying 4D-STEM data based on which Bragg peaks are found at each diffraction pattern.

A BraggVectorClassification instance enables classification using several methods; a brief overview is provided
here, with more details in each individual method’s documentation.

Initialization methods:

__init__:
Determine the initial classes. The approach here involves first segmenting diffraction space,
using maxima of a Bragg vector map.

110 Chapter 1. Contents

py4dstem, Release 0.14.14

get_initial_classes_by_cooccurrence:

Class refinement methods: Each of these methods creates a new set of candidate classes, but does not yet over-
write the old classes. This enables the new classes to be viewed and compared to the old classes before deciding
whether to accept or reject them. Thus running two of these methods in succession, without accepting changes
in between, simply discards the first set of candidate classes.

nmf:
Nonnegative matrix factorization (X = WH) to refine the classes. Briefly, after constructing
a matrix X which describes which Bragg peaks were observed in each diffraction pattern, we
factor X into two smaller matrices, W and H. Physically, W and H describe a small set of
classes, each of which corresponds to some subset of (or, more strictly, weights for) the Bragg
peaks and the scan positions. We additionally impose the contraint that, on physical grounds,
all the elements of X, W, and H must be nonnegative.

split:
If any classes contain multiple non-contiguous segments in real space, divide these into distinct
classes.

merge:
If any classes contain sufficient overlap in both scan positions and BPs, merge them into a
single class.

Accepting/rejecting changes:

accept:
Updates classes (the W and H matrices) with the current candidate classes.

reject:
Discard the current candidate classes.

Class examination methods:

get_class:
get a single class, returning both its BP weights and scan position weights

get_class_BPs:
get the BP weights for a single class

get_class_image:
get the image, i.e. scan position weights, associated with a single class

get_candidate_class:
as above, for the current candidate class

get_candidate_class_BPs:
as above, for the current candidate class

get_candidate_class_image:
as above, for the current candidate class

Parameters
• braggpeaks (PointListArray) – Bragg peaks; must have coords ‘qx’ and ‘qy’

• Qx (ndarray of floats) – x-coords of the voronoi points

• Qy (ndarray of floats) – y-coords of the voronoi points

• X_is_boolean (bool) – if True, populate X with bools (BP is or is not present). if False,
populate X with floats (BP c.c. intensities)

1.4. API 111

py4dstem, Release 0.14.14

• max_dist (None or number) – maximum distance from a given voronoi point a peak
can be and still be associated with this label

__init__(braggpeaks, Qx, Qy, X_is_boolean=True, max_dist=None)
Initializes a BraggVectorClassification instance.

This method: 1. Gets integer labels for all of the detected Bragg peaks, according to which

(Qx,Qy) is closest, then generating a corresponding set of integers for each scan position. See
get_braggpeak_labels_by_scan_position() docstring for more info.

2. Generates the data matrix X. See the nmf() method docstring for more info.

This method should be followed by one of the methods which populates the initial classes - currently, either
get_initial_classes_by_cooccurrence() or get_initial_classes_from_images. These methods generate the
W and H matrices – i.e. the decompositions of the X matrix in terms of scan positions and Bragg peaks –
which are necessary for any subsequent processing.

Parameters
• braggpeaks (PointListArray) – Bragg peaks; must have coords ‘qx’ and ‘qy’

• Qx (ndarray of floats) – x-coords of the voronoi points

• Qy (ndarray of floats) – y-coords of the voronoi points

• X_is_boolean (bool) – if True, populate X with bools (BP is or is not present). if
False, populate X with floats (BP c.c. intensities)

• max_dist (None or number) – maximum distance from a given voronoi point a
peak can be and still be associated with this label

R_Nx

shape of real space (x)

R_Ny

shape of real space (y)

Qx

x-coordinates of the voronoi points

Qy

y-coordinates of the voronoi points

braggpeak_labels

the sets of Bragg peaks present at each scan position

N_feat

first dimension of the data matrix; the number of bragg peaks

N_meas

second dimension of the data matrix; the number of scan positions

X

the data matrix

get_initial_classes_by_cooccurrence(thresh=0.3, BP_fraction_thresh=0.1, max_iterations=200,
X_is_boolean=True, n_corr_init=2)

112 Chapter 1. Contents

py4dstem, Release 0.14.14

Populate the initial classes by finding sets of Bragg peaks that tend to co-occur in the same diffraction
patterns.

Beginning from the sets of Bragg peaks labels for each scan position (determined in __init__), this
method gets initial classes by determining which labels are most likely to co-occur with each other –
see get_initial_classes() docstring for more info. Then the matrices W and H are generated – see nmf()
doscstring for discussion.

Parameters
• thresh (float in [0,1]) – threshold for adding new BPs to a class

• BP_fraction_thresh (float in [0,1]) – algorithm terminates if fewer than this
fraction of the BPs have not been assigned to a class

• max_iterations (int) – algorithm terminates after this many iterations

• n_corr_init (int) – seed new classes by finding maxima of the n-point joint prob-
ability function. Must be 2 or 3.

get_initial_classes_from_images(class_images)
Populate the initial classes using a set of user-defined class images.

Parameters
class_images (ndarray) – must have shape (R_Nx,R_Ny,N_c), where N_c is the num-
ber of classes, and class_images[:,:,i] is the image of class i.

nmf(max_iterations=1)
Nonnegative matrix factorization to refine the classes.

The data matrix X is factored into two smaller matrices, W and H:

X = WH

Here,

• ``X``is the data matrix. It has shape (N_feat,N_meas), where N_feat is the number of Bragg peak
integer labels (i.e. len(Qx)) and N_meas is the number of diffraction patterns (i.e. R_Nx*R_Ny).
Element X[i,j] represents the value of the i’th BP in the j’th DP. The values depend on the flag
datamatrix_is_boolean: if True, X[i,j] is 1 if this BP was present in this DP, or 0 if not; if False, X[i,j]
is the cross correlation intensity of this BP in this DP.

• W is the class matrix. It has shape (N_feat,N_c), where N_c is the number of classes. The i’th column
vector, w_i = W[:,i], describes the weight of each Bragg peak in the i’th class. w_i has length N_feat,
and w_i[j] describes how strongly the j’th BP is associated with the i’th class.

• H is the coefficient matrix. It has shape (N_c,N_meas). The i’th column vector H[:,i] describes the
contribution of each class to scan position i.

Alternatively, we can completely equivalently think of H as a class matrix, and W as a coeffient matrix.
In this picture, the i’th row vector of H, h_i = H[i,:], describes the weight of each scan position in the i’th
class. h_i has length N_meas, and h_i[j] describes how strongly the j’th scan position is associated with
the i’th class. The row vector W[i,:] is then a coefficient vector, which gives the contributions each of the
(H) classes to the measured values of the i’th BP. These pictures are related by a transpose: X = WH is
equivalent to X.T = (H.T)(W.T).

In nonnegative matrix factorization we impose the constrain, here on physical grounds, that all elements
of X, W, and H should be nonnegative.

1.4. API 113

py4dstem, Release 0.14.14

The computation itself is performed using the sklearn nmf class. When this method is called, the three
relevant matrices should already be defined. This method refines W and H, with up to max_iterations NMF
steps.

Parameters
max_iterations (int) – the maximum number of NMF steps to take

split(sigma=2, threshold_split=0.25, expand_mask=1, minimum_pixels=1)
If any classes contain multiple non-contiguous segments in real space, divide these regions into distinct
classes.

Algorithm is as follows: First, an image of each class is obtained from its scan position weights. Then,
the image is convolved with a gaussian of std sigma. This is then turned into a binary mask, by thresh-
olding with threshold_split. Stray pixels are eliminated by performing a one pixel binary closing, then
binary opening. The mask is then expanded by expand_mask pixels. Finally, the contiguous regions of the
resulting mask are found. These become the new class components by scan position.

The splitting itself involves creating two classes - i.e. adding a column to W and a row to H. The new BP
classes (W columns) have exactly the same values as the old BP class. The two new scan position classes
(H rows) divide up the non-zero entries of the old scan position class into two or more non-intersecting
subsets, each of which becomes its own new class.

Parameters
• sigma (float) – std of gaussian kernel used to smooth the class images before thresh-

olding and splitting.

• threshold_split (float) – used to threshold the class image to create a binary
mask.

• expand_mask (int) – number of pixels by which to expand the mask before separating
into contiguous regions.

• minimum_pixels (int) – if, after splitting, a potential new class contains fewer than
this number of pixels, ignore it

merge(threshBPs=0.1, threshScanPosition=0.1, return_params=True)
If any classes contain sufficient overlap in both scan positions and BPs, merge them into a single class.

The algorithm is as follows: First, the Pearson correlation coefficient matrix is calculated for the classes
according to both their diffraction space, Bragg peak representations (i.e. the correlations of the columns
of W) and according to their real space, scan position representations (i.e. the correlations of the rows of
H). Class pairs whose BP correlation coefficient exceeds threshBPs and whose scan position correlation
coefficient exceed threshScanPosition are deemed ‘sufficiently overlapped’, and are marked as merge can-
didates. To account for intransitivity issues (e.g. class pairs 1/2 and 2/3 are merge candidates, but class
pair 1/3 is not), merging is then performed beginning with candidate pairs with the greatest product of the
two correlation coefficients, skipping later merge candidate pairs if one of the two classes has already been
merged.

The algorithm can be looped until no more merge candidates satisfying the specified thresholds remain
with the merge_iterative method.

The merging itself involves turning two classes into one by combining a pair of W columns (i.e. the BP
representations of the classes) and the corresponding pair of H rows (i.e. the scan position representation
of the class) into a single W column / H row. In terms of scan positions, the new row of H is generated by
simply adding the two old H rows. In terms of Bragg peaks, the new column of W is generated by adding
the two old columns of W, while weighting each by its total intensity in real space (i.e. the sum of its H
row).

Parameters

114 Chapter 1. Contents

py4dstem, Release 0.14.14

• threshBPs (float) – the threshold for the bragg peaks correlation coefficient, above
which the two classes are considered candidates for merging

• threshScanPosition (float) – the threshold for the scan position correlation co-
efficient, above which two classes are considered candidates for merging

• return_params (bool) – if True, returns W_corr, H_corr, and merge_candidates.
Otherwise, returns nothing. Incompatible with iterative=True.

merge_by_class_index(i, j)
Merge classes i and j into a single class.

Columns i and j of W pair of W (i.e. the BP representations of the classes) and the corresponding pair
of H rows (i.e. the scan position representation of the class) are mergedinto a single W column / H row.
In terms of scan positions, the new row of H is generated by simply adding the two old H rows. In terms
of Bragg peaks, the new column of W is generated by adding the two old columns of W, while weighting
each by its total intensity in real space (i.e. the sum of its H row).

Parameters
• i (int) – index of the first class to merge

• j (int) – index of the second class to merge

split_by_class_index(i, sigma=2, threshold_split=0.25, expand_mask=1, minimum_pixels=1)
If class i contains multiple non-contiguous segments in real space, divide these regions into distinct classes.

Algorithm is as described in the docstring for self.split.

Parameters
• i (int) – index of the class to split

• sigma (float) – std of gaussian kernel used to smooth the class images before thresh-
olding and splitting.

• threshold_split (float) – used to threshold the class image to create a binary
mask.

• expand_mask (int) – number of pixels by which to expand the mask before separating
into contiguous regions.

• minimum_pixels (int) – if, after splitting, a potential new class contains fewer than
this number of pixels, ignore it

remove_class(i)
Remove class i.

Parameters
i (int) – index of the class to remove

merge_iterative(threshBPs=0.1, threshScanPosition=0.1)
If any classes contain sufficient overlap in both scan positions and BPs, merge them into a single class.

Identical to the merge method, with the addition of iterating until no new merge pairs are found.

Parameters
• threshBPs (float) – the threshold for the bragg peaks correlation coefficient, above

which the two classes are considered candidates for merging

• threshScanPosition (float) – the threshold for the scan position correlation co-
efficient, above which two classes are considered candidates for merging

1.4. API 115

py4dstem, Release 0.14.14

accept()

Updates classes (the W and H matrices) with the current candidate classes.

reject()

Discard the current candidate classes.

get_class(i)
Get a single class, returning both its BP weights and scan position weights.

Parameters
i (int) – the class index

Returns
A 2-tuple containing:

• class_BPs: (length N_feat array of floats) the weights of the N_feat Bragg peaks for
this class

• class_image: (shape (R_Nx,R_Ny) array of floats) the weights of each scan position
in this class

Return type
(2-tuple)

get_class_BPs(i)
Get a single class, returning its BP weights.

Parameters
i (int) – the class index

Returns
the weights of the N_feat Bragg peaks for this class

Return type
(length N_feat array of floats)

get_class_image(i)
Get a single class, returning its scan position weights.

Parameters
i (int) – the class index

Returns
the weights of each scan position in this class

Return type
(shape (R_Nx,R_Ny) array of floats)

get_candidate_class(i)
Get a single candidate class, returning both its BP weights and scan position weights.

Parameters
i (int) –

Returns
A 2-tuple containing:

• class_BPs: (length N_feat array of floats) the weights of the N_feat Bragg peaks for
this class

• class_image: (shape (R_Nx,R_Ny) array of floats) the weights of each scan position
in this class

116 Chapter 1. Contents

py4dstem, Release 0.14.14

Return type
(2-tuple)

get_candidate_class_BPs(i)
Get a single candidate class, returning its BP weights.

Accepts:
i (int) the class index

Returns
class_BPs (length N_feat array of floats) the weights of the N_feat Bragg peaks for

this class

get_candidate_class_image(i)
Get a single candidate class, returning its scan position weights.

Parameters
i (int) – the class index

Returns
the weights of each scan position in this class

Return type
(shape (R_Nx,R_Ny) array of floats)

py4DSTEM.process.classification.braggvectorclassification.get_braggpeak_labels_by_scan_position(braggpeaks,
Qx,
Qy,
max_dist=None)

For each scan position, gets a set of integers, specifying the bragg peaks at this scan position.

From a set of positions in diffraction space (Qx,Qy), assign each detected bragg peak in the PointListArray
braggpeaks a label corresponding to the index of the closest position; thus for a bragg peak at (qx,qy), if the
closest position in (Qx,Qy) is (Qx[i],Qy[i]), assign this peak the label i. This is equivalent to assigning each
bragg peak (qx,qy) a label according to the Voronoi region it lives in, given a voronoi tesselation seeded from
the points (Qx,Qy).

For each scan position, get the set of all indices i for all bragg peaks found at this scan position.

Parameters
• braggpeaks (PointListArray) – Bragg peaks; must have coords ‘qx’ and ‘qy’

• Qx (ndarray of floats) – x-coords of the voronoi points

• Qy (ndarray of floats) – y-coords of the voronoi points

• max_dist (None or number) – maximum distance from a given voronoi point a peak
can be and still be associated with this label

Returns
(list of lists of sets) the labels found at each scan position. Scan position (Rx,Ry) is accessed
via braggpeak_labels[Rx][Ry]

py4DSTEM.process.classification.braggvectorclassification.get_initial_classes(braggpeak_labels,
N , thresh=0.3,
BP_fraction_thresh=0.1,
max_iterations=200,
n_corr_init=2)

1.4. API 117

py4dstem, Release 0.14.14

From the sets of Bragg peaks present at each scan position, get an initial guess classes at which Bragg peaks
should be grouped together into classes.

The algorithm is as follows: 1. Calculate an n-point correlation function, i.e. the joint probability of any given n
BPs coexisting in a diffraction pattern. n is controlled by n_corr_init, and must be 2 or 3. peaks i, j, and k are all
in the same DP. 2. Find the BP triplet maximizing the 3-point function; include these three BPs in a class. 3. Get
all DPs containing the class BPs. From these, find the next most likely BP to also be present. If its probability
of coexisting with the known class BPs is greater than thresh, add it to the class and repeat this step. Otherwise,
proceed to the next step. 4. Check: if the new class is the same as a class that has already been found, OR
if the fraction of BPs which have not yet been placed in a class is less than BP_fraction_thresh, or more than
max_iterations have been attempted, finish, returning all classes. Otherwise, set all slices of the 3-point function
containing the BPs in the new class to zero, and begin a new iteration, starting at step 2 using the new, altered
3-point function.

Parameters
• N (int) – the total number of indexed Bragg peaks in the 4D-STEM dataset

• braggpeak_labels (list of lists of sets) – the Bragg peak labels found at each
scan position; see get_braggpeak_labels_by_scan_position().

• thresh (float in [0,1]) – threshold for adding new BPs to a class

• BP_fraction_thresh (float in [0,1]) – algorithm terminates if fewer than this
fraction of the BPs have not been assigned to a class

• max_iterations (int) – algorithm terminates after this many iterations

• n_corr_init (int) – seed new classes by finding maxima of the n-point joint probability
function. Must be 2 or 3.

Returns
the sets of Bragg peaks constituting the classes

Return type
(list of sets)

py4DSTEM.process.classification.classutils.get_class_DP(datacube, class_image, thresh=0.01,
xshifts=None, yshifts=None, darkref=None,
intshifts=True)

Get the average diffraction pattern for the class described in real space by class_image.

Parameters
• datacube (DataCube) – a datacube

• class_image (2D array) – the weight of the class at each position in real space

• thresh (float) – only include diffraction patterns for scan positions with a value greater
than or equal to thresh in class_image

• xshifts (2D array, or None) – the x diffraction shifts at each real space pixel. If
None, no shifting is performed.

• yshifts (2D array, or None) – the y diffraction shifts at each real space pixel. If
None, no shifting is performed.

• darkref (2D array, or None) – background to remove from each diffraction pattern

• intshifts (bool) – if True, round shifts to the nearest integer to speed up computation

Returns
the average diffraction pattern for the class

118 Chapter 1. Contents

py4dstem, Release 0.14.14

Return type
(2D array)

py4DSTEM.process.classification.classutils.get_class_DP_without_Bragg_scattering(datacube,
class_image,
bragg-
peaks,
radius, x0,
y0,
thresh=0.01,
xshifts=None,
yshifts=None,
dark-
ref=None,
intshifts=True)

Get the average diffraction pattern, removing any Bragg scattering, for the class described in real space by
class_image.

Bragg scattering is eliminated by masking circles of size radius about each of the detected peaks in braggpeaks in
each diffraction pattern before adding to the average image. Importantly, braggpeaks refers to the peak positions
in the raw data - i.e. BEFORE any shift correction is applied. Passing shifted Bragg peaks will yield incorrect
results. For speed, the Bragg peaks are removed with a binary mask, rather than a continuous sigmoid, so
selecting a radius that is slightly (~1 pix) larger than the disk size is recommended.

Parameters
• datacube (DataCube) – a datacube

• class_image (2D array) – the weight of the class at each position in real space

• braggpeaks (PointListArray) – the detected Bragg peak positions, with respect to the
raw data (i.e. not diffraction shift or ellipse corrected)

• radius (number) – the radius to mask about each detected Bragg peak - should be slightly
larger than the disk radius

• x0 (number) – x-position of the optic axis

• y0 (number) – y-position of the optic axis

• thresh (float) – only include diffraction patterns for scan positions with a value greater
than or equal to thresh in class_image

• xshifts (2D array, or None) – the x diffraction shifts at each real space pixel. If
None, no shifting is performed.

• yshifts (2D array, or None) – the y diffraction shifts at each real space pixel. If
None, no shifting is performed.

• darkref (2D array, or None) – background to remove from each diffraction pattern

• intshifts (bool) – if True, round shifts to the nearest integer to speed up computation

Returns
class_DP (2D array) the average diffraction pattern for the class

class py4DSTEM.process.classification.featurization.Featurization(features, R_Nx, R_Ny, name)
A class for feature selection, modification, and classification of 4D-STEM data based on a user defined array of
input features for each pattern. Features are stored under Featurization. Features and can be used for a variety of
unsupervised classification tasks.

Initialization methods:

1.4. API 119

py4dstem, Release 0.14.14

__init__:
Creates instance of featurization

concatenate_features:
Creates instance of featurization from a list of featurization instances

from_braggvectors:
Creates instance of featurization from a BraggVectors instance

Feature Dictionary Modification Methods
add_feature:

Adds features to the features array

remove_feature:
Removes features to the features array

Feature Preprocessing Methods
MinMaxScaler:

Performs sklearn MinMaxScaler operation on features stored at a key

RobustScaler:
Performs sklearn RobustScaler operation on features stored at a key

mean_feature:
Takes the rowwise average of a matrix stored at a key, such that only one column is left, reducing a
set of n features down to 1 feature per pattern.

median_feature:
Takes the rowwise median of a matrix stored at a key, such that only one column is left, reducing a
set of n features down to 1 feature per pattern.

max_feature:
Takes the rowwise max of a matrix stored at a key, such that only one column is left, reducing a set
of n features down to 1 feature per pattern.

Classification Methods
PCA:

Principal Component Analysis to refine features.

ICA:
Independent Component Analysis to refine features.

NMF:
Performs either traditional or iterative Nonnegative Matrix Factorization (NMF) to refine features.

GMM:
Gaussian mixture model to predict class labels. Fits a gaussian based on covariance of features.

Class Examination Methods
get_class_DPs:

Gets weighted class diffraction patterns (DPs) for an NMF or GMM operation

get_class_ims:
Gets weighted class images (ims) for an NMF or GMM operation

__init__(features, R_Nx, R_Ny, name)
Initializes classification instance.

This method: 1. Generates key:value pair to access input features 2. Initializes the empty dictionaries for
feature modification and classification

120 Chapter 1. Contents

py4dstem, Release 0.14.14

Parameters
• features (list) – A list of ndarrays which will each be associated with value stored

at the key in the same index within the list

• R_Nx (int) – The real space x dimension of the dataset

• R_Ny (int) – The real space y dimension of the dataset

• name (str) – The name of the featurization object

Returns
New Featurization instance

Return type
new_instance

from_braggvectors(bins_x, bins_y, intensity_scale, name, mask=None)
Initialize a featurization instance from a BraggVectors instance

Parameters
• braggvectors (BraggVectors) – BraggVectors instance containing calibrations

• bins_x (int) – Number of pixels per bin in x direction

• bins_y (int) – Number of pixels per bin in y direction

• intensity_scale (float) – Value to scale intensity of detected disks by

• name (str) – Name of featurization instance

• mask (bool) – Mask to remove disks in unwanted positions in diffraction space

Returns
Featurization instance

Return type
new_instance

Details:
Transforms the calibrated pointlistarray in BraggVectors instance into a numpy array that can be
clustered using the methods in featurization.

concatenate_features(name)
Concatenates featurization instances (features) and outputs a new Featurization instance containing the
concatenated features from each featurization instance. R_Nx, R_Ny will be inherited from the featuriza-
tion instances and must be consistent across objects.

Parameters
• features (list) – A list of keys to be concatenated into one array

• name (str) – The name of the featurization instance

Returns
Featurization instance

Return type
new_instance

add_features(feature)
Add a feature to the end of the features array

Parameters

1.4. API 121

py4dstem, Release 0.14.14

• key (int, float, str) – A key in which a feature can be accessed from

• feature (ndarray) – The feature associated with the key

delete_features(index)
Deletes feature columns from the feature array

Parameters
index (int, list) – A key which will be removed

mean_feature(index)
Takes columnwise mean and replaces features in ‘index’.

Parameters
index (list of int) – Indices of features to take the mean of. New feature array is
placed in self.features.

median_feature(index)
Takes columnwise median and replaces features in ‘index’. New feature array is placed in self.features.

Parameters
index (list of int) – Indices of features to take the median of.

max_feature(index)
Takes columnwise max and replaces features in ‘index’. New feature array is placed in self.features.

Parameters
index (list of int) – Indices of features to take the max of.

MinMaxScaler(return_scaled=True)
Uses sklearn MinMaxScaler to scale a subset of the input features. Replaces a feature with the positive
shifted array.

Parameters
return_scaled (bool) – returns the scaled array

RobustScaler(return_scaled=True)
Uses sklearn RobustScaler to scale a subset of the input features. Replaces a feature with the positive
shifted array.

Parameters
return_scaled (bool) – returns the scaled array

shift_positive(return_scaled=True)
Replaces a feature with the positive shifted array.

Parameters
return_scaled (bool) – returns the scaled array

PCA(components, return_results=False)
Performs PCA on features

Parameters
components (list) – A list of ints for each key. This will be the output number of features

ICA(components, return_results=True)
Performs ICA on features

Parameters
components (list) – A list of ints for each key. This will be the output number of features

122 Chapter 1. Contents

py4dstem, Release 0.14.14

NMF(max_components, num_models, merge_thresh=1, max_iterations=1, random_seed=None,
save_all_models=True, return_results=False)
Performs either traditional Nonnegative Matrix Factoriation (NMF) or iteratively on input features. For
Traditional NMF:

set either merge_threshold = 1, max_iterations = 1, or both. Default is to set

Parameters
• max_components (int) – Number of initial components to start the first NMF itera-

tion

• merge_thresh (float) – Correlation threshold to merge features

• num_models (int) – Number of independent models to run (number of learners that
will be combined in consensus).

• max_iterations (int) – Number of iterations. Default 1, which runs traditional
NMF

• random_seed (int) – Random seed.

• save_all_models (bool) – Whether or not to return all of the models - default is to
return all outputs for consensus clustering. if False, will only return the model with
the lowest NMF reconstruction error.

• return_results (bool) – Whether or not to return the final class weights

Details:
This method may require trial and error for proper selection of parameters. To perform traditional
NMF, the defaults should be used:

merge_thresh = 1 max_iterations = 1

Note that the max_components in this case will be equivalent to the number of classes the NMF
model identifies.

Iterative NMF calculates the correlation between all of the output columns from an NMF iteration,
merges the features correlated above the merge_thresh, and performs NMF until either max_iterations
is reached or until no more columns are correlated above merge_thresh.

GMM(cv, components, num_models, random_seed=None, return_results=False)
Performs gaussian mixture model on input features

Parameters
• cv (str) – Covariance type - must be ‘spherical’, ‘tied’, ‘diag’, or ‘full’

• components (int) – Number of components

• num_models (int) – Number of models to run

• random_seed (int) – Random seed

get_class_DPs(datacube, method, thresh)
Returns weighted class patterns based on classification instance datacube must be vectorized in real space
(shape = (R_Nx * R_Ny, 1, Q_Nx, Q_Ny)

Parameters
• classification_method (str) – Either ‘nmf’ or ‘gmm’ - finds location of clusters

1.4. API 123

py4dstem, Release 0.14.14

• datacube (py4DSTEM datacube) – Vectorized in real space, with shape (R_Nx *
R_Ny, Q_Nx, Q_Ny)

get_class_ims(classification_method)
Returns weighted class maps based on classification instance

Parameters
classification_method (str) – Location to retrieve class images from - NMF, GMM,
PCA, or ICA

spatial_separation(size, threshold=0, method=None, clean=True)
Identify spatially distinct regions from class images and separate based on a threshold and size.

Parameters
• size (int) – Number of pixels which is the minimum to keep a class - all spatially

distinct regions with less than ‘size’ pixels will be removed

• threshold (float) – Intensity weight of a component to keep

• method (str) – (Optional) Filter method, default None. Accepts options ‘yen’ and
‘otsu’.

• clean (bool) – Whether or not to ‘clean’ cluster sets based on overlap, i.e. remove
clusters that do not have any unique components

consensus(threshold=0, location='spatially_separated_ims', split=0, method='mean', drop_bins=0)
Consensus Clustering takes the outcome of a prepared set of 2D images from each cluster and averages
the outcomes.

Parameters
• threshold (float) – Threshold weights, default 0

• location (str) – Where to get the consensus from - after spatial separation = ‘spa-
tially_separated_ims’

• split_value (float) – Threshold in which to separate classes during label corre-
spondence (Default 0). This should be proportional to the expected class weights- the
sum of the weights in the current class image that match nonzero values in each bin
are calculated and then checked for splitting.

• method (str) – Method in which to combine the consensus clusters - either mean or
median.

• drop_bins (int) – Number of clusters needed in each class to keep cluster set in the
consensus. Default 0, meaning

Details:
This method involves 2 steps: Label correspondence and consensus clustering.

Label correspondence sorts the classes found by the independent models into bins based on class
overlap in real space. Arguments related to label correspondence are the threshold and split_value.
The threshold is related to the weights of the independent classes. If the weight of the observation in
the class is less than the threshold, it will be set to 0. The split_value indicates the extent of similarity
the independent classes must have before intializing a new bin. The default is 0 - this means if the
class of interest has 0 overlap with the identified bins, a new bin will be created. The value is based
on the sum of the weights in the current class image that match the nonzero values in the current bins.

Consensus clustering combines these sorted bin into 1 class based on the selected method (either
‘mean’ which takes the average of the bin, or ‘median’ which takes the median of the bin). Bins with
less than the drop_bins value will not be included in the final results.

124 Chapter 1. Contents

py4dstem, Release 0.14.14

diffraction

py4DSTEM.process.diffraction.WK_scattering_factors.compute_WK_factor(g: ndarray, Z: int,
accelerating_voltage:
float, thermal_sigma:
float | None = None,
include_core: bool =
True, include_phonon:
bool = True,
verbose=False)→
complex128

Compute the Weickenmeier-Kohl atomic scattering factors, using the parameterization of the elastic part and
computation of the inelastic part found in EMsoftLib/others.f90. Return value should be in Å.

This implementation always returns the absorptive, relativistically corrected factors.

Currently this is mostly a direct translation of the Fortran code, along with the accompanying comments from
the original in quotation marks. Colin Ophus vectorized it around v0.13.17. Currently it is only vectorized over
g (i.e. Z and all other args must be a single value.)

This method uses an 8-parameter fit to the elastic form factors, and then computes the absorptive form factors
using an analytic solution based on that fitting function.

Args: (note that these values cannot be arrays: the code is not vectorized)
g (float/ndarray): Scattering vector magnitude in the crystallographic/py4DSTEM

convention, 1/d_hkl in units of 1/Å

Z (int): Atomic number. Data are available for H thru Cf (1 thru 98) accelerating_voltage (float): Accel-
erating voltage in eV. thermal_sigma (float): RMS atomic displacement for TDS, in Å

(This is often written as 〈u〉in papers)

include_core (bool): If True, include the core loss contribution to the absorptive
form factors.

include_phonon (bool): If True, include the phonon/TDS contribution to the
absorptive form factors.

Returns
The computed atomic form factor

Return type
Fscatt (np.complex128)

py4DSTEM.process.diffraction.WK_scattering_factors.RIH2(X)
WERTET X*EXP(-X)*EI(X) AUS FUER GROSSE X DURCH INTERPOLATION DER TABELLE . . . AUS
ABRAMOWITZ

class py4DSTEM.process.diffraction.crystal.Crystal(positions, numbers, cell, occupancy=None)
A class storing a single crystal structure, and associated diffraction data.

orientation_plan(zone_axis_range: ndarray = array([[0, 1, 1], [1, 1, 1]]), angle_step_zone_axis: float =
2.0, angle_coarse_zone_axis: float | None = None, angle_refine_range: float | None =
None, angle_step_in_plane: float = 2.0, accel_voltage: float = 300000.0,
corr_kernel_size: float = 0.08, radial_power: float = 1.0, intensity_power: float = 0.25,
calculate_correlation_array=True, tol_peak_delete=None, tol_distance: float = 0.01,
fiber_axis=None, fiber_angles=None, figsize: list | tuple | ndarray = (6, 6), CUDA: bool
= False, progress_bar: bool = True)

1.4. API 125

py4dstem, Release 0.14.14

Calculate the rotation basis arrays for an SO(3) rotation correlogram.

Parameters
• zone_axis_range (float) – Row vectors give the range for zone axis orientations.

If user specifies 2 vectors (2x3 array), we start at [0,0,1]

to make z-x-z rotation work.

If user specifies 3 vectors (3x3 array), plan will span these vectors. Setting to ‘full’ as
a string will use a hemispherical range. Setting to ‘half’ as a string will use a quarter
sphere range. Setting to ‘fiber’ as a string will make a spherical cap around a given
vector. Setting to ‘auto’ will use pymatgen to determine the point group symmetry

of the structure and choose an appropriate zone_axis_range

• angle_step_zone_axis (float) – Approximate angular step size for zone axis
search [degrees]

• angle_coarse_zone_axis (float) – Coarse step size for zone axis search [de-
grees]. Setting to None uses the same value as angle_step_zone_axis.

• angle_refine_range (float) – Range of angles to use for zone axis refinement.
Setting to None uses same value as angle_coarse_zone_axis.

• angle_step_in_plane (float) – Approximate angular step size for in-plane rota-
tion [degrees]

• accel_voltage (float) – Accelerating voltage for electrons [Volts]

• corr_kernel_size (float) – Correlation kernel size length. The size of the over-
lap kernel between the measured Bragg peaks and diffraction library Bragg peaks.
[1/Angstroms]

• radial_power (float) – Power for scaling the correlation intensity as a function of
the peak radius

• intensity_power (float) – Power for scaling the correlation intensity as a function
of the peak intensity

• calculate_correlation_array (bool) – Set to false to skip calculating the cor-
relation array. This is useful when we only want the angular range / rotation matrices.

• tol_peak_delete (float) – Distance to delete peaks for multiple matches. Default
is kernel_size * 0.5

• tol_distance (float) – Distance tolerance for radial shell assignment
[1/Angstroms]

• fiber_axis (float) – (3,) vector specifying the fiber axis

• fiber_angles (float) – (2,) vector specifying angle range from fiber axis, and in-
plane angular range [degrees]

• cartesian_directions (bool) – When set to true, all zone axes and projection
directions are specified in Cartesian directions.

• figsize (float) – (2,) vector giving the figure size

• CUDA (bool) – Use CUDA for the Fourier operations.

• progress_bar (bool) – If false no progress bar is displayed

126 Chapter 1. Contents

py4dstem, Release 0.14.14

match_orientations(bragg_peaks_array: PointListArray, num_matches_return: int = 1,
min_angle_between_matches_deg=None, min_number_peaks: int = 3,
inversion_symmetry: bool = True, multiple_corr_reset: bool = True,
return_orientation: bool = True, progress_bar: bool = True)

Parameters
• bragg_peaks_array (PointListArray) – PointListArray containing the Bragg

peaks and intensities, with calibrations applied

• num_matches_return (int) – return these many matches as 3th dim of orient (ma-
trix)

• min_angle_between_matches_deg (int) – Minimum angle between zone axis of
multiple matches, in degrees. Note that I haven’t thought how to handle in-plane rota-
tions, since multiple matches are possible.

• min_number_peaks (int) – Minimum number of peaks required to perform ACOM
matching

• inversion_symmetry (bool) – check for inversion symmetry in the matches

• multiple_corr_reset (bool) – keep original correlation score for multiple matches

• return_orientation (bool) – Return orientation map from function for inspection.
The map is always stored in the Crystal object.

• progress_bar (bool) – Show or hide the progress bar

match_single_pattern(bragg_peaks: PointList, num_matches_return: int = 1,
min_angle_between_matches_deg=None, min_number_peaks=3,
inversion_symmetry=True, multiple_corr_reset=True, plot_polar: bool = False,
plot_corr: bool = False, returnfig: bool = False, figsize: list | tuple | ndarray = (12,
4), verbose: bool = False)

Solve for the best fit orientation of a single diffraction pattern.

Parameters
• bragg_peaks (PointList) – numpy array containing the Bragg positions and inten-

sities (‘qx’, ‘qy’, ‘intensity’)

• num_matches_return (int) – return these many matches as 3th dim of orient (ma-
trix)

• min_angle_between_matches_deg (int) – Minimum angle between zone axis of
multiple matches, in degrees. Note that I haven’t thought how to handle in-plane rota-
tions, since multiple matches are possible.

• min_number_peaks (int) – Minimum number of peaks required to perform ACOM
matching

• bool (multiple_corr_reset) – check for inversion symmetry in the matches

• bool – keep original correlation score for multiple matches

• subpixel_tilt (bool) – set to false for faster matching, returning the nearest corr
point

• plot_polar (bool) – set to true to plot the polar transform of the diffraction pattern

• plot_corr (bool) – set to true to plot the resulting correlogram

• returnfig (bool) – return figure handles

1.4. API 127

py4dstem, Release 0.14.14

• figsize (list) – size of figure

• verbose (bool) – Print the fitted zone axes, correlation scores

• CUDA (bool) – Enable CUDA for the FFT steps

Returns
• orientation (Orientation) – Orientation class containing all outputs

• fig, ax (handles) – Figure handles for the plotting output

cluster_grains(threshold_add=1.0, threshold_grow=0.1, angle_tolerance_deg=5.0, progress_bar=True)
Cluster grains using rotation criterion, and correlation values.

Parameters
• threshold_add (float) – Minimum signal required for a probe position to initialize

a cluster.

• threshold_grow (float) – Minimum signal required for a probe position to be
added to a cluster.

• angle_tolerance_deg (float) – Rotation rolerance for clustering grains.

• progress_bar (bool) – Turns on the progress bar for the polar transformation

cluster_orientation_map(stripe_width=(2, 2), area_min=2)
Produce a new orientation map from the clustered grains. Use a stripe pattern for the overlapping grains.

Parameters
• stripe_width ((int,int)) – Width of stripes for plotting maps with overlapping

grains

• area_min ((int)) – Minimum size of grains to include

Returns
The clustered orientation map

Return type
orientation_map

calculate_strain(bragg_peaks_array: PointListArray, orientation_map: OrientationMap,
corr_kernel_size=None, sigma_excitation_error=0.02, tol_excitation_error_mult: float
= 3, tol_intensity: float = 0.0001, k_max: float | None = None, min_num_peaks=5,
intensity_weighting=False, robust=True, robust_thresh=3.0, rotation_range=None,
mask_from_corr=True, corr_range=(0, 2), corr_normalize=True, progress_bar=True)

This function takes in both a PointListArray containing Bragg peaks, and a corresponding OrientationMap,
and uses least squares to compute the deformation tensor which transforms the simulated diffraction pattern
into the experimental pattern, for all probe positons.

TODO: add robust fitting?

Parameters
• (PointListArray) (bragg_peaks_array) – All Bragg peaks

• (OrientationMap) (orientation_map) – Orientation map generated from ACOM

• (float) (rotation_range) – Correlation kernel size - if user does not specify, uses
self.corr_kernel_size.

• (float) – sigma value for envelope applied to s_g (excitation errors) in units of in-
verse Angstroms

128 Chapter 1. Contents

py4dstem, Release 0.14.14

• (float) – tolerance in units of sigma for s_g inclusion

• float) (tol_intensity (np) – tolerance in intensity units for inclusion of diffrac-
tion spots

• (float) – Maximum scattering vector

• (int) (min_num_peaks) – Minimum number of peaks required.

• intensity_weighting (bool) – Set to True to weight least squares by experimental
peak intensity.

• robust_fitting (bool) – Set to True to use robust fitting, which performs outlier
rejection.

• robust_thresh (float) – Threshold for robust fitting weights.

• (float) – Maximum rotation range in radians (for symmetry reduction).

• (bool) (corr_normalize) – Show progress bar

• (bool) – Use ACOM correlation signal for mask

• (np.ndarray) (corr_range) – Range of correlation signals for mask

• (bool) – Normalize correlation signal before masking

Returns
strain tensor

Return type
strain_map (RealSlice)

symmetry_reduce_directions(orientation, match_ind=0, plot_output=False, figsize=(15, 6), el_shift=0.0,
az_shift=-30.0)

This function calculates the symmetry-reduced cartesian directions from and orientation matrix stored in
orientation.matrix, and outputs them into orientation.family. It optionally plots the 3D output.

save_ang_file(file_name, orientation_map, ind_orientation=0, pixel_size=1.0, pixel_units='px',
transpose_xy=True, flip_x=False, flip_y=False)

This function outputs an ascii text file in the .ang format, containing the Euler angles of an orientation
map.

Parameters
• file_name (str) – Path to save .ang file.

• orientation_map (OrientationMap) – Class containing orientation matrices, cor-
relation values, etc.

• ind_orientation (int) – Which orientation match to plot if num_matches > 1

• pixel_size (float) – Pixel size, if known.

• pixel_units (str) – Units of the pixel size

• transpose_xy (bool) – Transpose x and y pixel coordinates.

• flip_x (bool) – Swap x direction pixels (after transpose).

Returns
nothing

1.4. API 129

py4dstem, Release 0.14.14

plot_structure(orientation_matrix: ndarray | None = None, zone_axis_lattice: ndarray | None = None,
proj_x_lattice: ndarray | None = None, zone_axis_cartesian: ndarray | None = None,
proj_x_cartesian: ndarray | None = None, size_marker: float = 400, tol_distance: float =
0.001, plot_limit: ndarray | None = None, camera_dist: float | None = None, show_axes:
bool = False, perspective_axes: bool = True, figsize: tuple | list | ndarray = (8, 8),
returnfig: bool = False)

Quick 3D plot of the untit cell /atomic structure.

Parameters
• orientation_matrix (array) – (3,3) orientation matrix, where columns represent

projection directions.

• zone_axis_lattice (array) – (3,) projection direction in lattice indices

• proj_x_lattice (array) – (3,) x-axis direction in lattice indices

• zone_axis_cartesian (array) – (3,) cartesian projection direction

• proj_x_cartesian (array) – (3,) cartesian projection direction

• scale_markers (float) – Size scaling for markers

• tol_distance (float) – Tolerance for repeating atoms on edges on cell boundaries.

• plot_limit (float) – (2,3) numpy array containing x y z plot min and max in
columns. Default is 1.1* unit cell dimensions.

• camera_dist (float) – Move camera closer to the plot (relative to matplotlib default
of 10)

• show_axes (bool) – Whether to plot axes or not.

• perspective_axes (bool) – Select either perspective (true) or orthogonal (false)
axes

• figsize (2 element float) – Size scaling of figure axes.

• returnfig (bool) – Return figure and axes handles.

Returns
fig, ax (optional) figure and axes handles

plot_structure_factors(orientation_matrix: ndarray | None = None, zone_axis_lattice: ndarray | None
= None, proj_x_lattice: ndarray | None = None, zone_axis_cartesian: ndarray |
None = None, proj_x_cartesian: ndarray | None = None, scale_markers: float =
1000.0, plot_limit: list | tuple | ndarray | None = None, camera_dist: float | None
= None, show_axes: bool = True, perspective_axes: bool = True, figsize: list |
tuple | ndarray = (8, 8), returnfig: bool = False)

3D scatter plot of the structure factors using magnitude^2, i.e. intensity.

Parameters
• orientation_matrix (array) – (3,3) orientation matrix, where columns represent

projection directions.

• zone_axis_lattice (array) – (3,) projection direction in lattice indices

• proj_x_lattice (array) – (3,) x-axis direction in lattice indices

• zone_axis_cartesian (array) – (3,) cartesian projection direction

• proj_x_cartesian (array) – (3,) cartesian projection direction

• scale_markers (float) – size scaling for markers

130 Chapter 1. Contents

py4dstem, Release 0.14.14

• plot_limit (float) – x y z plot limits, default is [-1 1]*self.k_max

• camera_dist (float) – Move camera closer to the plot (relative to matplotlib default
of 10)

• show_axes (bool) – Whether to plot axes or not.

• perspective_axes (bool) – Select either perspective (true) or orthogonal (false)
axes

• figsize (2 element float) – size scaling of figure axes

• returnfig (bool) – set to True to return figure and axes handles

Returns
fig, ax (optional) figure and axes handles

plot_scattering_intensity(k_min=0.0, k_max=None, k_step=0.001, k_broadening=0.0,
k_power_scale=0.0, int_power_scale=0.5, int_scale=1.0,
remove_origin=True, bragg_peaks=None, bragg_k_power=0.0,
bragg_intensity_power=1.0, bragg_k_broadening=0.005, figsize: list | tuple
| ndarray = (10, 4), returnfig: bool = False)

1D plot of the structure factors

Parameters
• k_min (float) – min k value for profile range.

• k_max (float) – max k value for profile range.

• k_step (float) – Step size of k in profile range.

• k_broadening (float) – Broadening of simulated pattern.

• k_power_scale (float) – Scale SF intensities by k**k_power_scale.

• int_power_scale (float) – Scale SF intensities**int_power_scale.

• int_scale (float) – Scale output profile by this value.

• remove_origin (bool) – Remove origin from plot.

• bragg_peaks (BraggVectors) – Passed in bragg_peaks for comparison with simu-
lated pattern.

• bragg_k_power (float) – bragg_peaks scaled by k**bragg_k_power.

• bragg_intensity_power (float) – bragg_peaks scaled by intensi-
ties**bragg_intensity_power.

• bragg_k_broadening (float) – Broadening applied to bragg_peaks.

• figsize (list, tuple, np.ndarray) – Figure size for plot.

• (bool) (returnfig) – Return figure and axes handles if this is True.

Returns
figure and axes handles

Return type
fig, ax (optional)

plot_orientation_zones(azim_elev: list | tuple | ndarray | None = None, proj_dir_lattice: list | tuple |
ndarray | None = None, proj_dir_cartesian: list | tuple | ndarray | None = None,
tol_den=10, marker_size: float = 20, plot_limit: list | tuple | ndarray =
array([-1.1, 1.1]), figsize: list | tuple | ndarray = (8, 8), returnfig: bool = False)

1.4. API 131

py4dstem, Release 0.14.14

3D scatter plot of the structure factors using magnitude^2, i.e. intensity.

Parameters
• azim_elev (array) – az and el angles for plot

• proj_dir_lattice (array) – (3,) projection direction in lattice

• proj_dir_cartesian – (array): (3,) projection direction in cartesian

• tol_den (int) – tolerance for rational index denominator

• dir_proj (float) – projection direction, either [elev azim] or normal vector Default
is mean vector of self.orientation_zone_axis_range rows

• marker_size (float) – size of markers

• plot_limit (float) – x y z plot limits, default is [0, 1.05]

• figsize (2 element float) – size scaling of figure axes

• returnfig (bool) – set to True to return figure and axes handles

Returns
fig, ax (optional) figure and axes handles

plot_orientation_plan(index_plot: int = 0, zone_axis_lattice: ndarray | None = None,
zone_axis_cartesian: ndarray | None = None, figsize: list | tuple | ndarray = (14,
6), returnfig: bool = False)

3D scatter plot of the structure factors using magnitude^2, i.e. intensity.

Parameters
• index_plot (int) – which index slice to plot

• zone_axis_plot (3 element float) – which zone axis slice to plot

• figsize (2 element float) – size scaling of figure axes

• returnfig (bool) – set to True to return figure and axes handles

Returns
fig, ax (optional) figure and axes handles

plot_orientation_maps(orientation_map=None, orientation_ind: int = 0, dir_in_plane_degrees: float =
0.0, corr_range: ndarray = array([0, 5]), corr_normalize: bool = True,
scale_legend: bool | None = None, figsize: list | tuple | ndarray = (16, 5),
figbound: list | tuple | ndarray = (0.01, 0.005), show_axes: bool = True,
camera_dist=None, plot_limit=None, plot_layout=0,
swap_axes_xy_limits=False, returnfig: bool = False, progress_bar=False)

Plot the orientation maps.

Parameters
• orientation_map (OrientationMap) – Class containing orientation matrices, cor-

relation values, etc. Optional - can reference internally stored OrientationMap.

• orientation_ind (int) – Which orientation match to plot if num_matches > 1

• dir_in_plane_degrees (float) – In-plane angle to plot in degrees. Default is 0 /
x-axis / vertical down.

• corr_range (np.ndarray) – Correlation intensity range for the plot

• corr_normalize (bool) – If true, set mean correlation to 1.

132 Chapter 1. Contents

py4dstem, Release 0.14.14

• scale_legend (float) – 2 elements, x and y scaling of legend panel

• figsize (array) – 2 elements defining figure size

• figbound (array) – 2 elements defining figure boundary

• show_axes (bool) – Flag setting whether orienation map axes are visible.

• camera_dist (float) – distance of camera from legend

• plot_limit (array) – 2x3 array defining plot boundaries of legend

• plot_layout (int) – subplot layout: 0 - 1 row, 3 col 1 - 3 row, 1 col

• swap_axes_xy_limits (bool) – swap x and y boundaries for legend (not sure why
we need this in some cases)

• returnfig (bool) – set to True to return figure and axes handles

• progress_bar (bool) – Enable progressbar when calculating orientation images.

Returns
RGB images fig, axs (handles): Figure and axes handes for the

Return type
images_orientation (int)

Note: Currently, no symmetry reduction. Therefore the x and y orientations are going to be correct only
for [001][011][111] orientation triangle.

plot_fiber_orientation_maps(orientation_map, orientation_ind: int = 0, symmetry_order: int | None =
None, symmetry_mirror: bool = False, dir_in_plane_degrees: float = 0.0,
corr_range: ndarray = array([0, 2]), corr_normalize: bool = True,
show_axes: bool = True, medfilt_size: int | None = None,
cmap_out_of_plane: str = 'plasma', leg_size: int = 200, figsize: list |
tuple | ndarray = (12, 8), figbound: list | tuple | ndarray = (0.005, 0.04),
returnfig: bool = False)

Generate and plot the orientation maps from fiber texture plots.

Parameters
• orientation_map (OrientationMap) – Class containing orientation matrices, cor-

relation values, etc.

• orientation_ind (int) – Which orientation match to plot if num_matches > 1

• dir_in_plane_degrees (float) – Reference in-plane angle (degrees). Default is 0
/ x-axis / vertical down.

• corr_range (np.ndarray) – Correlation intensity range for the plot

• corr_normalize (bool) – If true, set mean correlation to 1.

• show_axes (bool) – Flag setting whether orienation map axes are visible.

• figsize (array) – 2 elements defining figure size

• figbound (array) – 2 elements defining figure boundary

• returnfig (bool) – set to True to return figure and axes handles

Returns
RGB images fig, axs (handles): Figure and axes handes for the

1.4. API 133

py4dstem, Release 0.14.14

Return type
images_orientation (int)

Note: Currently, no symmetry reduction. Therefore the x and y orientations are going to be correct only
for [001][011][111] orientation triangle.

plot_clusters(area_min=2, outline_grains=True, outline_thickness=1, fill_grains=0.25,
smooth_grains=1.0, cmap='viridis', figsize=(8, 8), returnfig=False)

Plot the clusters as an image.

Parameters
• area_min (int (optional)) – Min cluster size to include, in units of probe posi-

tions.

• outline_grains (bool (optional)) – Set to True to draw grains with outlines

• outline_thickness (int (optional)) – Thickenss of the grain outline

• fill_grains (float (optional)) – Outlined grains are filled with this value in
pixels.

• smooth_grains (float (optional)) – Grain boundaries are smoothed by this
value in pixels.

• figsize (tuple) – Size of the figure panel

• returnfig (bool) – Setting this to true returns the figure and axis handles

Returns
Figure and axes handles

Return type
fig, ax (optional)

plot_cluster_size(area_min=None, area_max=None, area_step=1, weight_intensity=False,
pixel_area=1.0, pixel_area_units='px^2', figsize=(8, 6), returnfig=False)

Plot the cluster sizes

Parameters
• area_min (int (optional)) – Min area to include in pixels^2

• area_max (int (optional)) – Max area bin in pixels^2

• area_step (int (optional)) – Step size of the histogram bin in pixels^2

• weight_intensity (bool) – Weight histogram by the peak intensity.

• pixel_area (float) – Size of pixel area unit square

• pixel_area_units (string) – Units of the pixel area

• figsize (tuple) – Size of the figure panel

• returnfig (bool) – Setting this to true returns the figure and axis handles

Returns
Figure and axes handles

Return type
fig, ax (optional)

134 Chapter 1. Contents

py4dstem, Release 0.14.14

calibrate_pixel_size(bragg_peaks, scale_pixel_size=1.0, bragg_k_power=1.0,
bragg_intensity_power=1.0, k_min=0.0, k_max=None, k_step=0.002,
k_broadening=0.002, fit_all_intensities=False, set_calibration_in_place=False,
verbose=True, plot_result=False, figsize: list | tuple | ndarray = (12, 6),
returnfig=False)

Use the calculated structure factor scattering lengths to compute 1D diffraction patterns, and solve the
best-fit relative scaling between them. Returns the fit pixel size in Å^-1.

Parameters
• bragg_peaks (BraggVectors) – Input Bragg vectors.

• scale_pixel_size (float) – Initial guess for scaling of the existing pixel size If
the pixel size is currently uncalibrated, this is a guess of the pixel size in Å^-1. If the
pixel size is already (approximately) calibrated, this is the scaling factor to correct that
existing calibration.

• bragg_k_power (float) – Input Bragg peak intensities are multiplied by
k**bragg_k_power to change the weighting of longer scattering vectors

• bragg_intensity_power (float) – Input Bragg peak intensities are raised power
**bragg_intensity_power.

• k_min (float) – min k value for fitting range (Å^-1)

• k_max (float) – max k value for fitting range (Å^-1)

• k_step (float) step size of k in fitting range (Å^-1) –

• k_broadening (float) – Initial guess for Gaussian broadening of simulated pattern
(Å^-1)

• fit_all_intensities (bool) – Set to true to allow all peak intensities to change
independently. False forces a single intensity scaling for all peaks.

• set_calibration (bool) – if True, set the fit pixel size to the calibration metadata,
and calibrate bragg_peaks

• verbose (bool) – Output the calibrated pixel size.

• plot_result (bool) – Plot the resulting fit.

• figsize (list, tuple, np.ndarray) – Figure size of the plot.

• returnfig (bool) – Return handles figure and axis

Returns
fig, ax – Figure and axis handles, if returnfig=True.

Return type
handles, optional

calibrate_unit_cell(bragg_peaks, coef_index=None, coef_update=None, bragg_k_power=1.0,
bragg_intensity_power=1.0, k_min=0.0, k_max=None, k_step=0.005,
k_broadening=0.02, fit_all_intensities=True, verbose=True, plot_result=False,
figsize: list | tuple | ndarray = (12, 6), returnfig=False)

Solve for the best fit scaling between the computed structure factors and bragg_peaks.

Parameters
• bragg_peaks (BraggVectors) – Input Bragg vectors.

• coef_index (list of ints) – List of ints that act as pointers to unit cell parameters
and angles to update.

1.4. API 135

py4dstem, Release 0.14.14

• coef_update (list of bool) – List of booleans to indicate whether or not to up-
date the cell at that position

• bragg_k_power (float) – Input Bragg peak intensities are multiplied by
k**bragg_k_power to change the weighting of longer scattering vectors

• bragg_intensity_power (float) – Input Bragg peak intensities are raised power
**bragg_intensity_power.

• k_min (float) – min k value for fitting range (Å^-1)

• k_max (float) – max k value for fitting range (Å^-1)

• k_step (float) – step size of k in fitting range (Å^-1)

• k_broadening (float) – Initial guess for Gaussian broadening of simulated pattern
(Å^-1)

• fit_all_intensities (bool) – Set to true to allow all peak intensities to change
independently False forces a single intensity scaling.

• verbose (bool) – Output the calibrated pixel size.

• plot_result (bool) – Plot the resulting fit.

• figsize (list, tuple, np.ndarray) –

• returnfig (bool) – Return handles figure and axis

Returns
Optional figure and axis handles, if returnfig=True.

Return type
fig, ax (handles)

Details: User has the option to define what is allowed to update in the unit cell using the arguments
coef_index and coef_update. Each has 6 entries, corresponding to the a, b, c, alpha, beta, gamma parame-
ters of the unit cell, in this order. The coef_update argument is a list of bools specifying whether or not the
unit cell value will be allowed to change (True) or must maintain the original value (False) upon fitting.
The coef_index argument provides a pointer to the index in which the code will update to.

For example, to update a, b, c, alpha, beta, gamma all independently of eachother, the following arguments
should be used:

coef_index = [0, 1, 2, 3, 4, 5] coef_update = [True, True, True, True, True, True,]

The default is set to automatically define what can update in a unit cell based on the point group constraints.
When either ‘coef_index’ or ‘coef_update’ are None, these constraints will be automatically pulled from
the pointgroup.

For example, the default for cubic unit cells is:
coef_index = [0, 0, 0, 3, 3, 3] coef_update = [True, True, True, False, False, False]

Which allows a, b, and c to update (True in first 3 indices of coef_update) but b and c update based on the
value of a (0 in the 1 and 2 list entries in coef_index) such that a = b = c. While coef_update is False for
alpha, beta, and gamma (entries 3, 4, 5), no updates will be made to the angles.

The user has the option to predefine coef_index or coef_update to override defaults. In the coef_update
list, there must be 6 entries and each are boolean. In the coef_index list, there must be 6 entries, with the
first 3 entries being between 0 - 2 and the last 3 entries between 3 - 5. These act as pointers to pull the
updated parameter from.

136 Chapter 1. Contents

py4dstem, Release 0.14.14

generate_dynamical_diffraction_pattern(beams: PointList, thickness: float | list | tuple | ndarray,
zone_axis_lattice: ndarray | None = None,
zone_axis_cartesian: ndarray | None = None,
foil_normal_lattice: ndarray | None = None,
foil_normal_cartesian: ndarray | None = None, verbose:
bool = False, always_return_list: bool = False,
dynamical_matrix_cache: DynamicalMatrixCache | None
= None, return_complex: bool = False,
return_eigenvectors: bool = False, return_Smatrix: bool =
False)→ PointList | List[PointList]

Generate a dynamical diffraction pattern (or thickness series of patterns) using the Bloch wave method.

The beams to be included in the Bloch calculation must be pre-calculated and passed as a PointList con-
taining at least (qx, qy, h, k, l) fields.

If thickness is a single value, one new PointList will be returned. If thickness is a sequence of values,
a list of PointLists will be returned,

corresponding to each thickness value in the input.

Frequent reference will be made to “Introduction to conventional transmission electron
microscopy”

by DeGraef, whose overall approach we follow here.

Parameters
• beams (PointList) – PointList from the kinematical diffraction generator which will

define the beams included in the Bloch calculation

• thickness (float or list/array) – The main Bloch calculation can be reused
for multiple thicknesses without much overhead.

• direction. (zone_axis & foil_normal Incident beam orientation and
foil normal) – Each can be specified in the Cartesian or crystallographic basis,
using e.g. zone_axis_lattice or zone_axis_cartesian. These are internally parsed by
Crystal.parse_orientation

Less commonly used args:
always_return_list (bool): When True, the return is always a list of PointLists,

even for a single thickness

dynamical_matrix_cache: (DyanmicalMatrixCache) Dataclass used for caching of the
dynamical matrix. If the cached matrix does not exist, it is computed and stored. Subsequent
calls will use the cached matrix for the off-diagonal components of the A matrix and overwrite
the diagonal elements. This is used for CBED calculations.

return_complex (bool): When True, returns both the complex amplitude and intensity. Defaults to
(False)

Returns
Bragg peaks with fields [qx, qy, intensity, h, k, l]

or

[bragg_peaks,. . .] (PointList): If thickness is a list/array, or always_return_list is
True,

a list of PointLists is returned.

if return_complex = True:

1.4. API 137

py4dstem, Release 0.14.14

bragg_peaks (PointList): Bragg peaks with fields [qx, qy, intensity, amplitude,
h, k, l]

or

[bragg_peaks,. . .] (PointList): If thickness is a list/array, or always_return_list
is True,

a list of PointLists is returned.

if return_Smatrix = True:
[S_matrix, . . .], psi_0: Returns a list of S-matrices for each thickness (this is
always a list),

and the vector representing the incident plane wave. The beams of the S-matrix
have the same order as in the input beams.

Return type
bragg_peaks (PointList)

generate_CBED(beams: ~emdfile.classes.pointlist.PointList, thickness: float | list | tuple | ~numpy.ndarray,
alpha_mrad: float, pixel_size_inv_A: float, DP_size_inv_A: float | None = None,
zone_axis_lattice: ~numpy.ndarray | None = None, zone_axis_cartesian: ~numpy.ndarray |
None = None, foil_normal_lattice: ~numpy.ndarray | None = None, foil_normal_cartesian:
~numpy.ndarray | None = None, LACBED: bool = False, dtype: ~numpy.dtype = <class
'numpy.float32'>, verbose: bool = False, progress_bar: bool = True, return_mask: bool =
False, two_beam_zone_axis_lattice: ~numpy.ndarray | None = None, return_probe: bool =
False)→ ndarray | List[ndarray] | Dict[Tuple[int], ndarray]

Generate a dynamical CBED pattern using the Bloch wave method.

Parameters
• beams (PointList) – PointList from the kinematical diffraction generator which will

define the beams included in the Bloch calculation

• thickness (float or list/array) – The main Bloch calculation can be reused
for multiple thicknesses without much overhead.

• alpha_mrad (float) – Convergence angle for CBED pattern. Note that if disks in
the calculation overlap, they will be added incoherently, and the resulting CBED will
thus represent the average over the unit cell (i.e. a PACBED pattern, as described in
LeBeau et al., Ultramicroscopy 110(2): 2010.)

• pixel_size_inv_A (float) – CBED pixel size in 1/Å.

• DP_size_inv_A (optional float) – If specified, defines the extents of the diffrac-
tion pattern. If left unspecified, the DP will be automatically scaled to fit all of the
beams present in the input plus some small buffer.

• zone_axis (np float vector) – 3 element projection direction for sim pattern Can
also be a 3x3 orientation matrix (zone axis 3rd column)

• foil_normal – 3 element foil normal - set to None to use zone_axis

• LACBED (bool) – keyed by tuples of (h,k,l).

• proj_x_axis (np float vector) – 3 element vector defining image x axis (verti-
cal)

• PointList (two_beam_zone_axis_lattice When only two beams are
present in the "beams") – the computation of the projected crystallographic
directions becomes ambiguous. In this case, you must specify the indices of the zone
axis used to generate the beams.

138 Chapter 1. Contents

py4dstem, Release 0.14.14

:param
[the computation of the projected crystallographic directions] becomes ambiguous. In this case, you
must specify the indices of the zone axis used to generate the beams.

Parameters
return_probe (bool) – If True, the probe (np.ndarray) will be returned in additon to the
CBED

Returns
CBED pattern as np.ndarray If thickness is a sequence: CBED patterns for each thickness
value as a list of np.ndarrays If LACBED is True and thickness is scalar: Dictionary with
tuples of ints (h,k,l) as keys, mapping to np.ndarray. If LACBED is True and thickness is
a sequence: List of dictionaries, structured as above. If return_probe is True: will return a
tuple (<CBED/LACBED object>, Probe)

Return type
If thickness is a scalar

calculate_dynamical_structure_factors(accelerating_voltage: float, method: str = 'WK-CP', k_max:
float = 2.0, thermal_sigma: float | dict | None = None,
tol_structure_factor: float = 0.0,
recompute_kinematic_structure_factors=True,
g_vec_precision=None)

Calculate and store the relativistic corrected structure factors used for Bloch computations in a dictionary
for faster lookup.

Parameters
• accelerating_voltage (float) – accelerating voltage in eV

• method (str) – Choose which parameterization of the structure factors to use: “Lo-
bato”: Uses the kinematic structure factors from crystal.py, using the parameterization
from

Lobato & Van Dyck, Acta Cryst A 70:6 (2014)

”Lobato-absorptive”: Lobato factors plus an imaginary part
equal to 0.1•f, as a simple but inaccurate way to include absorption, per Hashimoto,
Howie, & Whelan, Proc R Soc Lond A 269:80-103 (1962)

”WK”: Uses the Weickenmeier-Kohl parameterization for
the elastic form factors, including Debye-Waller factor, with no absorption, as de-
scribed in Weickenmeier & Kohl, Acta Cryst A 47:5 (1991)

”WK-C”: WK form factors plus the “core” contribution to absorption
following H. Rose, Optik 45:2 (1976)

”WK-P”: WK form factors plus the phonon/TDS absorptive contribution “WK-CP”:
WK form factors plus core and phonon absorption (default)

• k_max (float) – max scattering length to compute structure factors to. Setting this
to 2x the k_max used in generating the beamsn included in a simulation will retain all
possible couplings

• thermal_sigma (float or dict{int->float}) – RMS atomic diplacement for
attenuating form factors to account for thermal broadening of the potential, only used
when a “WK” method is selected. Required when WK-P or WK-CP are selected. Units
are Å. (This is often written as 〈u〉in papers) To specify different 〈u〉 for each element,
pass a dictionary with Z as the key, mapping to the appropriate float value

1.4. API 139

py4dstem, Release 0.14.14

• tol_structure_factor (float) – tolerance for removing low-valued structure fac-
tors. Reflections with structure factor below the tolerance will have zero coupling in
the dynamical calculations (i.e. they are the ignored weak beams)

• recompute_kinematic_structure_factors (bool) – When True, recomputes
the kinematic structure factors using the same tol_structure_factor, and with k_max
set to half the k_max for the dynamical factors. The factor of half ensures that every
beam in a simulation can couple to every other beam (no high-angle couplings in the
Bloch matrix are set to zero.)

• g_vec_precision (optional int) – If specified, rounds |g| to this many decimal
places so that automatic caching of the atomic form factors is not slowed down due to
floating point errors. Setting this to 3 can give substantial speedup at the cost of some
reduced accuracy

• factors. (See WK_scattering_factors.py for details on the
Weickenmeier-Kohl form) –

__init__(positions, numbers, cell, occupancy=None)

Parameters
• positions (np.array) – fractional coordinates of each atom in the cell

• numbers (np.array) – Z number for each atom in the cell, if one number passed it
is used for all atom positions

• cell (np.array) – specify the unit cell, using a variable number of parameters 1
number: the lattice parameter for a cubic cell 3 numbers: the three lattice parameters
for an orthorhombic cell 6 numbers: the a,b,c lattice parameters and ,, angles for any
cell 3x3 array: row vectors containing the (u,v,w) lattice vectors.

• occupancy (np.array) – Partial occupancy values for each atomic site. Must match
the length of positions

positions

fractional atomic coordinates

get_strained_crystal(exx=0.0, eyy=0.0, ezz=0.0, exy=0.0, exz=0.0, eyz=0.0, deformation_matrix=None,
return_deformation_matrix=False)

This method returns new Crystal class with strain applied. The directions of (x,y,z) are with respect to
the default Crystal orientation, which can be checked with print(Crystal.lat_real) applied to the original
Crystal.

Strains are given in fractional values, so exx = 0.01 is 1% strain along the x direction. Deformation matrix
should be of the form:

deformation_matrix = np.array([
[1.0+exx, 1.0*exy, 1.0*exz], [1.0*exy, 1.0+eyy, 1.0*eyz], [1.0*exz, 1.0*eyz, 1.0+ezz],

])

Parameters
• (float) (eyz) – fractional strain along the xx direction

• (float) – fractional strain along the yy direction

• (float) – fractional strain along the zz direction

• (float) – fractional strain along the xy direction

• (float) – fractional strain along the xz direction

140 Chapter 1. Contents

py4dstem, Release 0.14.14

• (float) – fractional strain along the yz direction

• (np.ndarray) (deformation_matrix) – 3x3 array describing deformation matrix

• (bool) (return_deformation_matrix) – boolean switch to return deformation
matrix

Returns
• return_deformation_matrix == False – strained_crystal (py4DSTEM.Crystal)

• return_deformation_matrix == True – (strained_crystal, deformation_matrix)

static from_ase(atoms)
Create a py4DSTEM Crystal object from an ASE atoms object

Parameters
atoms (ase.Atoms) – an ASE atoms object

static from_prismatic(filepath)
Create a py4DSTEM Crystal object from an prismatic style xyz co-ordinate file

Parameters
filepath (str|Pathlib.Path) – path to the prismatic format xyz file

static from_CIF(CIF, primitive: bool = True, conventional_standard_structure: bool = True)
Create a Crystal object from a CIF file, using pymatgen to import the CIF

Note that pymatgen typically prefers to return primitive unit cells, which can be overridden by setting
conventional_standard_structure=True.

Parameters
• CIF – (str or Path) path to the CIF File

• conventional_standard_structure – (bool) if True, conventional standard unit
cell will be returned instead of the primitive unit cell pymatgen typically returns

static from_pymatgen_structure(structure=None, formula=None, space_grp=None, MP_key=None,
conventional_standard_structure=True)

Create a Crystal object from a pymatgen Structure object. If a Materials Project API key is installed,
you may pass the Materials Project ID of a structure, which will be fetched through the MP API. For setup
information see: https://pymatgen.org/usage.html#setting-the-pmg-mapi-key-in-the-config-file. Alterna-
tively, Materials Porject API key can be pass as an argument through the function (MP_key). To get your
API key, please visit Materials Project website and login/sign up using your email id. Once logged in, go
to the dashboard to generate your own API key (https://materialsproject.org/dashboard).

Note that pymatgen typically prefers to return primitive unit cells, which can be overridden by setting
conventional_standard_structure=True.

Parameters
• structure – (pymatgen Structure or str), if specified as a string, it will be considered

as a Materials Project ID of a structure, otherwise it will accept only pymatgen Struc-
ture object. if None, MP database will be queried using the specified formula and/or
space groups for the available structure

• formula – (str), pretty formula to search in the MP database, (note that the forumlas
in MP database are not always formatted in the conventional order. Please visit Mate-
rials Project website for information (https://materialsproject.org/) if None, structure
argument must not be None

1.4. API 141

https://pymatgen.org/usage.html#setting-the-pmg-mapi-key-in-the-config-file
https://materialsproject.org/dashboard
https://materialsproject.org/

py4dstem, Release 0.14.14

• space_grp – (int) space group number of the forumula provided to query MP
database. If None, MP will search for all the available space groups for the formula
provided and will consider the one with lowest unit cell volume, only specify when
using formula to search MP database

• MP_key – (str) Materials Project API key

• conventional_standard_structure – (bool) if True, conventional standard unit
cell will be returned instead of the primitive unit cell pymatgen returns

static from_unitcell_parameters(latt_params, elements, positions, space_group=None,
lattice_type='cubic', from_cartesian=False,
conventional_standard_structure=True)

Create a Crystal using pymatgen to generate unit cell manually from user inputs

Parameters
• latt_params – (list of floats) list of lattice parameters. For example, for cubic:

latt_params = [a], for hexagonal: latt_params = [a, c], for monoclinic: latt_params
= [a,b,c,beta], and in general: latt_params = [a,b,c,alpha,beta,gamma]

• elements – (list of strings) list of elements, for example for SnS: elements = [“Sn”,
“S”]

• positions – (list) list of (x,y,z) positions for each element present in the elements,
default: fractional coord

• space_group – (optional) (string or int) space group of the crystal system, if specified,
unit cell will be created using pymatgen Structure.from_spacegroup function

• lattice_type – (string) type of crystal family: cubic, hexagonal, triclinic etc; de-
fault: ‘cubic’

• from_cartesian – (bool) if True, positions will be considered as cartesian, default:
False

• conventional_standard_structure – (bool) if True, conventional standard unit
cell will be returned instead of the primitive unit cell pymatgen returns

Returns
Crystal object

setup_diffraction(accelerating_voltage: float)
Set up attributes used for diffraction calculations without going through the full ACOM pipeline.

calculate_structure_factors(k_max: float = 2.0, tol_structure_factor: float = 0.0001,
return_intensities: bool = False)

Calculate structure factors for all hkl indices up to max scattering vector k_max

Parameters
• k_max (float) – max scattering vector to include (1/Angstroms)

• tol_structure_factor (float) – tolerance for removing low-valued structure fac-
tors

• return_intensities (bool) – return the intensities and positions of all structure
factor peaks.

Returns
Tuple of the q vectors and intensities of each structure factor.

142 Chapter 1. Contents

py4dstem, Release 0.14.14

Return type
(q_SF, I_SF)

generate_diffraction_pattern(orientation: Orientation | None = None, ind_orientation: int | None = 0,
orientation_matrix: ndarray | None = None, zone_axis_lattice: ndarray
| None = None, proj_x_lattice: ndarray | None = None,
foil_normal_lattice: list | tuple | ndarray | None = None,
zone_axis_cartesian: ndarray | None = None, proj_x_cartesian: ndarray
| None = None, foil_normal_cartesian: list | tuple | ndarray | None =
None, sigma_excitation_error: float = 0.02, tol_excitation_error_mult:
float = 3, tol_intensity: float = 0.0001, k_max: float | None = None,
keep_qz=False, return_orientation_matrix=False)

Generate a single diffraction pattern, return all peaks as a pointlist.

Parameters
• orientation (Orientation) – an Orientation class object

• orientations (ind_orientation If input is an Orientation class
object with multiple) – this input can be used to select a specific orientation.

:param : this input can be used to select a specific orientation. :param orientation_matrix: (3,3)
orientation matrix, where columns represent projection directions. :type orientation_matrix: ar-
ray :param zone_axis_lattice: (3,) projection direction in lattice indices :type zone_axis_lattice: ar-
ray :param proj_x_lattice: (3,) x-axis direction in lattice indices :type proj_x_lattice: array :param
zone_axis_cartesian: (3,) cartesian projection direction :type zone_axis_cartesian: array :param
proj_x_cartesian: (3,) cartesian projection direction :type proj_x_cartesian: array :param foil_normal:
3 element foil normal - set to None to use zone_axis :param proj_x_axis: 3 element vector defining image
x axis (vertical) :type proj_x_axis: np float vector :param accel_voltage: Accelerating voltage in Volts. If
not specified,

we check to see if crystal already has voltage specified.

Parameters
• sigma_excitation_error (float) – sigma value for envelope applied to s_g (ex-

citation errors) in units of inverse Angstroms

• tol_excitation_error_mult (float) – tolerance in units of sigma for s_g inclu-
sion

• tol_intensity (np float) – tolerance in intensity units for inclusion of diffraction
spots

• k_max (float) – Maximum scattering vector

• keep_qz (bool) – Flag to return out-of-plane diffraction vectors

• return_orientation_matrix (bool) – Return the orientation matrix

Returns
list of all Bragg peaks with fields [qx, qy, intensity, h, k, l] orientation_matrix (array): 3x3
orientation matrix (optional)

Return type
bragg_peaks (PointList)

generate_ring_pattern(k_max=2.0, use_bloch=False, thickness=None, bloch_params=None,
orientation_plan_params=None, sigma_excitation_error=0.02,
tol_intensity=0.001, plot_rings=True, plot_params={}, return_calc=True)

1.4. API 143

py4dstem, Release 0.14.14

Calculate polycrystalline diffraction pattern from structure

Parameters
• k_max (float) – Maximum scattering vector

• use_bloch (bool) – if true, use dynamic instead of kinematic approach

• thickness (float) – thickness in Ångström to evaluate diffraction patterns, only
needed for dynamical calculations

• bloch_params (dict) – optional, parameters to calculate dynamical structure factor,
see calculate_dynamical_structure_factors doc strings

• orientation_plan_params (dict) – optional, parameters to calculate orientation
plan, see orientation_plan doc strings

• sigma_excitation_error (float) – sigma value for envelope applied to s_g (ex-
citation errors) in units of inverse Angstroms

• tol_intensity (np float) – tolerance in intensity units for inclusion of diffraction
spots

• plot_rings (bool) – if true, plot diffraction rings with plot_ring_pattern

• return_calc (bool) – return radii and intensities

Returns
radii of ring pattern in units of scattering vector k intensity_unique (np array): intensity of
rings weighted by frequency of diffraciton spots

Return type
radii_unique (np array)

generate_projected_potential(im_size=(256, 256), pixel_size_angstroms=0.1,
potential_radius_angstroms=3.0, sigma_image_blur_angstroms=0.1,
thickness_angstroms=100, power_scale=1.0, plot_result=False,
figsize=(6, 6), orientation: Orientation | None = None, ind_orientation:
int | None = 0, orientation_matrix: ndarray | None = None,
zone_axis_lattice: ndarray | None = None, proj_x_lattice: ndarray |
None = None, zone_axis_cartesian: ndarray | None = None,
proj_x_cartesian: ndarray | None = None)

Generate an image of the projected potential of crystal in real space, using cell tiling, and a lookup table
of the atomic potentials. Note that we round atomic positions to the nearest pixel for speed.

TODO - fix scattering prefactor so that output units are sensible.

Parameters
• im_size (tuple, list, np.array) – (2,) vector specifying the output size in pix-

els.

• pixel_size_angstroms (float) – Pixel size in Angstroms.

• potential_radius_angstroms (float) – Radius in Angstroms for how far to in-
tegrate the atomic potentials

• sigma_image_blur_angstroms (float) – Image blurring in Angstroms.

• thickness_angstroms (float) – Thickness of the sample in Angstroms. Set thick-
ness_thickness_angstroms = 0 to skip thickness projection.

144 Chapter 1. Contents

py4dstem, Release 0.14.14

• power_scale (float) – Power law scaling of potentials. Set to 2.0 to approximate
Z^2 images.

• plot_result (bool) – Plot the projected potential image.

• figsize – (2,) vector giving the size of the output.

• orientation (Orientation) – An Orientation class object

• ind_orientation (int) – If input is an Orientation class object with multiple ori-
entations, this input can be used to select a specific orientation.

• orientation_matrix (array) – (3,3) orientation matrix, where columns represent
projection directions.

• zone_axis_lattice (array) – (3,) projection direction in lattice indices

• proj_x_lattice (array)) – (3,) x-axis direction in lattice indices

• zone_axis_cartesian (array) – (3,) cartesian projection direction

• proj_x_cartesian (array) – (3,) cartesian projection direction

Returns
im_potential – Output image of the projected potential.

Return type
(np.array)

excitation_errors(g, foil_normal=None)
Calculate the excitation errors, assuming k0 = [0, 0, -1/lambda]. If foil normal is not specified, we assume
it is [0,0,-1].

calculate_bragg_peak_histogram(bragg_peaks, bragg_k_power=1.0, bragg_intensity_power=1.0,
k_min=0.0, k_max=None, k_step=0.005)

Prepare experimental bragg peaks for lattice parameter or unit cell fitting.

Parameters
• bragg_peaks (BraggVectors) – Input Bragg vectors.

• bragg_k_power (float) – Input Bragg peak intensities are multiplied by
k**bragg_k_power to change the weighting of longer scattering vectors

• bragg_intensity_power (float) – Input Bragg peak intensities are raised power
**bragg_intensity_power.

• k_min (float) – min k value for fitting range (Å^-1)

• k_max (float) – max k value for fitting range (Å^-1)

• k_step (float) – step size of k in fitting range (Å^-1)

Returns
Bragg vectors after calibration fig, ax (handles): Optional figure and axis handles, if re-
turnfig=True.

Return type
bragg_peaks_cali (BraggVectors)

1.4. API 145

py4dstem, Release 0.14.14

py4DSTEM.process.diffraction.crystal.generate_moire_diffraction_pattern(bragg_peaks_0,
bragg_peaks_1,
thresh_0=0.0002,
thresh_1=0.0002,
exx_1=0.0,
eyy_1=0.0,
exy_1=0.0,
phi_1=0.0,
power=2.0)

Calculate a Moire lattice from 2 parent diffraction patterns. The second lattice can be rotated and strained with
respect to the original lattice. Note that this strain is applied in real space, and so the inverse of the calculated
infinitestimal strain tensor is applied.

Parameters
• bragg_peaks_0 (BraggVector) – Bragg vectors for parent lattice 0.

• bragg_peaks_1 (BraggVector) – Bragg vectors for parent lattice 1.

• thresh_0 (float) – Intensity threshold for structure factors from lattice 0.

• thresh_1 (float) – Intensity threshold for structure factors from lattice 1.

• exx_1 (float) – Strain of lattice 1 in x direction (vertical) in real space.

• eyy_1 (float) – Strain of lattice 1 in y direction (horizontal) in real space.

• exy_1 (float) – Shear strain of lattice 1 in (x,y) direction (diagonal) in real space.

• phi_1 (float) – Rotation of lattice 1 in real space.

• power (float) – Plotting power law (default is amplitude**2.0, i.e. intensity).

Returns
parent_peaks_0, parent_peaks_1, moire_peaks – Bragg vectors for the rotated & strained
parent lattices and the moire lattice

Return type
BraggVectors

py4DSTEM.process.diffraction.crystal.plot_moire_diffraction_pattern(bragg_parent_0,
bragg_parent_1,
bragg_moire, int_range=(0,
0.005), k_max=1.0,
plot_subpixel=True,
labels=None,
marker_size_parent=16,
marker_size_moire=4,
text_size_parent=10,
text_size_moire=6,
add_labels_parent=False,
add_labels_moire=False,
dist_labels=0.03,
dist_check=0.06,
sep_labels=0.03,
figsize=(8, 6),
returnfig=False)

Plot Moire lattice and parent lattices.

Parameters

146 Chapter 1. Contents

py4dstem, Release 0.14.14

• bragg_peaks_0 (BraggVector) – Bragg vectors for parent lattice 0.

• bragg_peaks_1 (BraggVector) – Bragg vectors for parent lattice 1.

• bragg_moire (BraggVector) – Bragg vectors for moire lattice.

• int_range ((float, float)) – Plotting intensity range for the Moire peaks.

• k_max (float) – Max k value of the plotted Moire lattice.

• plot_subpixel (bool) – Apply subpixel corrections to the Bragg spot positions. Mat-
plotlib default scatter plot rounds to the nearest pixel.

• labels (list) – List of text labels for parent lattices

• marker_size_parent (float) – Size of plot markers for the two parent lattices.

• marker_size_moire (float) – Size of plot markers for the Moire lattice.

• text_size_parent (float) – Label text size for parent lattice.

• text_size_moire (float) – Label text size for Moire lattice.

• add_labels_parent (bool) – Plot the parent lattice index labels.

• add_labels_moire (bool) – Plot the parent lattice index labels for the Moire spots.

• dist_labels (float) – Distance to move the labels off the spots.

• dist_check (float) – Set to some distance to “push” the labels away from each other
if they are within this distance.

• sep_labels (float) – Separation distance for labels which are “pushed” apart.

• figsize ((float,float)) – Size of output figure.

• returnfig (bool) – Return the (fix,ax) handles of the plot.

Returns
fig, ax – Figure and axes handles for the moire plot.

Return type
matplotlib handles (optional)

py4DSTEM.process.diffraction.crystal_ACOM.orientation_plan(self , zone_axis_range: ndarray =
array([[0, 1, 1], [1, 1, 1]]),
angle_step_zone_axis: float = 2.0,
angle_coarse_zone_axis: float | None =
None, angle_refine_range: float | None
= None, angle_step_in_plane: float =
2.0, accel_voltage: float = 300000.0,
corr_kernel_size: float = 0.08,
radial_power: float = 1.0,
intensity_power: float = 0.25,
calculate_correlation_array=True,
tol_peak_delete=None, tol_distance:
float = 0.01, fiber_axis=None,
fiber_angles=None, figsize: list | tuple |
ndarray = (6, 6), CUDA: bool = False,
progress_bar: bool = True)

Calculate the rotation basis arrays for an SO(3) rotation correlogram.

Parameters

1.4. API 147

py4dstem, Release 0.14.14

• zone_axis_range (float) – Row vectors give the range for zone axis orientations. If
user specifies 2 vectors (2x3 array), we start at [0,0,1]

to make z-x-z rotation work.

If user specifies 3 vectors (3x3 array), plan will span these vectors. Setting to ‘full’ as
a string will use a hemispherical range. Setting to ‘half’ as a string will use a quarter
sphere range. Setting to ‘fiber’ as a string will make a spherical cap around a given vector.
Setting to ‘auto’ will use pymatgen to determine the point group symmetry

of the structure and choose an appropriate zone_axis_range

• angle_step_zone_axis (float) – Approximate angular step size for zone axis search
[degrees]

• angle_coarse_zone_axis (float) – Coarse step size for zone axis search [degrees].
Setting to None uses the same value as angle_step_zone_axis.

• angle_refine_range (float) – Range of angles to use for zone axis refinement. Set-
ting to None uses same value as angle_coarse_zone_axis.

• angle_step_in_plane (float) – Approximate angular step size for in-plane rotation
[degrees]

• accel_voltage (float) – Accelerating voltage for electrons [Volts]

• corr_kernel_size (float) – Correlation kernel size length. The size of the overlap ker-
nel between the measured Bragg peaks and diffraction library Bragg peaks. [1/Angstroms]

• radial_power (float) – Power for scaling the correlation intensity as a function of the
peak radius

• intensity_power (float) – Power for scaling the correlation intensity as a function of
the peak intensity

• calculate_correlation_array (bool) – Set to false to skip calculating the correla-
tion array. This is useful when we only want the angular range / rotation matrices.

• tol_peak_delete (float) – Distance to delete peaks for multiple matches. Default is
kernel_size * 0.5

• tol_distance (float) – Distance tolerance for radial shell assignment [1/Angstroms]

• fiber_axis (float) – (3,) vector specifying the fiber axis

• fiber_angles (float) – (2,) vector specifying angle range from fiber axis, and in-plane
angular range [degrees]

• cartesian_directions (bool) – When set to true, all zone axes and projection direc-
tions are specified in Cartesian directions.

• figsize (float) – (2,) vector giving the figure size

• CUDA (bool) – Use CUDA for the Fourier operations.

• progress_bar (bool) – If false no progress bar is displayed

py4DSTEM.process.diffraction.crystal_ACOM.match_orientations(self , bragg_peaks_array: PointLis-
tArray, num_matches_return: int = 1,
min_angle_between_matches_deg=None,
min_number_peaks: int = 3,
inversion_symmetry: bool = True,
multiple_corr_reset: bool = True,
return_orientation: bool = True,
progress_bar: bool = True)

148 Chapter 1. Contents

py4dstem, Release 0.14.14

Parameters
• bragg_peaks_array (PointListArray) – PointListArray containing the Bragg peaks

and intensities, with calibrations applied

• num_matches_return (int) – return these many matches as 3th dim of orient (matrix)

• min_angle_between_matches_deg (int) – Minimum angle between zone axis of mul-
tiple matches, in degrees. Note that I haven’t thought how to handle in-plane rotations,
since multiple matches are possible.

• min_number_peaks (int) – Minimum number of peaks required to perform ACOM
matching

• inversion_symmetry (bool) – check for inversion symmetry in the matches

• multiple_corr_reset (bool) – keep original correlation score for multiple matches

• return_orientation (bool) – Return orientation map from function for inspection.
The map is always stored in the Crystal object.

• progress_bar (bool) – Show or hide the progress bar

py4DSTEM.process.diffraction.crystal_ACOM.match_single_pattern(self , bragg_peaks: PointList,
num_matches_return: int = 1,
min_angle_between_matches_deg=None,
min_number_peaks=3,
inversion_symmetry=True,
multiple_corr_reset=True,
plot_polar: bool = False,
plot_corr: bool = False, returnfig:
bool = False, figsize: list | tuple |
ndarray = (12, 4), verbose: bool
= False)

Solve for the best fit orientation of a single diffraction pattern.

Parameters
• bragg_peaks (PointList) – numpy array containing the Bragg positions and intensities

(‘qx’, ‘qy’, ‘intensity’)

• num_matches_return (int) – return these many matches as 3th dim of orient (matrix)

• min_angle_between_matches_deg (int) – Minimum angle between zone axis of mul-
tiple matches, in degrees. Note that I haven’t thought how to handle in-plane rotations,
since multiple matches are possible.

• min_number_peaks (int) – Minimum number of peaks required to perform ACOM
matching

• bool (multiple_corr_reset) – check for inversion symmetry in the matches

• bool – keep original correlation score for multiple matches

• subpixel_tilt (bool) – set to false for faster matching, returning the nearest corr point

• plot_polar (bool) – set to true to plot the polar transform of the diffraction pattern

• plot_corr (bool) – set to true to plot the resulting correlogram

• returnfig (bool) – return figure handles

• figsize (list) – size of figure

1.4. API 149

py4dstem, Release 0.14.14

• verbose (bool) – Print the fitted zone axes, correlation scores

• CUDA (bool) – Enable CUDA for the FFT steps

Returns
• orientation (Orientation) – Orientation class containing all outputs

• fig, ax (handles) – Figure handles for the plotting output

py4DSTEM.process.diffraction.crystal_ACOM.cluster_grains(self , threshold_add=1.0,
threshold_grow=0.1,
angle_tolerance_deg=5.0,
progress_bar=True)

Cluster grains using rotation criterion, and correlation values.

Parameters
• threshold_add (float) – Minimum signal required for a probe position to initialize a

cluster.

• threshold_grow (float) – Minimum signal required for a probe position to be added
to a cluster.

• angle_tolerance_deg (float) – Rotation rolerance for clustering grains.

• progress_bar (bool) – Turns on the progress bar for the polar transformation

py4DSTEM.process.diffraction.crystal_ACOM.cluster_orientation_map(self , stripe_width=(2, 2),
area_min=2)

Produce a new orientation map from the clustered grains. Use a stripe pattern for the overlapping grains.

Parameters
• stripe_width ((int,int)) – Width of stripes for plotting maps with overlapping grains

• area_min ((int)) – Minimum size of grains to include

Returns
The clustered orientation map

Return type
orientation_map

py4DSTEM.process.diffraction.crystal_ACOM.calculate_strain(self , bragg_peaks_array:
PointListArray, orientation_map:
OrientationMap,
corr_kernel_size=None,
sigma_excitation_error=0.02,
tol_excitation_error_mult: float = 3,
tol_intensity: float = 0.0001, k_max:
float | None = None,
min_num_peaks=5,
intensity_weighting=False,
robust=True, robust_thresh=3.0,
rotation_range=None,
mask_from_corr=True, corr_range=(0,
2), corr_normalize=True,
progress_bar=True)

This function takes in both a PointListArray containing Bragg peaks, and a corresponding OrientationMap, and
uses least squares to compute the deformation tensor which transforms the simulated diffraction pattern into the
experimental pattern, for all probe positons.

150 Chapter 1. Contents

py4dstem, Release 0.14.14

TODO: add robust fitting?

Parameters
• (PointListArray) (bragg_peaks_array) – All Bragg peaks

• (OrientationMap) (orientation_map) – Orientation map generated from ACOM

• (float) (rotation_range) – Correlation kernel size - if user does not specify, uses
self.corr_kernel_size.

• (float) – sigma value for envelope applied to s_g (excitation errors) in units of inverse
Angstroms

• (float) – tolerance in units of sigma for s_g inclusion

• float) (tol_intensity (np) – tolerance in intensity units for inclusion of diffraction
spots

• (float) – Maximum scattering vector

• (int) (min_num_peaks) – Minimum number of peaks required.

• intensity_weighting (bool) – Set to True to weight least squares by experimental
peak intensity.

• robust_fitting (bool) – Set to True to use robust fitting, which performs outlier re-
jection.

• robust_thresh (float) – Threshold for robust fitting weights.

• (float) – Maximum rotation range in radians (for symmetry reduction).

• (bool) (corr_normalize) – Show progress bar

• (bool) – Use ACOM correlation signal for mask

• (np.ndarray) (corr_range) – Range of correlation signals for mask

• (bool) – Normalize correlation signal before masking

Returns
strain tensor

Return type
strain_map (RealSlice)

py4DSTEM.process.diffraction.crystal_ACOM.save_ang_file(self , file_name, orientation_map,
ind_orientation=0, pixel_size=1.0,
pixel_units='px', transpose_xy=True,
flip_x=False, flip_y=False)

This function outputs an ascii text file in the .ang format, containing the Euler angles of an orientation map.

Parameters
• file_name (str) – Path to save .ang file.

• orientation_map (OrientationMap) – Class containing orientation matrices, correla-
tion values, etc.

• ind_orientation (int) – Which orientation match to plot if num_matches > 1

• pixel_size (float) – Pixel size, if known.

• pixel_units (str) – Units of the pixel size

• transpose_xy (bool) – Transpose x and y pixel coordinates.

1.4. API 151

py4dstem, Release 0.14.14

• flip_x (bool) – Swap x direction pixels (after transpose).

Returns
nothing

py4DSTEM.process.diffraction.crystal_ACOM.symmetry_reduce_directions(self , orientation,
match_ind=0,
plot_output=False,
figsize=(15, 6),
el_shift=0.0,
az_shift=-30.0)

This function calculates the symmetry-reduced cartesian directions from and orientation matrix stored in orien-
tation.matrix, and outputs them into orientation.family. It optionally plots the 3D output.

class py4DSTEM.process.diffraction.crystal_bloch.DynamicalMatrixCache(has_valid_cache: bool =
False, cached_U_gmh:
<built-in function
array> = None)

__init__(has_valid_cache: bool = False, cached_U_gmh: array | None = None)→ None

py4DSTEM.process.diffraction.crystal_bloch.calculate_dynamical_structure_factors(self ,
accelerat-
ing_voltage:
float,
method:
str =
'WK-CP',
k_max:
float
= 2.0, ther-
mal_sigma:
float | dict
| None =
None,
tol_structure_factor:
float = 0.0,
recom-
pute_kinematic_structure_factors=True,
g_vec_precision=None)

Calculate and store the relativistic corrected structure factors used for Bloch computations in a dictionary for
faster lookup.

Parameters
• accelerating_voltage (float) – accelerating voltage in eV

• method (str) – Choose which parameterization of the structure factors to use: “Lobato”:
Uses the kinematic structure factors from crystal.py, using the parameterization from

Lobato & Van Dyck, Acta Cryst A 70:6 (2014)

”Lobato-absorptive”: Lobato factors plus an imaginary part
equal to 0.1•f, as a simple but inaccurate way to include absorption, per Hashimoto,
Howie, & Whelan, Proc R Soc Lond A 269:80-103 (1962)

152 Chapter 1. Contents

py4dstem, Release 0.14.14

”WK”: Uses the Weickenmeier-Kohl parameterization for
the elastic form factors, including Debye-Waller factor, with no absorption, as de-
scribed in Weickenmeier & Kohl, Acta Cryst A 47:5 (1991)

”WK-C”: WK form factors plus the “core” contribution to absorption
following H. Rose, Optik 45:2 (1976)

”WK-P”: WK form factors plus the phonon/TDS absorptive contribution “WK-CP”: WK
form factors plus core and phonon absorption (default)

• k_max (float) – max scattering length to compute structure factors to. Setting this to 2x
the k_max used in generating the beamsn included in a simulation will retain all possible
couplings

• thermal_sigma (float or dict{int->float}) – RMS atomic diplacement for at-
tenuating form factors to account for thermal broadening of the potential, only used when
a “WK” method is selected. Required when WK-P or WK-CP are selected. Units are Å.
(This is often written as 〈u〉in papers) To specify different 〈u〉 for each element, pass a
dictionary with Z as the key, mapping to the appropriate float value

• tol_structure_factor (float) – tolerance for removing low-valued structure factors.
Reflections with structure factor below the tolerance will have zero coupling in the dynam-
ical calculations (i.e. they are the ignored weak beams)

• recompute_kinematic_structure_factors (bool) – When True, recomputes the
kinematic structure factors using the same tol_structure_factor, and with k_max set to
half the k_max for the dynamical factors. The factor of half ensures that every beam in a
simulation can couple to every other beam (no high-angle couplings in the Bloch matrix
are set to zero.)

• g_vec_precision (optional int) – If specified, rounds |g| to this many decimal
places so that automatic caching of the atomic form factors is not slowed down due to
floating point errors. Setting this to 3 can give substantial speedup at the cost of some
reduced accuracy

• factors. (See WK_scattering_factors.py for details on the
Weickenmeier-Kohl form) –

1.4. API 153

py4dstem, Release 0.14.14

py4DSTEM.process.diffraction.crystal_bloch.generate_dynamical_diffraction_pattern(self ,
beams:
PointList,
thick-
ness:
float | list
| tuple
| ndarray,
zone_axis_lattice:
ndarray |
None =
None,
zone_axis_cartesian:
ndarray |
None =
None,
foil_normal_lattice:
ndarray |
None =
None,
foil_normal_cartesian:
ndarray |
None =
None,
verbose:
bool =
False, al-
ways_return_list:
bool =
False,
dynami-
cal_matrix_cache:
Dynami-
calMa-
trixCache
| None =
None, re-
turn_complex:
bool =
False, re-
turn_eigenvectors:
bool =
False, re-
turn_Smatrix:
bool =
False)→
PointList
|
List[PointList]

Generate a dynamical diffraction pattern (or thickness series of patterns) using the Bloch wave method.

The beams to be included in the Bloch calculation must be pre-calculated and passed as a PointList containing
at least (qx, qy, h, k, l) fields.

If thickness is a single value, one new PointList will be returned. If thickness is a sequence of values, a list

154 Chapter 1. Contents

py4dstem, Release 0.14.14

of PointLists will be returned,

corresponding to each thickness value in the input.

Frequent reference will be made to “Introduction to conventional transmission electron microscopy”
by DeGraef, whose overall approach we follow here.

Parameters
• beams (PointList) – PointList from the kinematical diffraction generator which will

define the beams included in the Bloch calculation

• thickness (float or list/array) – The main Bloch calculation can be reused for
multiple thicknesses without much overhead.

• direction. (zone_axis & foil_normal Incident beam orientation and
foil normal) – Each can be specified in the Cartesian or crystallographic basis,
using e.g. zone_axis_lattice or zone_axis_cartesian. These are internally parsed by
Crystal.parse_orientation

Less commonly used args:
always_return_list (bool): When True, the return is always a list of PointLists,

even for a single thickness

dynamical_matrix_cache: (DyanmicalMatrixCache) Dataclass used for caching of the
dynamical matrix. If the cached matrix does not exist, it is computed and stored. Subsequent calls
will use the cached matrix for the off-diagonal components of the A matrix and overwrite the diagonal
elements. This is used for CBED calculations.

return_complex (bool): When True, returns both the complex amplitude and intensity. Defaults to (False)

Returns
Bragg peaks with fields [qx, qy, intensity, h, k, l]

or

[bragg_peaks,. . .] (PointList): If thickness is a list/array, or always_return_list is True,
a list of PointLists is returned.

if return_complex = True:
bragg_peaks (PointList): Bragg peaks with fields [qx, qy, intensity, amplitude, h, k,
l]

or

[bragg_peaks,. . .] (PointList): If thickness is a list/array, or always_return_list is
True,

a list of PointLists is returned.

if return_Smatrix = True:
[S_matrix, . . .], psi_0: Returns a list of S-matrices for each thickness (this is always
a list),

and the vector representing the incident plane wave. The beams of the S-matrix have
the same order as in the input beams.

Return type
bragg_peaks (PointList)

1.4. API 155

py4dstem, Release 0.14.14

py4DSTEM.process.diffraction.crystal_bloch.generate_CBED(self , beams:
~emdfile.classes.pointlist.PointList,
thickness: float | list | tuple |
~numpy.ndarray, alpha_mrad: float,
pixel_size_inv_A: float, DP_size_inv_A:
float | None = None, zone_axis_lattice:
~numpy.ndarray | None = None,
zone_axis_cartesian: ~numpy.ndarray |
None = None, foil_normal_lattice:
~numpy.ndarray | None = None,
foil_normal_cartesian: ~numpy.ndarray |
None = None, LACBED: bool = False,
dtype: ~numpy.dtype = <class
'numpy.float32'>, verbose: bool = False,
progress_bar: bool = True, return_mask:
bool = False,
two_beam_zone_axis_lattice:
~numpy.ndarray | None = None,
return_probe: bool = False)→ ndarray |
List[ndarray] | Dict[Tuple[int], ndarray]

Generate a dynamical CBED pattern using the Bloch wave method.

Parameters
• beams (PointList) – PointList from the kinematical diffraction generator which will

define the beams included in the Bloch calculation

• thickness (float or list/array) – The main Bloch calculation can be reused for
multiple thicknesses without much overhead.

• alpha_mrad (float) – Convergence angle for CBED pattern. Note that if disks in the
calculation overlap, they will be added incoherently, and the resulting CBED will thus
represent the average over the unit cell (i.e. a PACBED pattern, as described in LeBeau
et al., Ultramicroscopy 110(2): 2010.)

• pixel_size_inv_A (float) – CBED pixel size in 1/Å.

• DP_size_inv_A (optional float) – If specified, defines the extents of the diffraction
pattern. If left unspecified, the DP will be automatically scaled to fit all of the beams
present in the input plus some small buffer.

• zone_axis (np float vector) – 3 element projection direction for sim pattern Can
also be a 3x3 orientation matrix (zone axis 3rd column)

• foil_normal – 3 element foil normal - set to None to use zone_axis

• LACBED (bool) – keyed by tuples of (h,k,l).

• proj_x_axis (np float vector) – 3 element vector defining image x axis (vertical)

• PointList (two_beam_zone_axis_lattice When only two beams are
present in the "beams") – the computation of the projected crystallographic
directions becomes ambiguous. In this case, you must specify the indices of the zone
axis used to generate the beams.

:param
[the computation of the projected crystallographic directions] becomes ambiguous. In this case, you must
specify the indices of the zone axis used to generate the beams.

156 Chapter 1. Contents

py4dstem, Release 0.14.14

Parameters
return_probe (bool) – If True, the probe (np.ndarray) will be returned in additon to the
CBED

Returns
CBED pattern as np.ndarray If thickness is a sequence: CBED patterns for each thickness
value as a list of np.ndarrays If LACBED is True and thickness is scalar: Dictionary with
tuples of ints (h,k,l) as keys, mapping to np.ndarray. If LACBED is True and thickness is a
sequence: List of dictionaries, structured as above. If return_probe is True: will return a tuple
(<CBED/LACBED object>, Probe)

Return type
If thickness is a scalar

py4DSTEM.process.diffraction.crystal_calibrate.calibrate_pixel_size(self , bragg_peaks,
scale_pixel_size=1.0,
bragg_k_power=1.0,
bragg_intensity_power=1.0,
k_min=0.0, k_max=None,
k_step=0.002,
k_broadening=0.002,
fit_all_intensities=False,
set_calibration_in_place=False,
verbose=True,
plot_result=False, figsize:
list | tuple | ndarray = (12,
6), returnfig=False)

Use the calculated structure factor scattering lengths to compute 1D diffraction patterns, and solve the best-fit
relative scaling between them. Returns the fit pixel size in Å^-1.

Parameters
• bragg_peaks (BraggVectors) – Input Bragg vectors.

• scale_pixel_size (float) – Initial guess for scaling of the existing pixel size If the
pixel size is currently uncalibrated, this is a guess of the pixel size in Å^-1. If the pixel
size is already (approximately) calibrated, this is the scaling factor to correct that existing
calibration.

• bragg_k_power (float) – Input Bragg peak intensities are multiplied by
k**bragg_k_power to change the weighting of longer scattering vectors

• bragg_intensity_power (float) – Input Bragg peak intensities are raised power
**bragg_intensity_power.

• k_min (float) – min k value for fitting range (Å^-1)

• k_max (float) – max k value for fitting range (Å^-1)

• k_step (float) step size of k in fitting range (Å^-1) –

• k_broadening (float) – Initial guess for Gaussian broadening of simulated pattern (Å^-
1)

• fit_all_intensities (bool) – Set to true to allow all peak intensities to change inde-
pendently. False forces a single intensity scaling for all peaks.

• set_calibration (bool) – if True, set the fit pixel size to the calibration metadata, and
calibrate bragg_peaks

• verbose (bool) – Output the calibrated pixel size.

1.4. API 157

py4dstem, Release 0.14.14

• plot_result (bool) – Plot the resulting fit.

• figsize (list, tuple, np.ndarray) – Figure size of the plot.

• returnfig (bool) – Return handles figure and axis

Returns
fig, ax – Figure and axis handles, if returnfig=True.

Return type
handles, optional

py4DSTEM.process.diffraction.crystal_calibrate.calibrate_unit_cell(self , bragg_peaks,
coef_index=None,
coef_update=None,
bragg_k_power=1.0,
bragg_intensity_power=1.0,
k_min=0.0, k_max=None,
k_step=0.005,
k_broadening=0.02,
fit_all_intensities=True,
verbose=True,
plot_result=False, figsize:
list | tuple | ndarray = (12,
6), returnfig=False)

Solve for the best fit scaling between the computed structure factors and bragg_peaks.

Parameters
• bragg_peaks (BraggVectors) – Input Bragg vectors.

• coef_index (list of ints) – List of ints that act as pointers to unit cell parameters
and angles to update.

• coef_update (list of bool) – List of booleans to indicate whether or not to update
the cell at that position

• bragg_k_power (float) – Input Bragg peak intensities are multiplied by
k**bragg_k_power to change the weighting of longer scattering vectors

• bragg_intensity_power (float) – Input Bragg peak intensities are raised power
**bragg_intensity_power.

• k_min (float) – min k value for fitting range (Å^-1)

• k_max (float) – max k value for fitting range (Å^-1)

• k_step (float) – step size of k in fitting range (Å^-1)

• k_broadening (float) – Initial guess for Gaussian broadening of simulated pattern (Å^-
1)

• fit_all_intensities (bool) – Set to true to allow all peak intensities to change inde-
pendently False forces a single intensity scaling.

• verbose (bool) – Output the calibrated pixel size.

• plot_result (bool) – Plot the resulting fit.

• figsize (list, tuple, np.ndarray) –

• returnfig (bool) – Return handles figure and axis

158 Chapter 1. Contents

py4dstem, Release 0.14.14

Returns
Optional figure and axis handles, if returnfig=True.

Return type
fig, ax (handles)

Details: User has the option to define what is allowed to update in the unit cell using the arguments coef_index
and coef_update. Each has 6 entries, corresponding to the a, b, c, alpha, beta, gamma parameters of the unit
cell, in this order. The coef_update argument is a list of bools specifying whether or not the unit cell value will
be allowed to change (True) or must maintain the original value (False) upon fitting. The coef_index argument
provides a pointer to the index in which the code will update to.

For example, to update a, b, c, alpha, beta, gamma all independently of eachother, the following arguments should
be used:

coef_index = [0, 1, 2, 3, 4, 5] coef_update = [True, True, True, True, True, True,]

The default is set to automatically define what can update in a unit cell based on the point group constraints.
When either ‘coef_index’ or ‘coef_update’ are None, these constraints will be automatically pulled from the
pointgroup.

For example, the default for cubic unit cells is:
coef_index = [0, 0, 0, 3, 3, 3] coef_update = [True, True, True, False, False, False]

Which allows a, b, and c to update (True in first 3 indices of coef_update) but b and c update based on the value
of a (0 in the 1 and 2 list entries in coef_index) such that a = b = c. While coef_update is False for alpha, beta,
and gamma (entries 3, 4, 5), no updates will be made to the angles.

The user has the option to predefine coef_index or coef_update to override defaults. In the coef_update list, there
must be 6 entries and each are boolean. In the coef_index list, there must be 6 entries, with the first 3 entries
being between 0 - 2 and the last 3 entries between 3 - 5. These act as pointers to pull the updated parameter from.

class py4DSTEM.process.diffraction.crystal_phase.Crystal_Phase(crystals, orientation_maps, name)
A class storing multiple crystal structures, and associated diffraction data. Must be initialized after matching
orientations to a pointlistarray???

__init__(crystals, orientation_maps, name)

Parameters
• crystals (list) – List of crystal instances

• orientation_maps (list) – List of orientation maps

• name (str) – Name of Crystal_Phase instance

plot_all_phase_maps(map_scale_values=None, index=0)
Visualize phase maps of dataset.

Parameters
map_scale_values (float) – Value to scale correlations by

quantify_phase(pointlistarray, tolerance_distance=0.08, method='nnls', intensity_power=0,
mask_peaks=None)

Quantification of the phase of a crystal based on the crystal instances and the pointlistarray.

Parameters
• pointlisarray (pointlistarray) – Pointlistarray to quantify phase of

• tolerance_distance (float) – Distance allowed between a peak and match

• method (str) – Numerical method used to quantify phase

1.4. API 159

py4dstem, Release 0.14.14

• intensity_power (float) – . . .

• mask_peaks (list, optional) – A pointer of which positions to mask peaks from

Details:

quantify_phase_pointlist(pointlistarray, position, method='nnls', tolerance_distance=0.08,
intensity_power=0, mask_peaks=None)

Parameters
• pointlisarray (pointlistarray) – Pointlistarray to quantify phase of

• position (tuple/list) – Position of pointlist in pointlistarray

• tolerance_distance (float) – Distance allowed between a peak and match

• method (str) – Numerical method used to quantify phase

• intensity_power (float) – . . .

• mask_peaks (list, optional) – A pointer of which positions to mask peaks from

Returns
Peak matches in the rows of array and the crystals in the columns phase_weights
(np.ndarray): Weights of each phase phase_residuals (np.ndarray): Residuals crys-
tal_identity (list): List of lists, where the each entry represents the position in the

crystal and orientation match that is associated with the phase weights. for ex-
ample, if the output was [[0,0], [0,1], [1,0], [0,1]], the first entry [0,0] in phase
weights is associated with the first crystal the first match within that crystal. [0,1]
is the first crystal and the second match within that crystal.

Return type
pointlist_peak_intensity_matches (np.ndarray)

py4DSTEM.process.diffraction.crystal_viz.plot_structure(self , orientation_matrix: ndarray | None =
None, zone_axis_lattice: ndarray | None =
None, proj_x_lattice: ndarray | None =
None, zone_axis_cartesian: ndarray | None
= None, proj_x_cartesian: ndarray | None
= None, size_marker: float = 400,
tol_distance: float = 0.001, plot_limit:
ndarray | None = None, camera_dist: float
| None = None, show_axes: bool = False,
perspective_axes: bool = True, figsize:
tuple | list | ndarray = (8, 8), returnfig:
bool = False)

Quick 3D plot of the untit cell /atomic structure.

Parameters
• orientation_matrix (array) – (3,3) orientation matrix, where columns represent pro-

jection directions.

• zone_axis_lattice (array) – (3,) projection direction in lattice indices

• proj_x_lattice (array) – (3,) x-axis direction in lattice indices

• zone_axis_cartesian (array) – (3,) cartesian projection direction

• proj_x_cartesian (array) – (3,) cartesian projection direction

160 Chapter 1. Contents

py4dstem, Release 0.14.14

• scale_markers (float) – Size scaling for markers

• tol_distance (float) – Tolerance for repeating atoms on edges on cell boundaries.

• plot_limit (float) – (2,3) numpy array containing x y z plot min and max in columns.
Default is 1.1* unit cell dimensions.

• camera_dist (float) – Move camera closer to the plot (relative to matplotlib default of
10)

• show_axes (bool) – Whether to plot axes or not.

• perspective_axes (bool) – Select either perspective (true) or orthogonal (false) axes

• figsize (2 element float) – Size scaling of figure axes.

• returnfig (bool) – Return figure and axes handles.

Returns
fig, ax (optional) figure and axes handles

py4DSTEM.process.diffraction.crystal_viz.plot_structure_factors(self , orientation_matrix:
ndarray | None = None,
zone_axis_lattice: ndarray |
None = None, proj_x_lattice:
ndarray | None = None,
zone_axis_cartesian: ndarray |
None = None, proj_x_cartesian:
ndarray | None = None,
scale_markers: float = 1000.0,
plot_limit: list | tuple | ndarray |
None = None, camera_dist: float
| None = None, show_axes: bool
= True, perspective_axes: bool =
True, figsize: list | tuple | ndarray
= (8, 8), returnfig: bool = False)

3D scatter plot of the structure factors using magnitude^2, i.e. intensity.

Parameters
• orientation_matrix (array) – (3,3) orientation matrix, where columns represent pro-

jection directions.

• zone_axis_lattice (array) – (3,) projection direction in lattice indices

• proj_x_lattice (array) – (3,) x-axis direction in lattice indices

• zone_axis_cartesian (array) – (3,) cartesian projection direction

• proj_x_cartesian (array) – (3,) cartesian projection direction

• scale_markers (float) – size scaling for markers

• plot_limit (float) – x y z plot limits, default is [-1 1]*self.k_max

• camera_dist (float) – Move camera closer to the plot (relative to matplotlib default of
10)

• show_axes (bool) – Whether to plot axes or not.

• perspective_axes (bool) – Select either perspective (true) or orthogonal (false) axes

• figsize (2 element float) – size scaling of figure axes

• returnfig (bool) – set to True to return figure and axes handles

1.4. API 161

py4dstem, Release 0.14.14

Returns
fig, ax (optional) figure and axes handles

py4DSTEM.process.diffraction.crystal_viz.plot_scattering_intensity(self , k_min=0.0,
k_max=None, k_step=0.001,
k_broadening=0.0,
k_power_scale=0.0,
int_power_scale=0.5,
int_scale=1.0,
remove_origin=True,
bragg_peaks=None,
bragg_k_power=0.0,
bragg_intensity_power=1.0,
bragg_k_broadening=0.005,
figsize: list | tuple | ndarray
= (10, 4), returnfig: bool =
False)

1D plot of the structure factors

Parameters
• k_min (float) – min k value for profile range.

• k_max (float) – max k value for profile range.

• k_step (float) – Step size of k in profile range.

• k_broadening (float) – Broadening of simulated pattern.

• k_power_scale (float) – Scale SF intensities by k**k_power_scale.

• int_power_scale (float) – Scale SF intensities**int_power_scale.

• int_scale (float) – Scale output profile by this value.

• remove_origin (bool) – Remove origin from plot.

• bragg_peaks (BraggVectors) – Passed in bragg_peaks for comparison with simulated
pattern.

• bragg_k_power (float) – bragg_peaks scaled by k**bragg_k_power.

• bragg_intensity_power (float) – bragg_peaks scaled by intensi-
ties**bragg_intensity_power.

• bragg_k_broadening (float) – Broadening applied to bragg_peaks.

• figsize (list, tuple, np.ndarray) – Figure size for plot.

• (bool) (returnfig) – Return figure and axes handles if this is True.

Returns
figure and axes handles

Return type
fig, ax (optional)

162 Chapter 1. Contents

py4dstem, Release 0.14.14

py4DSTEM.process.diffraction.crystal_viz.plot_orientation_zones(self , azim_elev: list | tuple |
ndarray | None = None,
proj_dir_lattice: list | tuple |
ndarray | None = None,
proj_dir_cartesian: list | tuple |
ndarray | None = None,
tol_den=10, marker_size: float
= 20, plot_limit: list | tuple |
ndarray = array([-1.1, 1.1]),
figsize: list | tuple | ndarray = (8,
8), returnfig: bool = False)

3D scatter plot of the structure factors using magnitude^2, i.e. intensity.

Parameters
• azim_elev (array) – az and el angles for plot

• proj_dir_lattice (array) – (3,) projection direction in lattice

• proj_dir_cartesian – (array): (3,) projection direction in cartesian

• tol_den (int) – tolerance for rational index denominator

• dir_proj (float) – projection direction, either [elev azim] or normal vector Default is
mean vector of self.orientation_zone_axis_range rows

• marker_size (float) – size of markers

• plot_limit (float) – x y z plot limits, default is [0, 1.05]

• figsize (2 element float) – size scaling of figure axes

• returnfig (bool) – set to True to return figure and axes handles

Returns
fig, ax (optional) figure and axes handles

py4DSTEM.process.diffraction.crystal_viz.plot_orientation_plan(self , index_plot: int = 0,
zone_axis_lattice: ndarray | None
= None, zone_axis_cartesian:
ndarray | None = None, figsize:
list | tuple | ndarray = (14, 6),
returnfig: bool = False)

3D scatter plot of the structure factors using magnitude^2, i.e. intensity.

Parameters
• index_plot (int) – which index slice to plot

• zone_axis_plot (3 element float) – which zone axis slice to plot

• figsize (2 element float) – size scaling of figure axes

• returnfig (bool) – set to True to return figure and axes handles

Returns
fig, ax (optional) figure and axes handles

1.4. API 163

py4dstem, Release 0.14.14

py4DSTEM.process.diffraction.crystal_viz.plot_diffraction_pattern(bragg_peaks: PointList,
bragg_peaks_compare:
PointList | None = None,
scale_markers: float = 500,
scale_markers_compare: float
| None = None,
power_markers: float = 1,
plot_range_kx_ky: list | tuple |
ndarray | None = None,
add_labels: bool = True,
shift_labels: float = 0.08,
shift_marker: float = 0.005,
min_marker_size: float =
1e-06, max_marker_size: float
= 1000, figsize: list | tuple |
ndarray = (12, 6), returnfig:
bool = False,
input_fig_handle=None)

2D scatter plot of the Bragg peaks

Parameters
• bragg_peaks (PointList) – numpy array containing (‘qx’, ‘qy’, ‘intensity’, ‘h’, ‘k’, ‘l’)

• bragg_peaks_compare (PointList) – numpy array containing (‘qx’, ‘qy’, ‘intensity’)

• scale_markers (float) – size scaling for markers

• scale_markers_compare (float) – size scaling for markers of comparison

• power_markers (float) – power law scaling for marks (default is 1, i.e. amplitude)

• plot_range_kx_ky (float) – 2 element numpy vector giving the plot range

• add_labels (bool) – flag to add hkl labels to peaks

• min_marker_size (float) – minimum marker size for the comparison peaks

• max_marker_size (float) – maximum marker size for the comparison peaks

• figsize (2 element float) – size scaling of figure axes

• returnfig (bool) – set to True to return figure and axes handles

• input_fig_handle (fig,ax) –

py4DSTEM.process.diffraction.crystal_viz.plot_orientation_maps(self , orientation_map=None,
orientation_ind: int = 0,
dir_in_plane_degrees: float = 0.0,
corr_range: ndarray = array([0,
5]), corr_normalize: bool = True,
scale_legend: bool | None = None,
figsize: list | tuple | ndarray = (16,
5), figbound: list | tuple | ndarray
= (0.01, 0.005), show_axes: bool
= True, camera_dist=None,
plot_limit=None, plot_layout=0,
swap_axes_xy_limits=False,
returnfig: bool = False,
progress_bar=False)

164 Chapter 1. Contents

py4dstem, Release 0.14.14

Plot the orientation maps.

Parameters
• orientation_map (OrientationMap) – Class containing orientation matrices, correla-

tion values, etc. Optional - can reference internally stored OrientationMap.

• orientation_ind (int) – Which orientation match to plot if num_matches > 1

• dir_in_plane_degrees (float) – In-plane angle to plot in degrees. Default is 0 / x-
axis / vertical down.

• corr_range (np.ndarray) – Correlation intensity range for the plot

• corr_normalize (bool) – If true, set mean correlation to 1.

• scale_legend (float) – 2 elements, x and y scaling of legend panel

• figsize (array) – 2 elements defining figure size

• figbound (array) – 2 elements defining figure boundary

• show_axes (bool) – Flag setting whether orienation map axes are visible.

• camera_dist (float) – distance of camera from legend

• plot_limit (array) – 2x3 array defining plot boundaries of legend

• plot_layout (int) – subplot layout: 0 - 1 row, 3 col 1 - 3 row, 1 col

• swap_axes_xy_limits (bool) – swap x and y boundaries for legend (not sure why we
need this in some cases)

• returnfig (bool) – set to True to return figure and axes handles

• progress_bar (bool) – Enable progressbar when calculating orientation images.

Returns
RGB images fig, axs (handles): Figure and axes handes for the

Return type
images_orientation (int)

Note: Currently, no symmetry reduction. Therefore the x and y orientations are going to be correct only for
[001][011][111] orientation triangle.

1.4. API 165

py4dstem, Release 0.14.14

py4DSTEM.process.diffraction.crystal_viz.plot_fiber_orientation_maps(self , orientation_map,
orientation_ind: int = 0,
symmetry_order: int |
None = None,
symmetry_mirror: bool =
False,
dir_in_plane_degrees:
float = 0.0, corr_range:
ndarray = array([0, 2]),
corr_normalize: bool =
True, show_axes: bool =
True, medfilt_size: int |
None = None,
cmap_out_of_plane: str =
'plasma', leg_size: int =
200, figsize: list | tuple |
ndarray = (12, 8),
figbound: list | tuple |
ndarray = (0.005, 0.04),
returnfig: bool = False)

Generate and plot the orientation maps from fiber texture plots.

Parameters
• orientation_map (OrientationMap) – Class containing orientation matrices, correla-

tion values, etc.

• orientation_ind (int) – Which orientation match to plot if num_matches > 1

• dir_in_plane_degrees (float) – Reference in-plane angle (degrees). Default is 0 /
x-axis / vertical down.

• corr_range (np.ndarray) – Correlation intensity range for the plot

• corr_normalize (bool) – If true, set mean correlation to 1.

• show_axes (bool) – Flag setting whether orienation map axes are visible.

• figsize (array) – 2 elements defining figure size

• figbound (array) – 2 elements defining figure boundary

• returnfig (bool) – set to True to return figure and axes handles

Returns
RGB images fig, axs (handles): Figure and axes handes for the

Return type
images_orientation (int)

Note: Currently, no symmetry reduction. Therefore the x and y orientations are going to be correct only for
[001][011][111] orientation triangle.

py4DSTEM.process.diffraction.crystal_viz.plot_clusters(self , area_min=2, outline_grains=True,
outline_thickness=1, fill_grains=0.25,
smooth_grains=1.0, cmap='viridis',
figsize=(8, 8), returnfig=False)

Plot the clusters as an image.

166 Chapter 1. Contents

py4dstem, Release 0.14.14

Parameters
• area_min (int (optional)) – Min cluster size to include, in units of probe positions.

• outline_grains (bool (optional)) – Set to True to draw grains with outlines

• outline_thickness (int (optional)) – Thickenss of the grain outline

• fill_grains (float (optional)) – Outlined grains are filled with this value in pixels.

• smooth_grains (float (optional)) – Grain boundaries are smoothed by this value
in pixels.

• figsize (tuple) – Size of the figure panel

• returnfig (bool) – Setting this to true returns the figure and axis handles

Returns
Figure and axes handles

Return type
fig, ax (optional)

py4DSTEM.process.diffraction.crystal_viz.plot_cluster_size(self , area_min=None,
area_max=None, area_step=1,
weight_intensity=False,
pixel_area=1.0,
pixel_area_units='px^2', figsize=(8, 6),
returnfig=False)

Plot the cluster sizes

Parameters
• area_min (int (optional)) – Min area to include in pixels^2

• area_max (int (optional)) – Max area bin in pixels^2

• area_step (int (optional)) – Step size of the histogram bin in pixels^2

• weight_intensity (bool) – Weight histogram by the peak intensity.

• pixel_area (float) – Size of pixel area unit square

• pixel_area_units (string) – Units of the pixel area

• figsize (tuple) – Size of the figure panel

• returnfig (bool) – Setting this to true returns the figure and axis handles

Returns
Figure and axes handles

Return type
fig, ax (optional)

py4DSTEM.process.diffraction.crystal_viz.atomic_colors(Z , scheme='jmol')
Return atomic colors for Z.

Modes are “colin” and “jmol”. “colin” uses the handmade but incomplete scheme of Colin Ophus “jmol” uses
the JMOL scheme, from http://jmol.sourceforge.net/jscolors

which includes all elements up to 109

1.4. API 167

http://jmol.sourceforge.net/jscolors

py4dstem, Release 0.14.14

py4DSTEM.process.diffraction.crystal_viz.plot_ring_pattern(radii, intensity,
theta=[-3.141592653589793,
3.141592653589793, 200],
intensity_scale=1,
intensity_constant=False, color='k',
figsize=(10, 10), returnfig=False,
input_fig_handle=None, **kwargs)

2D plot of diffraction rings

Parameters
• radii (PointList) – 1D numpy array containing radii for diffraction rings

• intensity (PointList) – 1D numpy array containing intensities for diffraciton rings

• theta (3-tuple) – first two values specify angle range, and the last specifies the number
of points used for plotting

• intensity_scale (float) – size scaling for ring thickness

• intensity_constant (bool) – if true, all rings are plotted with same line width

• color (matplotlib color) – color of ring, any format recognized by matplotlib

• figsize (2 element float) – size scaling of figure axes

• returnfig (bool) – set to True to return figure and axes handles

• input_fig_handle (fig,ax) –

py4DSTEM.process.diffraction.flowlines.make_orientation_histogram(bragg_peaks: PointListArray |
None = None, radial_ranges:
ndarray | None = None,
orientation_map=None,
orientation_ind: int = 0,
orientation_growth_angles:
array = 0.0,
orientation_separate_bins:
bool = False,
orientation_flip_sign: bool =
False, upsample_factor=4.0,
theta_step_deg=1.0,
sigma_x=1.0, sigma_y=1.0,
sigma_theta=3.0,
normalize_intensity_image:
bool = False,
normalize_intensity_stack:
bool = True, progress_bar:
bool = True)

Create an 3D or 4D orientation histogram from a braggpeaks PointListArray from user-specified radial ranges,
or from the Euler angles from a fiber texture OrientationMap generated by the ACOM module of py4DSTEM.

Parameters
• bragg_peaks (PointListArray) – 2D of pointlists containing centered peak locations.

• radial_ranges (np array) – Size (N x 2) array for N radial bins, or (2,) for a single
bin.

• orientation_map (OrientationMap) – Class containing the Euler angles to generate
a flowline map.

168 Chapter 1. Contents

py4dstem, Release 0.14.14

• orientation_ind (int) – Index of the orientation map (default 0)

• orientation_growth_angles (array) – Angles to place into histogram, relative to
orientation.

• orientation_separate_bins (bool) – whether to place multiple angles into multiple
radial bins.

• upsample_factor (float) – Upsample factor

• theta_step_deg (float) – Step size along annular direction in degrees

• sigma_x (float) – Smoothing in x direction before upsample

• sigma_y (float) – Smoothing in x direction before upsample

• sigma_theta (float) – Smoothing in annular direction (units of bins, periodic)

• normalize_intensity_image (bool) – Normalize to max peak intensity = 1, per image

• normalize_intensity_stack (bool) – Normalize to max peak intensity = 1, all im-
ages

• progress_bar (bool) – Enable progress bar

Returns
4D array containing Bragg peak intensity histogram

[radial_bin x_probe y_probe theta]

Return type
orient_hist (array)

py4DSTEM.process.diffraction.flowlines.make_flowline_map(orient_hist, thresh_seed=0.2,
thresh_grow=0.05,
thresh_collision=0.001, sep_seeds=None,
sep_xy=6.0, sep_theta=5.0,
sort_seeds='intensity', linewidth=2.0,
step_size=0.5, min_steps=4,
max_steps=1000, sigma_x=1.0,
sigma_y=1.0, sigma_theta=2.0,
progress_bar: bool = True)

Create an 3D or 4D orientation flowline map - essentially a pixelated “stream map” which represents diffraction
data.

Parameters
• orient_hist (array) – Histogram of all orientations with coordinates [radial_bin

x_probe y_probe theta] We assume theta bin ranges from 0 to 180 degrees and is peri-
odic.

• thresh_seed (float) – Threshold for seed generation in histogram.

• thresh_grow (float) – Threshold for flowline growth in histogram.

• thresh_collision (float) – Threshold for termination of flowline growth in his-
togram.

• sep_seeds (float) – Initial seed separation in bins - set to None to use default value,
which is equal to 0.5*sep_xy.

• sep_xy (float) – Search radius for flowline direction in x and y.

• = (sep_theta) – Search radius for flowline direction in theta.

1.4. API 169

py4dstem, Release 0.14.14

• sort_seeds (str) – How to sort the initial seeds for growth: None - no sorting ‘intensity’
- sort by histogram intensity ‘random’ - random order

• linewidth (float) – Thickness of the flowlines in pixels.

• step_size (float) – Step size for flowline growth in pixels.

• min_steps (int) – Minimum number of steps for a flowline to be drawn.

• max_steps (int) – Maximum number of steps for a flowline to be drawn.

• sigma_x (float) – Weighted sigma in x direction for direction update.

• sigma_y (float) – Weighted sigma in y direction for direction update.

• sigma_theta (float) – Weighted sigma in theta for direction update.

• progress_bar (bool) – Enable progress bar

Returns
4D array containing flowlines

[radial_bin x_probe y_probe theta]

Return type
orient_flowlines (array)

py4DSTEM.process.diffraction.flowlines.make_flowline_rainbow_image(orient_flowlines,
int_range=[0, 0.2],
sym_rotation_order=2,
theta_offset=0.0,
greyscale=False,
greyscale_max=True,
white_background=False,
power_scaling=1.0,
sum_radial_bins=False,
plot_images=True,
figsize=None)

Generate RGB output images from the flowline arrays.

Parameters
• orient_flowline (array) – Histogram of all orientations with coordinates [x y ra-

dial_bin theta] We assume theta bin ranges from 0 to 180 degrees and is periodic.

• int_range (float) –

• sym_rotation_order (int) – rotational symmety for colouring

• theta_offset (float) – Offset the anglular coloring by this value in radians.

• greyscale (bool) – Set to False for color output, True for greyscale output.

• greyscale_max (bool) – If output is greyscale, use max instead of mean for overlapping
flowlines.

• white_background (bool) – For either color or greyscale output, switch to white back-
ground (from black).

• power_scaling (float) – Power law scaling for flowline intensity output.

• sum_radial_bins (bool) – Sum all radial bins (alternative is to output separate images).

• plot_images (bool) – Plot the outputs for quick visualization.

• figsize (2-tuple) – Size of output figure.

170 Chapter 1. Contents

py4dstem, Release 0.14.14

Returns
3D or 4D array containing flowline images

Return type
im_flowline (array)

py4DSTEM.process.diffraction.flowlines.make_flowline_rainbow_legend(im_size=array([256, 256]),
sym_rotation_order=2,
theta_offset=0.0,
white_background=False,
return_image=False,
radial_range=array([0.45,
0.9]), plot_legend=True,
figsize=(4, 4))

This function generates a legend for a the rainbow colored flowline maps, and returns it as an RGB image.

Parameters
• im_size (np.array) – Size of legend image in pixels.

• sym_rotation_order (int) – rotational symmety for colouring

• theta_offset (float) – Offset the anglular coloring by this value in radians.

• white_background (bool) – For either color or greyscale output, switch to white back-
ground (from black).

• return_image (bool) – Return the image array.

• radial_range (np.array) – Inner and outer radius for the legend ring.

• plot_legend (bool) – Plot the generated legend.

• figsize (tuple or list) – Size of the plotted legend.

Returns
Image array for the legend.

Return type
im_legend (array)

py4DSTEM.process.diffraction.flowlines.make_flowline_combined_image(orient_flowlines,
int_range=[0, 0.2],
cvals=array([[0., 0.7, 0.],
[1., 0., 0.], [0., 0.7, 1.]]),
white_background=False,
power_scaling=1.0,
sum_radial_bins=True,
plot_images=True,
figsize=None)

Generate RGB output images from the flowline arrays.

Parameters
• orient_flowline (array) – Histogram of all orientations with coordinates [x y ra-

dial_bin theta] We assume theta bin ranges from 0 to 180 degrees and is periodic.

• int_range (float) –

• cvals (array) – Nx3 size array containing RGB colors for different radial ibns.

• white_background (bool) – For either color or greyscale output, switch to white back-
ground (from black).

1.4. API 171

py4dstem, Release 0.14.14

• power_scaling (float) – Power law scaling for flowline intensities.

• sum_radial_bins (bool) – Sum outputs over radial bins.

• plot_images (bool) – Plot the output images for quick visualization.

• figsize (2-tuple) – Size of output figure.

Returns
flowline images

Return type
im_flowline (array)

py4DSTEM.process.diffraction.flowlines.orientation_correlation(orient_hist, radius_max=None,
progress_bar=True)

Take in the 4D orientation histogram, and compute the distance-angle (auto)correlations

Parameters
• orient_hist (array) – 3D or 4D histogram of all orientations with coordinates [x y

radial_bin theta]

• radius_max (float) – Maximum radial distance for correlogram calculation. If set to
None, the maximum radius will be set to min(orient_hist.shape[0],orient_hist.shape[1])/2.

Returns
3D or 4D array containing correlation images as function of (dr,dtheta)

Return type
orient_corr (array)

py4DSTEM.process.diffraction.flowlines.plot_orientation_correlation(orient_corr,
prob_range=[0.1, 10.0],
calculate_coefs=False,
fraction_coefs=0.5,
length_fit_slope=10,
plot_overlaid_coefs=True,
inds_plot=None,
pixel_size=None,
pixel_units=None,
fontsize=10, figsize=(8, 6),
returnfig=False)

Plot the distance-angle (auto)correlations in orient_corr.

Parameters
• (array) (figsize) – 3D or 4D array containing correlation images as function of

(dr,dtheta) 1st index represents each pair of rings.

• (array) – Plotting range in units of “multiples of random distribution”.

• (bool) (returnfig) – If this value is True, the 0.5 and 0.1 distribution fraction of the
radial and annular correlations will be calculated and printed.

• (float) (fontsize) – What fraction to calculate the correlation distribution coefficients
for.

• (int) (length_fit_slope) – Number of pixels to fit the slope of angular vs radial
intercept.

• (bool) – If this value is True, the 0.5 and 0.1 distribution fraction of the radial and annular
correlations will be overlaid onto the plots.

172 Chapter 1. Contents

py4dstem, Release 0.14.14

• (float) – Which indices to plot for orient_corr. Set to “None” to plot all pairs.

• (float) – Pixel size for x axis.

• (str) (pixel_units) – units of pixels.

• (float) – Font size. Title will be slightly larger, axis slightly smaller.

• (array) – Size of the figure panels.

• (bool) – Set to True to return figure axes.

Returns
Figure and axes handles (optional).

Return type
fig, ax (handles)

This module provides access to some objects used or maintained by the interpreter and to functions that interact strongly
with the interpreter.

Dynamic objects:

argv – command line arguments; argv[0] is the script pathname if known path – module search path; path[0] is the
script directory, else ‘’ modules – dictionary of loaded modules

displayhook – called to show results in an interactive session excepthook – called to handle any uncaught exception
other than SystemExit

To customize printing in an interactive session or to install a custom top-level exception handler, assign
other functions to replace these.

stdin – standard input file object; used by input() stdout – standard output file object; used by print() stderr – standard
error object; used for error messages

By assigning other file objects (or objects that behave like files) to these, it is possible to redirect all of the
interpreter’s I/O.

last_type – type of last uncaught exception last_value – value of last uncaught exception last_traceback – traceback of
last uncaught exception

These three are only available in an interactive session after a traceback has been printed.

Static objects:

builtin_module_names – tuple of module names built into this interpreter copyright – copyright notice pertaining to
this interpreter exec_prefix – prefix used to find the machine-specific Python library executable – absolute path of the
executable binary of the Python interpreter float_info – a named tuple with information about the float implementation.
float_repr_style – string indicating the style of repr() output for floats hash_info – a named tuple with information
about the hash algorithm. hexversion – version information encoded as a single integer implementation – Python
implementation information. int_info – a named tuple with information about the int implementation. maxsize – the
largest supported length of containers. maxunicode – the value of the largest Unicode code point platform – platform
identifier prefix – prefix used to find the Python library thread_info – a named tuple with information about the thread
implementation. version – the version of this interpreter as a string version_info – version information as a named
tuple __stdin__ – the original stdin; don’t touch! __stdout__ – the original stdout; don’t touch! __stderr__ – the
original stderr; don’t touch! __displayhook__ – the original displayhook; don’t touch! __excepthook__ – the original
excepthook; don’t touch!

Functions:

displayhook() – print an object to the screen, and save it in builtins._ excepthook() – print an exception and its traceback
to sys.stderr exc_info() – return thread-safe information about the current exception exit() – exit the interpreter by raising
SystemExit getdlopenflags() – returns flags to be used for dlopen() calls getprofile() – get the global profiling function
getrefcount() – return the reference count for an object (plus one :-) getrecursionlimit() – return the max recursion

1.4. API 173

py4dstem, Release 0.14.14

depth for the interpreter getsizeof() – return the size of an object in bytes gettrace() – get the global debug tracing
function setdlopenflags() – set the flags to be used for dlopen() calls setprofile() – set the global profiling function
setrecursionlimit() – set the max recursion depth for the interpreter settrace() – set the global debug tracing function

class py4DSTEM.process.diffraction.utils.Orientation(num_matches: int)
A class for storing output orientations, generated by fitting a Crystal class orientation plan or Bloch wave pattern
matching to a PointList.

__init__(num_matches: int)→ None

class py4DSTEM.process.diffraction.utils.OrientationMap(num_x: int, num_y: int, num_matches: int)
A class for storing output orientations, generated by fitting a Crystal class orientation plan or Bloch wave pattern
matching to a PointListArray.

__init__(num_x: int, num_y: int, num_matches: int)→ None

py4DSTEM.process.diffraction.utils.sort_orientation_maps(orientation_map, sort='intensity',
cluster_thresh=0.1)

Sort the orientation maps along the ind_match direction, either by intensity or by clustering similar angles (greed-
ily, in order of intensity).

Parameters
• OrientationMap (orientation_map Initial) –

• sort (string) – “intensity” or “cluster” for sorting method.

• cluster_thresh (float) – similarity threshold for clustering method

Returns
orientation_sort Sorted OrientationMap

py4DSTEM.process.diffraction.utils.calc_1D_profile(k, g_coords, g_int, remove_origin=True,
k_broadening=0.0, int_scale=None,
normalize_intensity=True)

Utility function to calculate a 1D histogram from the diffraction vector lengths stored in a Crystal class.

Parameters
• k (np.array) – k coordinates.

• g_coords (np.array) – Scattering vector lengths g.

• bragg_intensity_power (np.array) – Scattering vector intensities.

• remove_origin (bool) – Remove the origin peak from the profile.

• k_broadening (float) – Broadening applied to full profile.

• int_scale (np.array) – Either a scalar value mulitiplied into all peak intensities, or a
vector with 1 value per peak to scale peaks individually.

• normalize_intensity – Normalize maximum output value to 1.

174 Chapter 1. Contents

py4dstem, Release 0.14.14

diskdetection

fit

py4DSTEM.process.fit.fit.fit_1D_gaussian(xdata, ydata, xmin, xmax)
Fits a 1D gaussian to the subset of the 1D curve f(xdata)=ydata within the window (xmin,xmax). Returns
A,mu,sigma. Retrieve the full curve with

>>> fit_gaussian = py4DSTEM.process.fit.gaussian(xdata,A,mu,sigma)

py4DSTEM.process.fit.fit.fit_2D(function, data, data_mask=None, popt=None, robust=False,
robust_steps=3, robust_thresh=2)

Performs a 2D fit.

TODO: make returning the mask optional

Parameters
• function (callable) – Some function(xy, **p) where xy is a length 2 vector (1D np

array) specifying the pixel position (x,y), and p is the function parameters

• data (ndarray) – Some 2D array of any shape (n,m)

• data_mask (None or boolean array of shape (n,m), optional) – If speci-
fied, fits only the pixels in data where this array is True

• popt (dict) – Initial guess at the parameters p of function. Note that positions in pixels
(i.e. the xy positions) are linearly scaled to the space [0,1]

• robust (bool) – Toggles robust fitting, which iteratively rejects outlier data points which
have a root-mean-square error beyond robust_thresh

• robust_steps (int) – The number of robust fitting iterations to perform

• robust_thresh (int) – The robust fitting cutoff

• Returns –

• (popt (4-tuple) – The optimal fit parameters, the fitting covariance matrix, the the fit
array with the returned popt params, and the mask

• pcov (4-tuple) – The optimal fit parameters, the fitting covariance matrix, the the fit
array with the returned popt params, and the mask

• fit_at (4-tuple) – The optimal fit parameters, the fitting covariance matrix, the the fit
array with the returned popt params, and the mask

• mask) (4-tuple) – The optimal fit parameters, the fitting covariance matrix, the the fit
array with the returned popt params, and the mask

py4DSTEM.process.fit.fit.fit_2D_polar_gaussian(data, mask=None, p0=None, robust=False,
robust_steps=3, robust_thresh=2,
constant_background=False)

NOTE - this cannot work without using pixel coordinates - something is wrong in the workflow.

Fits a 2D gaussian to the pixels in data which are set to True in mask.

The gaussian is anisotropic and oriented along (t,q), centered at (mu_t,mu_q), has standard deviations
(sigma_t,sigma_q), maximum of I0, and an optional constant offset of C, and is periodic in t.

f(x,y) = I0 * exp(- (x-mu_x)^2/(2sig_x^2) + (y-mu_y)^2/(2sig_y^2)) or f(x,y) = I0 * exp(- (x-
mu_x)^2/(2sig_x^2) + (y-mu_y)^2/(2sig_y^2)) + C

1.4. API 175

py4dstem, Release 0.14.14

Parameters
• data (2d array) – the data to fit

• p0 (6-tuple) – initial guess at fit parameters, (I0,mu_x,mu_y,sigma_x_sigma_y,C)

• mask (2d boolean array) – ignore pixels where mask is False

• robust (bool) – toggle robust fitting

• robust_steps (int) – number of robust fit iterations

• robust_thresh (number) – the robust fitting threshold

• constant_background (bool) – whether or not to include constant background

Returns
(popt,pcov,fit_ar) – the optimal fit parameters, the covariance matrix, and the fit array

Return type
3-tuple

latticevectors

phase

py4DSTEM.process.phase.utils.polar_symbols = ('C10', 'C12', 'phi12', 'C21', 'phi21',
'C23', 'phi23', 'C30', 'C32', 'phi32', 'C34', 'phi34', 'C41', 'phi41', 'C43', 'phi43',
'C45', 'phi45', 'C50', 'C52', 'phi52', 'C54', 'phi54', 'C56', 'phi56')

Symbols for the polar representation of all optical aberrations up to the fifth order.

py4DSTEM.process.phase.utils.polar_aliases = {'C5': 'C50', 'Cs': 'C30', 'astigmatism':
'C12', 'astigmatism_angle': 'phi12', 'coma': 'C21', 'coma_angle': 'phi21', 'defocus':
'C10'}

Aliases for the most commonly used optical aberrations.

class py4DSTEM.process.phase.utils.ComplexProbe(energy: float, gpts: Tuple[int, int], sampling:
Tuple[float, float], semiangle_cutoff: float = inf ,
rolloff: float = 2.0, vacuum_probe_intensity: ndarray
| None = None, device: str = 'cpu', focal_spread: float
= 0.0, angular_spread: float = 0.0, gaussian_spread:
float = 0.0, phase_shift: float = 0.0, parameters:
Mapping[str, float] | None = None, **kwargs)

Complex Probe Class.

Simplified version of CTF and Probe from abTEM: https://github.com/abTEM/abTEM/blob/master/abtem/
transfer.py https://github.com/abTEM/abTEM/blob/master/abtem/waves.py

Parameters
• energy (float) – The electron energy of the wave functions this contrast transfer function

will be applied to [eV].

• semiangle_cutoff (float) – The semiangle cutoff describes the sharp Fourier space
cutoff due to the objective aperture [mrad].

• gpts (Tuple[int,int]) – Number of grid points describing the wave functions.

• sampling (Tuple[float,float]) – Lateral sampling of wave functions in Å

176 Chapter 1. Contents

https://github.com/abTEM/abTEM/blob/master/abtem/transfer.py
https://github.com/abTEM/abTEM/blob/master/abtem/transfer.py
https://github.com/abTEM/abTEM/blob/master/abtem/waves.py

py4dstem, Release 0.14.14

• device (str, optional) – Device to perform calculations on. Must be either ‘cpu’ or
‘gpu’

• rolloff (float, optional) – Tapers the cutoff edge over the given angular range
[mrad].

• vacuum_probe_intensity (np.ndarray, optional) – Squared of corner-centered
aperture amplitude to use, instead of semiangle_cutoff + rolloff

• focal_spread (float, optional) – The 1/e width of the focal spread due to chromatic
aberration and lens current instability [Å].

• angular_spread (float, optional) – The 1/e width of the angular deviations due to
source size [mrad].

• gaussian_spread (float, optional) – The 1/e width image deflections due to vibra-
tions and thermal magnetic noise [Å].

• phase_shift (float, optional) – A constant phase shift [radians].

• parameters (dict, optional) – Mapping from aberration symbols to their corre-
sponding values. All aberration magnitudes should be given in Å and angles should be
given in radians.

• kwargs – Provide the aberration coefficients as keyword arguments.

__init__(energy: float, gpts: Tuple[int, int], sampling: Tuple[float, float], semiangle_cutoff: float = inf ,
rolloff: float = 2.0, vacuum_probe_intensity: ndarray | None = None, device: str = 'cpu',
focal_spread: float = 0.0, angular_spread: float = 0.0, gaussian_spread: float = 0.0, phase_shift:
float = 0.0, parameters: Mapping[str, float] | None = None, **kwargs)

set_parameters(parameters: dict)
Set the phase of the phase aberration. :param parameters: Mapping from aberration symbols to their
corresponding values. :type parameters: dict

polar_coordinates(x, y)
Calculate a polar grid for a given Cartesian grid.

build()

Builds corner-centered complex probe in the center of the region of interest.

visualize(**kwargs)
Plots the probe intensity.

py4DSTEM.process.phase.utils.spatial_frequencies(gpts: ~typing.Tuple[int, int], sampling:
~typing.Tuple[float, float], xp=<module 'numpy' from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>)

Calculate spatial frequencies of a grid.

Parameters
• gpts (tuple of int) – Number of grid points.

• sampling (tuple of float) – Sampling of the potential [1 / Å].

Return type
tuple of arrays

1.4. API 177

py4dstem, Release 0.14.14

py4DSTEM.process.phase.utils.fourier_translation_operator(positions: ~numpy.ndarray, shape:
tuple, xp=<module 'numpy' from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>)→
ndarray

Create an array representing one or more phase ramp(s) for shifting another array.

Parameters
• positions (array of xy-positions) – Positions to calculate fourier translation op-

erators for

• shape (two int) – Array dimensions to be fourier-shifted

• xp (Callable) – Array computing module

Return type
Fourier translation operators

py4DSTEM.process.phase.utils.fft_shift(array, positions, xp=<module 'numpy' from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>)

Fourier-shift array using positions.

Parameters
• array (np.ndarray) – Array to be shifted

• positions (array of xy-positions) – Positions to fourier-shift array with

• xp (Callable) – Array computing module

Return type
Fourier-shifted array

py4DSTEM.process.phase.utils.subdivide_into_batches(num_items: int, num_batches: int | None =
None, max_batch: int | None = None)

Split an n integer into m (almost) equal integers, such that the sum of smaller integers equals n.

Parameters
• n (int) – The integer to split.

• m (int) – The number integers n will be split into.

Return type
list of int

class py4DSTEM.process.phase.utils.AffineTransform(scale0: float = 1.0, scale1: float = 1.0, shear1:
float = 0.0, angle: float = 0.0, t0: float = 0.0, t1:
float = 0.0, dilation: float = 1.0)

Affine Transform Class.

Simplified version of AffineTransform from tike: https://github.com/AdvancedPhotonSource/tike/blob/
f9004a32fda5e49fa63b987e9ffe3c8447d59950/src/tike/ptycho/position.py

AffineTransform() -> Identity

Parameters
• scale0 (float) – x-scaling

• scale1 (float) – y-scaling

178 Chapter 1. Contents

https://github.com/AdvancedPhotonSource/tike/blob/f9004a32fda5e49fa63b987e9ffe3c8447d59950/src/tike/ptycho/position.py
https://github.com/AdvancedPhotonSource/tike/blob/f9004a32fda5e49fa63b987e9ffe3c8447d59950/src/tike/ptycho/position.py

py4dstem, Release 0.14.14

• shear1 (float) – gamma shear

• angle (float) – theta rotation angle

• t0 (float) – x-translation

• t1 (float) – y-translation

• dilation (float) – Isotropic expansion (multiplies scale0 and scale1)

__init__(scale0: float = 1.0, scale1: float = 1.0, shear1: float = 0.0, angle: float = 0.0, t0: float = 0.0, t1:
float = 0.0, dilation: float = 1.0)

classmethod fromarray(T: ndarray)
Return an Affine Transfrom from a 2x2 matrix. Use decomposition method from Graphics Gems 2 Section
7.1

asarray()

Return an 2x2 matrix of scale, shear, rotation. This matrix is scale @ shear @ rotate from left to right.

asarray3()

Return an 3x2 matrix of scale, shear, rotation, translation. This matrix is scale @ shear @ rotate from left
to right. Expects a homogenous (z) coordinate of 1.

astuple()

Return the constructor parameters in a tuple.

py4DSTEM.process.phase.utils.estimate_global_transformation(positions0: ~numpy.ndarray,
positions1: ~numpy.ndarray, origin:
~typing.Tuple[int, int] = (0, 0),
translation_allowed: bool = True,
xp=<module 'numpy' from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>)

Use least squares to estimate the global affine transformation.

py4DSTEM.process.phase.utils.estimate_global_transformation_ransac(positions0: ~numpy.ndarray,
positions1: ~numpy.ndarray,
origin: ~typing.Tuple[int,
int] = (0, 0),
translation_allowed: bool =
True, min_sample: int = 64,
max_error: float = 16,
min_consensus: float = 0.75,
max_iter: int = 20,
xp=<module 'numpy' from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>)

Use RANSAC to estimate the global affine transformation.

py4DSTEM.process.phase.utils.fourier_ring_correlation(image_1, image_2, pixel_size=None,
bin_size=None, sigma=None,
align_images=False, upsample_factor=8,
device='cpu', plot_frc=True, frc_color='red',
half_bit_color='blue')

Computes fourier ring correlation (FRC) of 2 arrays. Arrays must bet the same size.

1.4. API 179

py4dstem, Release 0.14.14

Parameters
image1: ndarray

first image for FRC

image2: ndarray
second image for FRC

pixel_size: tuple
size of pixels in A (x,y)

bin_size: float, optional
size of bins for ring profile

sigma: float, optional
standard deviation for Gaussian kernel

align_images: bool
if True, aligns images using DFT upsampling of cross correlation.

upsample factor: int
if align_images, upsampling for correlation. Must be greater than 2.

device: str, optional
calculation device will be perfomed on. Must be ‘cpu’ or ‘gpu’

plot_frc: bool, optional
if True, plots frc

frc_color: str, optional
color of FRC line in plot

half_bit_color: str, optional
color of half-bit line

Returns
• q_frc (ndarray) – spatial frequencies of FRC

• frc (ndarray) – fourier ring correlation

• half_bit (ndarray) – half-bit criteria

py4DSTEM.process.phase.utils.return_1D_profile(intensity, pixel_size=None, bin_size=None,
sigma=None, device='cpu')

Return 1D radial profile from corner centered array

Parameters
intensity: ndarray

Array for computing 1D profile

pixel_size: tuple
Size of pixels in A (x,y)

bin_size: float, optional
Size of bins for ring profile

sigma: float, optional
standard deviation for Gaussian kernel

device: str, optional
calculation device will be perfomed on. Must be ‘cpu’ or ‘gpu’

Returns

180 Chapter 1. Contents

py4dstem, Release 0.14.14

• q_bins (ndarray) – spatial frequencies of bins

• I_bins (ndarray) – Intensity of bins

• n (ndarray) – Number of pixels in each bin

py4DSTEM.process.phase.utils.fourier_rotate_real_volume(array, angle, axes=(0, 1), xp=<module
'numpy' from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>)

Rotates a 3D array using three Fourier-based shear operators.

Parameters
array: ndarray

3D array to rotate

angle: float
Angle in deg to rotate array by

axes: tuple, Optional
Axes defining plane in which to rotate about

xp: Callable, optional
Array computing module

Returns
output_arr – Fourier-rotated array

Return type
ndarray

py4DSTEM.process.phase.utils.array_slice(axis, ndim, start, end, step=1)
Returns array slice along dynamic axis

py4DSTEM.process.phase.utils.periodic_centered_difference(array, spacing, axis, xp=<module
'numpy' from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>)

Computes second-order centered difference with periodic BCs

py4DSTEM.process.phase.utils.compute_divergence_periodic(vector_field, spacings, xp=<module
'numpy' from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>)

Computes divergence of vector_field

py4DSTEM.process.phase.utils.compute_gradient_periodic(scalar_field, spacings, xp=<module 'numpy'
from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>)

Computes gradient of scalar_field

py4DSTEM.process.phase.utils.preconditioned_laplacian_periodic_3D(shape, xp=<module 'numpy'
from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>)

FFT eigenvalues

1.4. API 181

py4dstem, Release 0.14.14

py4DSTEM.process.phase.utils.preconditioned_poisson_solver_periodic_3D(rhs, gauge=None,
xp=<module 'numpy'
from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>)

FFT based poisson solver

py4DSTEM.process.phase.utils.project_vector_field_divergence_periodic_3D(vector_field,
xp=<module 'numpy'
from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>)

Returns solenoidal part of vector field using projection:

f - grad{p} s.t. laplacian{p} = div{f}

py4DSTEM.process.phase.utils.cartesian_to_polar_transform_2Ddata(im_cart, xy_center,
num_theta_bins=90,
radius_max=None,
corner_centered=False,
xp=<module 'numpy' from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>)

Quick cartesian to polar conversion.

py4DSTEM.process.phase.utils.polar_to_cartesian_transform_2Ddata(im_polar, xy_size, xy_center,
corner_centered=False,
xp=<module 'numpy' from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>)

Quick polar to cartesian conversion.

py4DSTEM.process.phase.utils.regularize_probe_amplitude(probe_init, width_max_pixels=2.0,
nearest_angular_neighbor_averaging=5,
enforce_constant_intensity=True,
corner_centered=False)

Fits sigmoid for each angular direction.

Parameters
• probe_init (np.array) – 2D complex image of the probe in Fourier space.

• width_max_pixels (float) – Maximum edge width of the probe in pixels.

• nearest_angular_neighbor_averaging (int) – Number of nearest angular neighbor
pixels to average to make aperture less jagged.

• enforce_constant_intensity (bool) – Set to true to make intensity inside the aper-
ture constant.

• corner_centered (bool) – If True, the probe is assumed to be corner-centered

Returns
• probe_corr (np.ndarray) – 2D complex image of the corrected probe in Fourier space.

• coefs_all (np.ndarray) – coefficients for the sigmoid fits

182 Chapter 1. Contents

py4dstem, Release 0.14.14

py4DSTEM.process.phase.utils.interleave_ndarray_symmetrically(array_nd, axis, xp=<module
'numpy' from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>)

[a,b,c,d,e,f] -> [a,c,e,f,d,b]

py4DSTEM.process.phase.utils.dct_II_using_FFT_base(array_nd, xp=<module 'numpy' from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>)

FFT-based DCT-II

py4DSTEM.process.phase.utils.interleave_ndarray_symmetrically_inverse(array_nd, axis,
xp=<module 'numpy'
from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>)

[a,c,e,f,d,b] -> [a,b,c,d,e,f]

py4DSTEM.process.phase.utils.idct_II_using_FFT_base(array_nd, xp=<module 'numpy' from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>)

FFT-based IDCT-II

py4DSTEM.process.phase.utils.idct_II_using_FFT(array_nd, xp=<module 'numpy' from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>)

FFT-based IDCT-II

py4DSTEM.process.phase.utils.preconditioned_laplacian_neumann_2D(shape, xp=<module 'numpy'
from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>)

DCT eigenvalues

py4DSTEM.process.phase.utils.preconditioned_poisson_solver_neumann_2D(rhs, gauge=None,
xp=<module 'numpy'
from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>)

DCT based poisson solver

py4DSTEM.process.phase.utils.unwrap_phase_2d(array, weights=None, gauge=None,
corner_centered=True, xp=<module 'numpy' from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>)

Weigted phase unwrapping using DCT-based poisson solver

py4DSTEM.process.phase.utils.rotate_point(origin, point, angle)
Rotate a point (x1, y1) counterclockwise by a given angle around a given origin (x0, y0).

Parameters
• origin (2-tuple of floats) – (x0, y0)

• point (2-tuple of floats) – (x1, y1)

• angle (float (radians)) –

1.4. API 183

py4dstem, Release 0.14.14

Return type
rotated points (2-tuple)

py4DSTEM.process.phase.utils.bilinearly_interpolate_array(image, xa, ya, xp=<module 'numpy' from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>)

Bilinear sampling of intensities from an image array and pixel positions.

Parameters
• image (np.ndarray) – Image array to sample from

• xa (np.ndarray) – Vertical interpolation sampling positions of image array in pixels

• ya (np.ndarray) – Horizontal interpolation sampling positions of image array in pixels

Returns
intensities – Bilinearly-sampled intensities of array at (xa,ya) positions

Return type
np.ndarray

py4DSTEM.process.phase.utils.lanczos_interpolate_array(image, xa, ya, alpha, xp=<module 'numpy'
from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>)

Lanczos sampling of intensities from an image array and pixel positions.

Parameters
• image (np.ndarray) – Image array to sample from

• xa (np.ndarray) – Vertical Interpolation sampling positions of image array in pixels

• ya (np.ndarray) – Horizontal interpolation sampling positions of image array in pixels

• alpha (int) – Lanczos kernel order

Returns
intensities – Lanczos-sampled intensities of array at (xa,ya) positions

Return type
np.ndarray

py4DSTEM.process.phase.utils.pixel_rolling_kernel_density_estimate(stack, shifts,
upsampling_factor,
kde_sigma,
lowpass_filter=False,
xp=<module 'numpy' from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>,
gaussian_filter=<function
gaussian_filter>)

kernel density estimate from a set coordinates (xa,ya) and intensity weights.

Parameters
• stack (np.ndarray) – Unshifted image stack, shape (N,P,S)

• shifts (np.ndarray) – Shifts for each image in stack, shape: (N,2)

• upsampling_factor (int) – Upsampling factor

184 Chapter 1. Contents

py4dstem, Release 0.14.14

• kde_sigma (float) – KDE gaussian kernel bandwidth in upsampled pixels

• lowpass_filter (bool, optional) – If True, the resulting KDE upsampled image is
lowpass-filtered using a sinc-function

Returns
pix_output – Upsampled intensity image

Return type
np.ndarray

py4DSTEM.process.phase.utils.bilinear_kernel_density_estimate(xa, ya, intensities, output_shape,
kde_sigma, lowpass_filter=False,
xp=<module 'numpy' from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>,
gaussian_filter=<function
gaussian_filter>)

kernel density estimate from a set coordinates (xa,ya) and intensity weights.

Parameters
• xa (np.ndarray) – Vertical positions of intensity array in pixels

• ya (np.ndarray) – Horizontal positions of intensity array in pixels

• intensities (np.ndarray) – Intensity array weights

• output_shape ((int,int)) – Upsampled intensities shape

• kde_sigma (float) – KDE gaussian kernel bandwidth in upsampled pixels

• lowpass_filter (bool, optional) – If True, the resulting KDE upsampled image is
lowpass-filtered using a sinc-function

Returns
pix_output – Upsampled intensity image

Return type
np.ndarray

py4DSTEM.process.phase.utils.lanczos_kernel_density_estimate(xa, ya, intensities, output_shape,
kde_sigma, alpha,
lowpass_filter=False, xp=<module
'numpy' from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>,
gaussian_filter=<function
gaussian_filter>)

kernel density estimate from a set coordinates (xa,ya) and intensity weights.

Parameters
• xa (np.ndarray) – Vertical positions of intensity array in pixels

• ya (np.ndarray) – Horizontal positions of intensity array in pixels

• intensities (np.ndarray) – Intensity array weights

• output_shape ((int,int)) – Upsampled intensities shape

• kde_sigma (float) – KDE gaussian kernel bandwidth in upsampled pixels

• alpha (int) – Lanczos kernel order

1.4. API 185

py4dstem, Release 0.14.14

• lowpass_filter (bool, optional) – If True, the resulting KDE upsampled image is
lowpass-filtered using a sinc-function

Returns
pix_output – Upsampled intensity image

Return type
np.ndarray

py4DSTEM.process.phase.utils.bilinear_resample(array, scale=None, output_size=None,
mode='grid-wrap', grid_mode=True, vectorized=True,
conserve_array_sums=False, xp=<module 'numpy'
from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>)

Resize an array along its final two axes. Note, this is vectorized by default and thus very memory-intensive.

The scaling of the array can be specified by passing either scale, which sets the scaling factor along both axes to
be scaled; or by passing output_size, which specifies the final dimensions of the scaled axes.

Parameters
• array (np.ndarray) – Input array to be resampled

• scale (float) – Scalar value giving the scaling factor for all dimensions

• output_size ((int,int)) – Tuple of two values giving the output size for the final two
axes

• xp (Callable) – Array computing module

Returns
resampled_array – Resampled array

Return type
np.ndarray

py4DSTEM.process.phase.utils.vectorized_fourier_resample(array, scale=None, output_size=None,
conserve_array_sums=False,
xp=<module 'numpy' from
'/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/latest/lib/python3.10/site-
packages/numpy/__init__.py'>)

Resize a 2D array along any dimension, using Fourier interpolation. For 4D input arrays, only the final two axes
can be resized. Note, this is vectorized and thus very memory-intensive.

The scaling of the array can be specified by passing either scale, which sets the scaling factor along both axes
to be scaled; or by passing output_size, which specifies the final dimensions of the scaled axes (and allows for
different scaling along the x,y or kx,ky axes.)

Parameters
• array (np.ndarray) – Input 2D/4D array to be resampled

• scale (float) – Scalar value giving the scaling factor for all dimensions

• output_size ((int,int)) – Tuple of two values giving eith the (x,y) or (kx,ky) output
size for 2D and 4D respectively.

• xp (Callable) – Array computing module

Returns
resampled_array – Resampled 2D/4D array

186 Chapter 1. Contents

py4dstem, Release 0.14.14

Return type
np.ndarray

py4DSTEM.process.phase.utils.partition_list(lst, size)
Partitions lst into chunks of size. Returns a generator.

py4DSTEM.process.phase.utils.copy_to_device(array, device='cpu')
Copies array to device. Default allows one to use this as asnumpy()

probe

rdf

py4DSTEM.process.rdf.amorph.fit_stack(datacube, init_coefs, mask=None)
This will fit an ellipse using the polar elliptical transform code to all the diffraction patterns. It will take in a
datacube and return a coefficient array which can then be used to map strain, fit the centers, etc.

Parameters
• datacute – a datacube of diffraction data

• init_coefs – an initial starting guess for the fit

• mask – a mask, either 2D or 4D, for either one mask for the whole stack, or one per pattern.

Returns
an array of coefficients of the fit

py4DSTEM.process.rdf.amorph.calculate_coef_strain(coef_cube, r_ref)
This function will calculate the strains from a 3D matrix output by fit_stack

Coefs order:
• I0 the intensity of the first gaussian function

• I1 the intensity of the Janus gaussian

• sigma0 std of first gaussian

• sigma1 inner std of Janus gaussian

• sigma2 outer std of Janus gaussian

• c_bkgd a constant offset

• R center of the Janus gaussian

• x0,y0 the origin

• B,C 1x^2 + Bxy + Cy^2 = 1

Parameters
• coef_cube – output from fit_stack

• r_ref – a reference 0 strain radius - needed because we fit r as well as B and C

Returns
• exx: strain in the x axis direction in image coordinates

• eyy: strain in the y axis direction in image coordinates

• exy: shear

1.4. API 187

py4dstem, Release 0.14.14

Return type
(3-tuple) A 3-tuple containing

py4DSTEM.process.rdf.amorph.plot_strains(strains, cmap='RdBu_r', vmin=None, vmax=None,
mask=None)

This function will plot strains with a unified color scale.

Parameters
• strains (3-tuple of arrays) – (exx, eyy, exy)

• cmap – imshow parameters

• vmin – imshow parameters

• vmax – imshow parameters

• mask – real space mask of values not to show (black)

py4DSTEM.process.rdf.amorph.convert_stack_polar(datacube, coef_cube)
This function will take the coef_cube from fit_stack and apply it to the image stack, to return polar transformed
images.

Parameters
• datacube – data in datacube format

• coef_cube – coefs from fit_stack

Returns
polar transformed datacube

py4DSTEM.process.rdf.amorph.compute_polar_stack_symmetries(datacube_polar)
This function will take in a datacube of polar-transformed diffraction patterns, and do the autocorrelation, before
taking the fourier transform along the theta direction, such that symmetries can be measured. They will be plotted
by a different function

Parameters
datacube_polar – diffraction pattern cube that has been polar transformed

Returns
the normalized fft along the theta direction of the autocorrelated patterns in datacube_polar

py4DSTEM.process.rdf.amorph.plot_symmetries(datacube_symmetries, sym_order)
This function will take in a datacube from compute_polar_stack_symmetries and plot a specific symmetry order.

Parameters
• datacube_symmetries – result of compute_polar_stack_symmetries, the stack of fft’d

autocorrelated diffraction patterns

• sym_order – symmetry order desired to plot

Returns
None

py4DSTEM.process.rdf.rdf.get_radial_intensity(polar_img, polar_mask)
Takes in a radial transformed image and the radial mask (if any) applied to that image. Designed to be compatible
with polar-elliptical transforms from utils

188 Chapter 1. Contents

py4dstem, Release 0.14.14

py4DSTEM.process.rdf.rdf.fit_scattering_factor(scale, elements, composition, q_arr, units)
Scale is linear factor Elements is an 1D array of atomic numbers. Composition is a 1D array, same length as
elements, describing the average atomic composition of the sample. If the Q_coords is a 1D array of Fourier
coordinates, given in inverse Angstroms. Units is a string of ‘VA’ or ‘A’, which returns the scattering factor in
volt angtroms or in angstroms.

py4DSTEM.process.rdf.rdf.get_phi(radialIntensity, scatter, q_arr)
ymean scale*scatter.fe**2

py4DSTEM.process.rdf.rdf.get_mask(left, right, midpoint, slopes, q_arr)
start is float stop is float midpoint is float slopes is [float,float]

py4DSTEM.process.rdf.rdf.get_rdf(phi, q_arr)
phi can be masked or not masked

utils

py4DSTEM.process.utils.cross_correlate.get_cross_correlation(ar, template, corrPower=1,
_returnval='real')

Get the cross/phase/hybrid correlation of ar with template, where the latter is in real space.

If _returnval is ‘real’, returns the real-valued cross-correlation. Otherwise, returns the complex valued result.

py4DSTEM.process.utils.cross_correlate.get_cross_correlation_FT(ar, template_FT , corrPower=1,
_returnval='real')

Get the cross/phase/hybrid correlation of ar with template_FT, where the latter is already in Fourier space (i.e.
template_FT is np.conj(np.fft.fft2(template)).

If _returnval is ‘real’, returns the real-valued cross-correlation. Otherwise, returns the complex valued result.

py4DSTEM.process.utils.cross_correlate.get_shift(ar1, ar2, corrPower=1)

Determine the relative shift between a pair of arrays giving the best overlap.

Shift determination uses the brightest pixel in the cross correlation, and is

thus limited to pixel resolution. corrPower specifies the cross correlation power, with 1 corresponding to a cross
correlation and 0 a phase correlation.

Args:
ar1,ar2 (2D ndarrays):

corrPower (float between 0 and 1, inclusive): 1=cross correlation, 0=phase
correlation

Returns
(shiftx,shifty) - the relative image shift, in pixels

Return type
(2-tuple)

py4DSTEM.process.utils.cross_correlate.align_images_fourier(G1, G2, upsample_factor,
device='cpu')

Alignment of two images using DFT upsampling of cross correlation.

Parameters
• G1 (ndarray) – fourier transform of image 1

1.4. API 189

py4dstem, Release 0.14.14

• G2 (ndarray) – fourier transform of image 2

• upsample_factor (float) – upsampling for correlation. Must be greater than 2.

• device (str, optional) – calculation device will be perfomed on. Must be ‘cpu’ or
‘gpu’

• Returns – xy_shift [pixels]

py4DSTEM.process.utils.cross_correlate.align_and_shift_images(image_1, image_2,
upsample_factor, device='cpu')

Alignment of two images using DFT upsampling of cross correlation.

Parameters
• image_1 (ndarray) – image 1

• image_2 (ndarray) – image 2

• upsample_factor (float) – upsampling for correlation. Must be greater than 2.

• device (str, optional) – calculation device will be perfomed on. Must be ‘cpu’ or
‘gpu’.

• Returns – shifted image [pixels]

Contains functions relating to polar-elliptical calculations.

This includes
• transforming data from cartesian to polar-elliptical coordinates

• converting between ellipse representations

• radial and polar-elliptical radial integration

Functions for measuring/fitting elliptical distortions are found in process/calibration/ellipse.py. Functions for comput-
ing radial and polar-elliptical radial backgrounds are found in process/preprocess/ellipse.py.

py4DSTEM uses 2 ellipse representations - one user-facing representation, and one internal representation. The user-
facing represenation is in terms of the following 5 parameters:

x0,y0 the center of the ellipse a the semimajor axis length b the semiminor axis length theta the (positive,
right handed) tilt of the a-axis

to the x-axis, in radians

Internally, fits are performed using the canonical ellipse parameterization, in terms of the parameters (x0,y0,A,B,C):

A(x-x0)^2 + B(x-x0)(y-y0) C(y-y0)^2 = 1

It is possible to convert between (a,b,theta) <–> (A,B,C) using the convert_ellipse_params() and con-
vert_ellipse_params_r() methods.

Transformation from cartesian to polar-elliptical space is done using

x = x0 + a*r*cos(phi)*cos(theta) + b*r*sin(phi)*sin(theta) y = y0 + a*r*cos(phi)*sin(theta) -
b*r*sin(phi)*cos(theta)

where (r,phi) are the polar-elliptical coordinates. All angular quantities are in radians.

py4DSTEM.process.utils.elliptical_coords.convert_ellipse_params(A, B, C)
Converts ellipse parameters from canonical form (A,B,C) into semi-axis lengths and tilt (a,b,theta). See module
docstring for more info.

Parameters

190 Chapter 1. Contents

py4dstem, Release 0.14.14

• A (floats) – parameters of an ellipse in the form: Ax^2 + Bxy + Cy^2 = 1

• B (floats) – parameters of an ellipse in the form: Ax^2 + Bxy + Cy^2 = 1

• C (floats) – parameters of an ellipse in the form: Ax^2 + Bxy + Cy^2 = 1

Returns
A 3-tuple consisting of:

• a: (float) the semimajor axis length

• b: (float) the semiminor axis length

• theta: (float) the tilt of the ellipse semimajor axis with respect to the x-axis, in radians

Return type
(3-tuple)

py4DSTEM.process.utils.elliptical_coords.convert_ellipse_params_r(a, b, theta)
Converts from ellipse parameters (a,b,theta) to (A,B,C). See module docstring for more info.

Parameters
• a (floats) – parameters of an ellipse, where a/b are the semimajor/semiminor axis

lengths, and theta is the tilt of the semimajor axis with respect to the x-axis, in radians.

• b (floats) – parameters of an ellipse, where a/b are the semimajor/semiminor axis
lengths, and theta is the tilt of the semimajor axis with respect to the x-axis, in radians.

• theta (floats) – parameters of an ellipse, where a/b are the semimajor/semiminor axis
lengths, and theta is the tilt of the semimajor axis with respect to the x-axis, in radians.

Returns
A 3-tuple consisting of (A,B,C), the ellipse parameters in

canonical form.

Return type
(3-tuple)

py4DSTEM.process.utils.elliptical_coords.cartesian_to_polarelliptical_transform(cartesianData,
p_ellipse,
dr=1,
dphi=0.03490658503988659,
r_range=None,
mask=None,
mask-
Thresh=0.99)

Transforms an array of data in cartesian coordinates into a data array in polar-elliptical coordinates.

Discussion of the elliptical parametrization used can be found in the docstring for the pro-
cess.utils.elliptical_coords module.

Parameters
• cartesianData (2D float array) – the data in cartesian coordinates

• p_ellipse (5-tuple) – specifies (qx0,qy0,a,b,theta), the parameters for the transforma-
tion. These are the same 5 parameters which are outputs of the elliptical fitting functions
in the process.calibration module, e.g. fit_ellipse_amorphous_ring and fit_ellipse_1D.
For more details, see the process.utils.elliptical_coords module docstring

• dr (float) – sampling of the (r,phi) coords: the width of the bins in r

1.4. API 191

py4dstem, Release 0.14.14

• dphi (float) – sampling of the (r,phi) coords: the width of the bins in phi, in radians

• r_range (number or length 2 list/tuple or None) – specifies the sampling of
the (r,theta) coords. Precise behavior which depends on the parameter type:

– if None, autoselects max r value

– if r_range is a number, specifies the maximum r value

– if r_range is a length 2 list/tuple, specifies the min/max r values

• mask (2d array of bools) – shape must match cartesianData; where mask==False,
ignore these datapoints in making the polarElliptical data array

• maskThresh (float) – the final data mask is calculated by converting mask (above) from
cartesian to polar elliptical coords. Due to interpolation, this results in some non-boolean
values - this is converted back to a boolean array by taking polarEllipticalMask = polar-
Trans(mask) < maskThresh. Cells where polarTrans is less than 1 (i.e. has at least one
masked NN) should generally be masked, hence the default value of 0.99.

Returns
A 3-tuple, containing:

• polarEllipticalData: (2D masked array) a masked array containing the data and the data
mask, in polarElliptical coordinates

• rr: (2D array) meshgrid of the r coordinates

• pp: (2D array) meshgrid of the phi coordinates

Return type
(3-tuple)

py4DSTEM.process.utils.elliptical_coords.elliptical_resample_datacube(datacube, p_ellipse,
mask=None,
maskThresh=0.99)

Perform elliptic resamplig on each diffraction pattern in a DataCube Detailed description of the args is found in
elliptical_resample.

NOTE: Only use this function if you need to resample the raw data. If you only need for Bragg disk positions to
be corrected, use the BraggVector calibration routines, as it is much faster to perform this on the peak positions
than the entire datacube.

py4DSTEM.process.utils.elliptical_coords.elliptical_resample(data, p_ellipse, mask=None,
maskThresh=0.99)

Resamples data with elliptic distortion to correct distortion of the input pattern.

Discussion of the elliptical parametrization used can be found in the docstring for the pro-
cess.utils.elliptical_coords module.

Parameters
• data (2D float array) – the data in cartesian coordinates

• p_ellipse (5-tuple) – specifies (qx0,qy0,a,b,theta), the parameters for the transforma-
tion. These are the same 5 parameters which are outputs of the elliptical fitting functions
in the process.calibration module, e.g. fit_ellipse_amorphous_ring and fit_ellipse_1D.
For more details, see the process.utils.elliptical_coords module docstring

• dr (float) – sampling of the (r,phi) coords: the width of the bins in r

• dphi (float) – sampling of the (r,phi) coords: the width of the bins in phi, in radians

192 Chapter 1. Contents

py4dstem, Release 0.14.14

• r_range (number or length 2 list/tuple or None) – specifies the sampling of
the (r,theta) coords. Precise behavior which depends on the parameter type:

– if None, autoselects max r value

– if r_range is a number, specifies the maximum r value

– if r_range is a length 2 list/tuple, specifies the min/max r values

• mask (2d array of bools) – shape must match cartesianData; where mask==False,
ignore these datapoints in making the polarElliptical data array

• maskThresh (float) – the final data mask is calculated by converting mask (above) from
cartesian to polar elliptical coords. Due to interpolation, this results in some non-boolean
values - this is converted back to a boolean array by taking polarEllipticalMask = polar-
Trans(mask) < maskThresh. Cells where polarTrans is less than 1 (i.e. has at least one
masked NN) should generally be masked, hence the default value of 0.99.

Returns
A 3-tuple, containing:

• resampled_data: (2D masked array) a masked array containing the data and the data
mask, in polarElliptical coordinates

Return type
(3-tuple)

py4DSTEM.process.utils.elliptical_coords.radial_elliptical_integral(ar, dr, p_ellipse,
rmax=None)

Computes the radial integral of array ar from center (x0,y0) with a step size in r of dr.

Parameters
• ar (2d array) – the data

• dr (number) – the r sampling

• p_ellipse (5-tuple) – the parameters (x0,y0,a,b,theta) for the ellipse

• r_max (float) – maximum radial value

Returns
A 2-tuple containing:

• rbin_centers: (1d array) the bins centers of the radial integral

• radial_integral: (1d array) the radial integral

radial_integral (1d array) the radial integral

Return type
(2-tuple)

py4DSTEM.process.utils.elliptical_coords.radial_integral(ar, x0=None, y0=None, dr=0.1,
rmax=None)

Computes the radial integral of array ar from center (x0,y0) with a step size in r of dr.

Parameters
• ar (2d array) – the data

• x0 (floats) – the origin

• y0 (floats) – the origin

1.4. API 193

py4dstem, Release 0.14.14

• dr (number) – radial step size

• rmax (float) – maximum radial dimension

Returns
A 2-tuple containing:

• rbin_centers: (1d array) the bins centers of the radial integral

• radial_integral: (1d array) the radial integral

Return type
(2-tuple)

py4DSTEM.process.utils.masks.get_beamstop_mask(dp, qx0, qy0, theta, dtheta=1, w=10, r=10)
Generates a beamstop shaped mask.

Parameters
• dp (2d array) – a diffraction pattern

• qx0 (numbers) – the center position of the beamstop

• qy0 (numbers) – the center position of the beamstop

• theta (number) – the orientation of the beamstop, in degrees

• dtheta (number) – angular span of the wedge representing the beamstop, in degrees

• w (integer) – half the width of the beamstop arm, in pixels

• r (number) – the radius of a circle at the end of the beamstop, in pixels

Returns
the mask

Return type
(2d boolean array)

py4DSTEM.process.utils.masks.make_circular_mask(shape, qxy0, radius)
Create a hard circular mask, for use in DPC integration or or to use as a filter in diffraction or real space.

Parameters
• shape (2-tuple of ints) –

• qxy0 (2-tuple of floats) center coordinates, in pixels. Must be in
(row, column) –

• radius (float) –

Returns
mask (2D boolean array) the mask

loosely based on multicorr.py found at: https://github.com/ercius/openNCEM/blob/master/ncempy/algo/multicorr.py

modified by SEZ, May 2019 to integrate with py4DSTEM utility functions
• rewrote upsampleFFT (previously did not work correctly)

• modified upsampled_correlation to accept xyShift, the point around which to

upsample the DFT * eliminated the factor-2 FFT upsample step in favor of using parabolic for first-pass subpixel
(since parabolic is so fast) * rewrote the matrix multiply DFT to be more pythonic

194 Chapter 1. Contents

https://github.com/ercius/openNCEM/blob/master/ncempy/algo/multicorr.py

py4dstem, Release 0.14.14

py4DSTEM.process.utils.multicorr.upsampled_correlation(imageCorr, upsampleFactor, xyShift,
device='cpu')

Refine the correlation peak of imageCorr around xyShift by DFT upsampling.

There are two approaches to Fourier upsampling for subpixel refinement: (a) one can pad an (appropriately
shifted) FFT with zeros and take the inverse transform, or (b) one can compute the DFT by matrix multiplication
using modified transformation matrices. The former approach is straightforward but requires performing the FFT
algorithm (which is fast) on very large data. The latter method trades one speedup for a slowdown elsewhere:
the matrix multiply steps are expensive but we operate on smaller matrices. Since we are only interested in a
very small region of the FT around a peak of interest, we use the latter method to get a substantial speedup and
enormous decrease in memory requirement. This “DFT upsampling” approach computes the transformation
matrices for the matrix- multiply DFT around a small 1.5px wide region in the original imageCorr.

Following the matrix multiply DFT we use parabolic subpixel fitting to get even more precision! (below 1/up-
sampleFactor pixels)

NOTE: previous versions of multiCorr operated in two steps: using the zero- padding upsample method for
a first-pass factor-2 upsampling, followed by the DFT upsampling (at whatever user-specified factor). I have
implemented it differently, to better support iterating over multiple peaks. The DFT is always upsampled
around xyShift, which MUST be specified to HALF-PIXEL precision (no more, no less) to replicate the
behavior of the factor-2 step. (It is possible to refactor this so that peak detection is done on a Fourier upsampled
image rather than using the parabolic subpixel and rounding as now. . . I like keeping it this way because all of
the parameters and logic will be identical to the other subpixel methods.)

Parameters
• imageCorr (complex valued ndarray) – Complex product of the FFTs of the two

images to be registered i.e. m = np.fft.fft2(DP) * probe_kernel_FT; imageCorr =
np.abs(m)**(corrPower) * np.exp(1j*np.angle(m))

• upsampleFactor (int) – Upsampling factor. Must be greater than 2. (To do upsampling
with factor 2, use upsampleFFT, which is faster.)

• xyShift – Location in original image coordinates around which to upsample the FT.
This should be given to exactly half-pixel precision to replicate the initial FFT step that
this implementation skips

Returns
Refined location of the peak in image coordinates.

Return type
(2-element np array)

py4DSTEM.process.utils.multicorr.upsampleFFT(cc, device='cpu')
Zero-padding FFT upsampling. Returns the real IFFT of the input with 2x upsampling. This may have an error
for matrices with an odd size. Takes a complex np array as input.

py4DSTEM.process.utils.multicorr.dftUpsample(imageCorr, upsampleFactor, xyShift, device='cpu')
This performs a matrix multiply DFT around a small neighboring region of the inital correlation peak. By using
the matrix multiply DFT to do the Fourier upsampling, the efficiency is greatly improved. This is adapted from
the subfuction dftups found in the dftregistration function on the Matlab File Exchange.

https://www.mathworks.com/matlabcentral/fileexchange/18401-efficient-subpixel-image-registration-by-cross-correlation

The matrix multiplication DFT is from:

Manuel Guizar-Sicairos, Samuel T. Thurman, and James R. Fienup, “Efficient subpixel image registration algo-
rithms,” Opt. Lett. 33, 156-158 (2008). http://www.sciencedirect.com/science/article/pii/S0045790612000778

Parameters

1.4. API 195

https://www.mathworks.com/matlabcentral/fileexchange/18401-efficient-subpixel-image-registration-by-cross-correlation
http://www.sciencedirect.com/science/article/pii/S0045790612000778

py4dstem, Release 0.14.14

• imageCorr (complex valued ndarray) – Correlation image between two images in
Fourier space.

• upsampleFactor (int) – Scalar integer of how much to upsample.

• xyShift (list of 2 floats) – Coordinates in the UPSAMPLED GRID around which
to upsample. These must be single-pixel IN THE UPSAMPLED GRID

Returns
Upsampled image from region around correlation peak.

Return type
(ndarray)

py4DSTEM.process.utils.utils.radial_reduction(ar, x0, y0, binsize=1, fn=<function mean>,
coords=None)

Evaluate a reduction function on pixels within annular rings centered on (x0,y0), with a ring width of binsize.

By default, returns the mean value of pixels within each annulus. Some other useful reductions include: np.sum,
np.std, np.count, np.median, . . .

When running in a loop, pre-compute the pixel coordinates and pass them in for improved performance, like so:

coords = np.mgrid[0:ar.shape[0],0:ar.shape[1]] radial_sums = radial_reduction(ar, x0,y0, co-
ords=coords)

py4DSTEM.process.utils.utils.sector_mask(shape, centre, radius, angle_range=(0, 360))
Return a boolean mask for a circular sector. The start/stop angles in angle_range should be given in clockwise
order.

Parameters
• shape – 2D shape of the mask

• centre – 2D center of the circular sector

• radius – radius of the circular mask

• angle_range – angular range of the circular mask

py4DSTEM.process.utils.utils.get_qx_qy_1d(M, dx=[1, 1], fft_shifted=False)
Generates 1D Fourier coordinates for a (Nx,Ny)-shaped 2D array. Specifying the dx argument sets a unit size.

Parameters
• M – (2,) shape of the returned array

• dx – (2,) tuple, pixel size

• fft_shifted – True if result should be fft_shifted to have the origin in the center of the
array

py4DSTEM.process.utils.utils.get_CoM(ar, device='cpu', corner_centered=False)
Finds and returns the center of mass of array ar. If corner_centered is True, uses fftfreq for indices.

py4DSTEM.process.utils.utils.get_maxima_1D(ar, sigma=0, minSpacing=0, minRelativeIntensity=0,
relativeToPeak=0)

Finds the indices where 1D array ar is a local maximum. Optional parameters allow blurring the array and
filtering the output; setting each to 0 (default) turns off these functions.

Parameters
• ar (1D array) –

• sigma (number) – gaussian blur std to apply to ar before finding maxima

196 Chapter 1. Contents

py4dstem, Release 0.14.14

• minSpacing (number) – if two maxima are found within minSpacing, the dimmer one is
removed

• minRelativeIntensity (number) – maxima dimmer than minRelativeIntensity com-
pared to the relativeToPeak’th brightest maximum are removed

• relativeToPeak (int) – 0=brightest maximum. 1=next brightest, etc.

Returns
An array of indices where ar is a local maximum, sorted by intensity.

Return type
(array of ints)

py4DSTEM.process.utils.utils.linear_interpolation_1D(ar, x)
Calculates the 1D linear interpolation of array ar at position x using the two nearest elements.

py4DSTEM.process.utils.utils.add_to_2D_array_from_floats(ar, x, y, I)
Adds the values I to array ar, distributing the value between the four pixels nearest (x,y) using linear interpolation.
Inputs (x,y,I) may be floats or arrays of floats.

Note that if the same [x,y] coordinate appears more than once in the input array, only the final value of I at that
coordinate will get added.

py4DSTEM.process.utils.utils.get_voronoi_vertices(voronoi, nx, ny, dist=10)
From a scipy.spatial.Voronoi instance, return a list of ndarrays, where each array is shape (N,2) and contains the
(x,y) positions of the vertices of a voronoi region.

The problem this function solves is that in a Voronoi instance, some vertices outside the field of view of the
tesselated region are left unspecified; only the existence of a point beyond the field is referenced (which may or
may not be ‘at infinity’). This function specifies all points, such that the vertices and edges of the tesselation may
be directly laid over data.

Parameters
• voronoi (scipy.spatial.Voronoi) – the voronoi tesselation

• nx (int) – the x field-of-view of the tesselated region

• ny (int) – the y field-of-view of the tesselated region

• dist (float, optional) – place new vertices by extending new voronoi edges outside
the frame by a distance of this factor times the distance of its known vertex from the frame
edge

Returns
the (x,y) coords of the vertices of each voronoi region

Return type
(list of ndarrays of shape (N,2))

py4DSTEM.process.utils.utils.get_ewpc_filter_function(Q_Nx, Q_Ny)
Returns a function for computing the exit wave power cepstrum of a diffraction pattern using a Hanning window.
This can be passed as the filter_function in the Bragg disk detection functions (with the probe an array of ones)
to find the lattice vectors by the EWPC method (but be careful as the lengths are now in realspace units!) See
https://arxiv.org/abs/1911.00984

py4DSTEM.process.utils.utils.fourier_resample(array, scale=None, output_size=None,
force_nonnegative=False, bandlimit_nyquist=None,
bandlimit_power=2, dtype=<class 'numpy.float32'>,
conserve_array_sums=False)

1.4. API 197

https://arxiv.org/abs/1911.00984

py4dstem, Release 0.14.14

Resize a 2D array along any dimension, using Fourier interpolation / extrapolation. For 4D input arrays, only
the final two axes can be resized.

The scaling of the array can be specified by passing either scale, which sets the scaling factor along both axes
to be scaled; or by passing output_size, which specifies the final dimensions of the scaled axes (and allows for
different scaling along the x,y or kx,ky axes.)

Parameters
• array (2D/4D numpy array) – Input array, or 4D stack of arrays, to be resized.

• scale (float) – scalar value giving the scaling factor for all dimensions

• output_size (2-tuple of ints) – two values giving either the (x,y) output size for
2D, or (kx,ky) for 4D

• force_nonnegative (bool) – Force all outputs to be nonnegative, after filtering

• bandlimit_nyquist (float) – Gaussian filter information limit in Nyquist units (0.5
max in both directions)

• bandlimit_power (float) – Gaussian filter power law scaling (higher is sharper)

• dtype (numpy dtype) – datatype for binned array. default is single precision float

• conserve_arrray_sums (bool) – If True, the sums of the array are conserved

Returns
the resized array (2D/4D numpy array)

virtualdiffraction

virtualimage

wholepatternfit

class py4DSTEM.process.wholepatternfit.wp_models.WPFModelType(value)
Flags to signify capabilities and other semantics of a Model

class py4DSTEM.process.wholepatternfit.wp_models.WPFModel(name: str, params: dict,
model_type=WPFModelType.DUMMY)

Prototype class for a compent of a whole-pattern model. Holds the following:

name: human-readable name of the model params: a dict of names and initial (or returned) values
of the model parameters func: a function that takes as arguments:

• the diffraction pattern being built up, which the function should modify in place

• positional arguments in the same order as the params dictionary

• keyword arguments. this is to provide some pre-computed information for convenience
kwargs will include:

– xArray, yArray meshgrid of the x and y coordinates

– global_x0 global x-coordinate of the pattern center

– global_y0 global y-coordinate of the pattern center

jacobian: a function that takes as arguments:

198 Chapter 1. Contents

py4dstem, Release 0.14.14

• the diffraction pattern being built up, which the function should modify in place

• positional arguments in the same order as the params dictionary

• offset: the first index (j) that values should be written into
(the function should ONLY write into 0,1, and offset:offset+nParams) 0 and 1 are the
entries for global_x0 and global_y0, respectively REMEMBER TO ADD TO 0 and
1 SINCE ALL MODELS CAN CONTRIBUTE TO THIS PARTIAL DERIVA-
TIVE

• keyword arguments. this is to provide some pre-computed information for convenience

__init__(name: str, params: dict, model_type=WPFModelType.DUMMY)

class py4DSTEM.process.wholepatternfit.wp_models.DCBackground(background_value=0.0, name='DC
Background')

Model representing constant background intensity.

Parameters
background_value – Background intensity value. Specified as initial_value, (initial_value,
deviation), or

(initial_value, lower_bound, upper_bound). See Parameter documentation for de-
tails.

__init__(background_value=0.0, name='DC Background')

class py4DSTEM.process.wholepatternfit.wp_models.GaussianBackground(WPF, sigma, intensity,
global_center=True,
x0=0.0, y0=0.0,
name='Gaussian
Background')

Model representing a 2D Gaussian intensity distribution

Parameters
• WPF (WholePatternFit) – Parent WPF object

• sigma – parameter specifying width of the Gaussian Specified as initial_value, (ini-
tial_value, deviation), or

(initial_value, lower_bound, upper_bound). See Parameter documentation for
details.

• intensity – parameter specifying intensity of the Gaussian Specified as initial_value,
(initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See Parameter documentation for
details.

• global_center (bool) – If True, uses same center coordinate as the global model If
False, uses an independent center

• x0 – Center coordinates of model for local origin Specified as initial_value, (initial_value,
deviation), or

(initial_value, lower_bound, upper_bound). See Parameter documentation for
details.

• y0 – Center coordinates of model for local origin Specified as initial_value, (initial_value,
deviation), or

1.4. API 199

py4dstem, Release 0.14.14

(initial_value, lower_bound, upper_bound). See Parameter documentation for
details.

__init__(WPF, sigma, intensity, global_center=True, x0=0.0, y0=0.0, name='Gaussian Background')

class py4DSTEM.process.wholepatternfit.wp_models.GaussianRing(WPF, radius, sigma, intensity,
global_center=True, x0=0.0,
y0=0.0, name='Gaussian Ring')

Model representing a halo with Gaussian falloff

Parameters
• WPF (WholePatternFit) – parent fitting object

• radius – radius of halo Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See Parameter documentation for
details.

• sigma – width of Gaussian falloff Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See Parameter documentation for
details.

• intensity – Intensity of the halo Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See Parameter documentation for
details.

• global_center (bool) – If True, uses same center coordinate as the global model If
False, uses an independent center

• x0 – Center coordinates of model for local origin Specified as initial_value, (initial_value,
deviation), or

(initial_value, lower_bound, upper_bound). See Parameter documentation for
details.

• y0 – Center coordinates of model for local origin Specified as initial_value, (initial_value,
deviation), or

(initial_value, lower_bound, upper_bound). See Parameter documentation for
details.

__init__(WPF, radius, sigma, intensity, global_center=True, x0=0.0, y0=0.0, name='Gaussian Ring')

class py4DSTEM.process.wholepatternfit.wp_models.SyntheticDiskLattice(WPF, ux: float, uy: float,
vx: float, vy: float,
disk_radius: float,
disk_width: float,
u_max: int, v_max: int,
intensity_0: float,
refine_radius: bool =
False, refine_width: bool
= False, global_center:
bool = True, x0: float =
0.0, y0: float = 0.0,
exclude_indices: list =
[], include_indices: list |
None = None,
name='Synthetic Disk
Lattice', verbose=False)

200 Chapter 1. Contents

py4dstem, Release 0.14.14

Model representing a lattice of diffraction disks with a soft edge

Parameters
• WPF (WholePatternFit) – parent fitting object

• ux – x and y components of the lattice vectors u and v. Specified as initial_value, (ini-
tial_value, deviation), or

(initial_value, lower_bound, upper_bound). See Parameter documentation for
details.

• uy – x and y components of the lattice vectors u and v. Specified as initial_value, (ini-
tial_value, deviation), or

(initial_value, lower_bound, upper_bound). See Parameter documentation for
details.

• vx – x and y components of the lattice vectors u and v. Specified as initial_value, (ini-
tial_value, deviation), or

(initial_value, lower_bound, upper_bound). See Parameter documentation for
details.

• vy – x and y components of the lattice vectors u and v. Specified as initial_value, (ini-
tial_value, deviation), or

(initial_value, lower_bound, upper_bound). See Parameter documentation for
details.

• disk_radius – Radius of each diffraction disk. Specified as initial_value, (initial_value,
deviation), or

(initial_value, lower_bound, upper_bound). See Parameter documentation for
details.

• disk_width – Width of the smooth falloff at the edge of the disk Specified as ini-
tial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See Parameter documentation for
details.

• u_max – Maximum lattice indices to include in the pattern. Disks outside the pattern are
automatically clipped.

• v_max – Maximum lattice indices to include in the pattern. Disks outside the pattern are
automatically clipped.

• intensity_0 – Initial intensity for each diffraction disk. Each disk intensity is an inde-
pendent fit variable in the final model Specified as initial_value, (initial_value, deviation),
or

(initial_value, lower_bound, upper_bound). See Parameter documentation for
details.

• refine_radius (bool) – Flag whether disk radius is made a fitting parameter

• refine_width (bool) – Flag whether disk edge width is made a fitting parameter

• global_center (bool) – If True, uses same center coordinate as the global model If
False, uses an independent center

• x0 – Center coordinates of model for local origin Specified as initial_value, (initial_value,
deviation), or

1.4. API 201

py4dstem, Release 0.14.14

(initial_value, lower_bound, upper_bound). See Parameter documentation for
details.

• y0 – Center coordinates of model for local origin Specified as initial_value, (initial_value,
deviation), or

(initial_value, lower_bound, upper_bound). See Parameter documentation for
details.

• exclude_indices (list) – Indices to exclude from the pattern

• include_indices (list) – If specified, only the indices in the list are added to the
pattern

__init__(WPF, ux: float, uy: float, vx: float, vy: float, disk_radius: float, disk_width: float, u_max: int,
v_max: int, intensity_0: float, refine_radius: bool = False, refine_width: bool = False,
global_center: bool = True, x0: float = 0.0, y0: float = 0.0, exclude_indices: list = [],
include_indices: list | None = None, name='Synthetic Disk Lattice', verbose=False)

class py4DSTEM.process.wholepatternfit.wp_models.SyntheticDiskMoire(WPF, lattice_a:
SyntheticDiskLattice,
lattice_b:
SyntheticDiskLattice,
intensity_0: float,
decorated_peaks: list |
None = None,
link_moire_disk_intensities:
bool = False,
link_disk_parameters: bool
= True, refine_width: bool
= True, edge_width: list |
None = None,
refine_radius: bool = True,
disk_radius: list | None =
None, name: str = 'Moire
Lattice')

Model of diffraction disks arising from interference between two lattices.

The Moire unit cell is determined automatically using the two input lattices.

Parameters
• WPF (WholePatternFit) – parent fitting object

• lattice_a (SyntheticDiskLattice) – parent lattices for the Moire

• lattice_b (SyntheticDiskLattice) – parent lattices for the Moire

• intensity_0 – Initial guess of Moire disk intensity Specified as initial_value, (ini-
tial_value, deviation), or

(initial_value, lower_bound, upper_bound). See Parameter documentation for
details.

• decorated_peaks (list) – When specified, only the reflections in the list are decorated
with Moire spots If not specified, all peaks are decorated

• link_moire_disk_intensities (bool) – When False, each Moire disk has an inde-
pendently fit intensity When True, Moire disks arising from the same order of parent
reflection share the same intensity

202 Chapter 1. Contents

py4dstem, Release 0.14.14

• link_disk_parameters (bool) – When True, edge_width and disk_radius are inherited
from lattice_a

• refine_width (bool) – Flag whether disk edge width is a fit variable

• edge_width – Width of the soft edge of the diffraction disk. Specified as initial_value,
(initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See Parameter documentation for
details.

• refine_radius (bool) – Flag whether disk radius is a fit variable

• radius (disk) – Radius of the diffraction disks Specified as initial_value, (initial_value,
deviation), or

(initial_value, lower_bound, upper_bound). See Parameter documentation for
details.

__init__(WPF, lattice_a: SyntheticDiskLattice, lattice_b: SyntheticDiskLattice, intensity_0: float,
decorated_peaks: list | None = None, link_moire_disk_intensities: bool = False,
link_disk_parameters: bool = True, refine_width: bool = True, edge_width: list | None = None,
refine_radius: bool = True, disk_radius: list | None = None, name: str = 'Moire Lattice')

class py4DSTEM.process.wholepatternfit.wp_models.ComplexOverlapKernelDiskLattice(WPF,
probe_kernel:
ndarray,
ux: float,
uy: float,
vx: float,
vy: float,
u_max:
int,
v_max:
int, inten-
sity_0:
float, ex-
clude_indices:
list = [],
global_center:
bool =
True,
x0=0.0,
y0=0.0,
name='Complex
Over-
lapped
Disk
Lattice',
ver-
bose=False)

__init__(WPF, probe_kernel: ndarray, ux: float, uy: float, vx: float, vy: float, u_max: int, v_max: int,
intensity_0: float, exclude_indices: list = [], global_center: bool = True, x0=0.0, y0=0.0,
name='Complex Overlapped Disk Lattice', verbose=False)

1.4. API 203

py4dstem, Release 0.14.14

class py4DSTEM.process.wholepatternfit.wp_models.KernelDiskLattice(WPF, probe_kernel:
ndarray, ux: float, uy: float,
vx: float, vy: float, u_max:
int, v_max: int, intensity_0:
float, exclude_indices: list =
[], global_center: bool =
True, x0=0.0, y0=0.0,
name='Custom Kernel Disk
Lattice', verbose=False)

__init__(WPF, probe_kernel: ndarray, ux: float, uy: float, vx: float, vy: float, u_max: int, v_max: int,
intensity_0: float, exclude_indices: list = [], global_center: bool = True, x0=0.0, y0=0.0,
name='Custom Kernel Disk Lattice', verbose=False)

py4DSTEM.process.wholepatternfit.wpf_viz.show_lattice_points(self , im=None, vmin=None,
vmax=None, power=None,
show_vectors=True,
crop_to_pattern=False,
returnfig=False,
moire_origin_idx=[0, 0, 0, 0], *args,
**kwargs)

Plotting utility to show the initial lattice points.

Parameters
• im (np.ndarray) – Optional: Image to show, defaults to mean CBED

• vmin (float) – Intensity ranges for plotting im

• vmax (float) – Intensity ranges for plotting im

• power (float) – Gamma level for showing im

• show_vectors (bool) – Flag to plot the lattice vectors

• crop_to_pattern (bool) – Flag to limit the field of view to the pattern area. If False,
spots outside the pattern are shown

• returnfig (bool) – If True, (fig,ax) are returned and plt.show() is not called

• moire_origin_idx (list of length 4) – Indices of peak on which to draw Moire
vectors, written as [a_u, a_v, b_u, b_v]

• args – Passed to plt.subplots

• kwargs – Passed to plt.subplots

Returns
fig,ax

Return type
If returnfig=True

204 Chapter 1. Contents

py4dstem, Release 0.14.14

1.4.6 visualize

Table of Contents

• visualize

– show

– overlay

– virtualimage

– vis_RQ

– vis_grid

– vis_special

show

py4DSTEM.visualize.show(ar, figsize=(5, 5), cmap='gray', scaling='none', intensity_range='ordered',
clipvals=None, vmin=None, vmax=None, min=None, max=None, power=None,
power_offset=True, combine_images=False, ticks=True, bordercolor=None,
borderwidth=5, show_image=True, return_ar_scaled=False,
return_intensity_range=False, returncax=False, returnfig=False, figax=None,
hist=False, n_bins=256, mask=None, mask_color='k', mask_alpha=0.0,
masked_intensity_range=False, rectangle=None, circle=None, annulus=None,
ellipse=None, points=None, grid_overlay=None, cartesian_grid=None,
polarelliptical_grid=None, rtheta_grid=None, scalebar=None, calibration=None,
rx=None, ry=None, space='Q', pixelsize=None, pixelunits=None, x0=None,
y0=None, a=None, e=None, theta=None, title=None, show_fft=False,
apply_hanning_window=True, show_cbar=False, **kwargs)

General visualization function for 2D arrays.

The simplest use of this function is:

>>> show(ar)

which will generate and display a matplotlib figure showing the 2D array ar. Additional functionality includes:

• scaling the image (log scaling, power law scaling)

• displaying the image histogram

• altering the histogram clip values

• masking some subset of the image

• setting the colormap

• adding geometric overlays (e.g. points, circles, rectangles, annuli)

• adding informational overlays (scalebars, coordinate grids, oriented axes or vectors)

• further customization tools

These are each discussed in turn below.

Scaling:
Setting the parameter scalingwill scale the display image. Options are ‘none’, ‘auto’, ‘power’, or ‘log’. If

1.4. API 205

py4dstem, Release 0.14.14

‘power’ is specified, the parameter power must also be passed. The underlying data is not altered. Values
less than or equal to zero are set to zero. If the image histogram is displayed using hist=True, the scaled
image histogram is shown.

Examples:

>>> show(ar,scaling='log')
>>> show(ar,power=0.5)
>>> show(ar,scaling='power',power=0.5,hist=True)

Histogram:
Setting the argument hist=True will display the image histogram, instead of the image. The displayed
histogram will reflect any scaling requested. The number of bins can be set with n_bins. The upper and
lower clip values, indicating where the image display will be saturated, are shown with dashed lines.

Intensity range:
Controlling the lower and upper values at which the display image will be saturated is accomplished
with the intensity_range parameter, or its (soon deprecated) alias clipvals, in combination with
vmin, and vmax. The method by which the upper and lower clip values are determined is controlled by
intensity_range, and must be a string in (‘None’,’ordered’,’minmax’,’absolute’,’std’,’centered’). See
the argument description for intensity_range for a description of the behavior for each. The clip val-
ues can be returned with the return_intensity_range parameter.

Masking:
If a numpy masked array is passed to show, the function will automatically mask the appropriate pixels.
Alternatively, a boolean array of the same shape as the data array may be passed to the mask argument,
and these pixels will be masked. Masked pixels are displayed as a single uniform color, black by default,
and which can be specified with the mask_color argument. Masked pixels are excluded when displaying
the histogram or computing clip values. The mask can also be blended with the hidden data by setting the
mask_alpha argument.

Overlays (geometric):
The function natively supports overlaying points, circles, rectangles, annuli, and ellipses. Each is invoked
by passing a dictionary to the appropriate input variable specifying the geometry and features of the re-
quested overlay. For example:

>>> show(ar, rectangle={'lims':(10,20,10,20),'color':'r'})

will overlay a single red square, and

>>> show(ar, annulus={'center':[(28,68),(92,160)],
'radii':[(16,24),(12,36)],
'fill':True,
'alpha':[0.9,0.3],
'color':['r',(0,1,1,1)]})

will overlay two annuli with two different centers, radii, colors, and transparencies. For a description of
the accepted dictionary parameters for each type of overlay, see the visualize functions add_*, where * =
(‘rectangle’,’circle’,’annulus’,’ellipse’,’points’). (These docstrings are under construction!)

Overlays (informational):
Informational overlays supported by this function include coordinate axes (cartesian, polar-elliptical, or r-
theta) and scalebars. These are added by passing the appropriate input argument a dictionary of the desired
parameters, as with geometric overlays. However, there are two key differences between these overlays and
the geometric overlays. First, informational overlays (coordinate systems and scalebars) require informa-
tion about the plot - e.g. the position of the origin, the pixel sizes, the pixel units, any elliptical distortions,
etc. The easiest way to pass this information is by pass a Calibration object containing this info to show

206 Chapter 1. Contents

py4dstem, Release 0.14.14

as the keyword calibration. Second, once the coordinate information has been passed, informational
overlays can autoselect their own parameters, thus simply passing an empty dict to one of these parameters
will add that overlay.

For example:

>>> show(dp, scalebar={}, calibration=calibration)

will display the diffraction pattern dp with a scalebar overlaid in the bottom left corner given the pixel size
and units described in calibration, and

>>> show(dp, calibration=calibration, scalebar={'length':0.5,'width':2,
'position':'ul','label':True'})

will display a more customized scalebar.

When overlaying coordinate grids, it is important to note that some relevant parameters, e.g. the position
of the origin, may change by scan position. In these cases, the parameters rx,``ry`` must also be passed to
show, to tell the Calibration object where to look for the relevant parameters. For example:

>>> show(dp, cartesian_grid={}, calibration=calibration, rx=2,ry=5)

will overlay a cartesian coordinate grid on the diffraction pattern at scan position (2,5). Adding

>>> show(dp, calibration=calibration, rx=2, ry=5, cartesian_grid={'label':True,
'alpha':0.7,'color':'r'})

will customize the appearance of the grid further. And

>>> show(im, calibration=calibration, cartesian_grid={}, space='R')

displays a cartesian grid over a real space image. For more details, see the documentation for the visual-
ize functions add_*, where * = (‘scalebar’, ‘cartesian_grid’, ‘polarelliptical_grid’, ‘rtheta_grid’). (Under
construction!)

Further customization:
Most parameters accepted by a matplotlib axis will be accepted by show. Pass a valid matplotlib colormap
or a known string indicating a colormap as the argument cmap to specify the colormap. Pass figsize to
specify the figure size. Etc.

Further customization can be accomplished by either (1) returning the figure generated by show and then
manipulating it using the normal matplotlib functions, or (2) generating a matplotlib Figure with Axes any
way you like (e.g. with plt.subplots) and then using this function to plot inside a single one of the Axes
of your choice.

Option (1) is accomplished by simply passing this function returnfig=True. Thus:

>>> fig,ax = show(ar, returnfig=True)

will now give you direct access to the figure and axes to continue to alter. Option (2) is accomplished by
passing an existing figure and axis to show as a 2-tuple to the figax argument. Thus:

>>> fig,(ax1,ax2) = plt.subplots(1,2)
>>> show(ar, figax=(fig,ax1))
>>> show(ar, figax=(fig,ax2), hist=True)

will generate a 2-axis figure, and then plot the array ar as an image on the left, while plotting its histogram
on the right.

1.4. API 207

py4dstem, Release 0.14.14

Parameters
• ar (2D array or a list of 2D arrays) – the data to plot. Normally this is a 2D

array of the data. If a list of 2D arrays is passed, plots a corresponding grid of images.

• figsize (2-tuple) – size of the plot

• cmap (colormap) – any matplotlib cmap; default is gray

• scaling (str) – selects a scaling scheme for the intensity values. Default is none. Ac-
cepted values:

– ’none’: do not scale intensity values

– ’full’: fill entire color range with sorted intensity values

– ’power’: power law scaling

– ’log’: values where ar<=0 are set to 0

• intensity_range (str) –

method for setting clipvalues (min and max intensities).
The original name “clipvals” is now deprecated. Default is ‘ordered’. Accepted val-
ues:

– ’ordered’: vmin/vmax are set to fractions of the distribution of pixel values in the
array, e.g. vmin=0.02 will set the minumum display value to saturate the lower 2%
of pixels

– ’minmax’: The vmin/vmax values are np.min(ar)/np.max(r)

– ’absolute’: The vmin/vmax values are set to the values of the vmin,vmax arguments
received by this function

– ’std’: The vmin/vmax values are np.median(ar) -/+ N*np.std(ar), and
N is this functions min,max vals.

– ’centered’: The vmin/vmax values are set to c -/+ m, where by default ‘c’ is zero
and m is the max(abs(ar-c), or the two params can be user specified using the kwargs
vmin/vmax -> c/m.

• vmin (number) – min intensity, behavior depends on clipvals

• vmax (number) – max intensity, behavior depends on clipvals

• min – alias’ for vmin,vmax, throws deprecation warning

• max – alias’ for vmin,vmax, throws deprecation warning

• power (number) – specifies the scaling power

• power_offset (bool) – If true, image has min value subtracted before power scaling

• ticks (bool) – Turn outer tick marks on or off

• bordercolor (color or None) – if not None, add a border of this color. The color can
be anything matplotlib recognizes as a color.

• borderwidth (number) –

• returnfig (bool) – if True, the function returns the tuple (figure,axis)

• figax (None or 2-tuple) – controls which matplotlib Axes object draws the image.
If None, generates a new figure with a single Axes instance. Otherwise, ax must be a

208 Chapter 1. Contents

py4dstem, Release 0.14.14

2-tuple containing the matplotlib class instances (Figure,Axes), with ar then plotted in the
specified Axes instance.

• hist (bool) – if True, instead of plotting a 2D image in ax, plots a histogram of the
intensity values of ar, after any scaling this function has performed. Plots the clipvals as
dashed vertical lines

• n_bins (int) – number of hist bins

• mask (None or boolean array) – if not None, must have the same shape as ‘ar’. Wher-
ever mask==True, plot the pixel normally, and where mask==False, pixel values are set
to mask_color. If hist==True, ignore these values in the histogram. If mask_alpha is
specified, the mask is blended with the array underneath, with 0 yielding an opaque mask
and 1 yielding a fully transparent mask. If mask_color is set to 'empty' instead of a
matplotlib.color, nothing is done to pixels where mask==False, allowing overlaying mul-
tiple arrays in different regions of an image by invoking the ``figax` kwarg over multiple
calls to show

• mask_color (color) – see ‘mask’

• mask_alpha (float) – see ‘mask’

• masked_intensity_range (bool) – controls if masked pixel values are included when
determining the display value range; False indicates that all pixel values will be used to
determine the intensity range, True indicates only unmasked pixels will be used

• scalebar (None or dict or Bool) – if None, and a DiffractionSlice or RealSlice
with calibrations is passed, adds a scalebar. If scalebar is not displaying the proper cali-
bration, check .calibration pixel_size and pixel_units. If None and an array is passed, does
not add a scalebar. If a dict is passed, it is propagated to the add_scalebar function which
will attempt to use it to overlay a scalebar. If True, uses calibraiton or pixelsize/pixelunits
for scalebar. If False, no scalebar is added.

• show_fft (bool) – if True, plots 2D-fft of array

• apply_hanning_window (bool) – If True, a 2D Hann window is applied to the array
before applying the FFT

• show_cbar (bool) – if True, adds cbar

• **kwargs – any keywords accepted by matplotlib’s ax.matshow()

Returns
if returnfig==False (default), the figure is plotted and nothing is returned. if returnfig==True,
return the figure and the axis.

py4DSTEM.visualize.show_hist(arr, bins=200, vlines=None, vlinecolor='k', vlinestyle='--', returnhist=False,
returnfig=False)

Visualization function to show histogram from any ndarray (arr).

Accepts:
arr (ndarray) any array bins (int) number of bins that the intensity values will be sorted

into for histogram

returnhist (bool) determines whether or not the histogram values are
returned (see Returns)

returnfig (bool) determines whether or not figure and its axis are
returned (see Returns)

1.4. API 209

py4dstem, Release 0.14.14

Returns
If

returnhist==False and returnfig==False returns nothing returnhist==True and return-
fig==True returns (counts,bin_edges) the histogram

values and bin edge locations

returnhist==False and returnfig==True returns (fig,ax), the Figure and Axis return-
hist==True and returnfig==True returns (hist,bin_edges),(fig,ax)

py4DSTEM.visualize.show_Q(ar, scalebar=True, grid=False, polargrid=False, Q_pixel_size=None,
Q_pixel_units=None, calibration=None, rx=None, ry=None, qx0=None,
qy0=None, e=None, theta=None, scalebarloc=0, scalebarsize=None,
scalebarwidth=None, scalebartext=None, scalebartextloc='above',
scalebartextsize=12, gridspacing=None, gridcolor='w', majorgridlines=True,
majorgridlw=1, majorgridls=':', minorgridlines=True, minorgridlw=0.5,
minorgridls=':', gridlabels=False, gridlabelsize=12, gridlabelcolor='k',
alpha=0.35, **kwargs)

Shows a diffraction space image with options for several overlays to define the scale, including a scalebar, a
cartesian grid, or a polar / polar-elliptical grid.

Regardless of which overlay is requested, the function must recieve either values for Q_pixel_size and
Q_pixel_units, or a Calibration instance containing these values. If both are passed, the absolutely passed values
take precedence. If a cartesian grid is requested, (qx0,qy0) are required, either passed absolutely or passed as a
Calibration instance with the appropriate (rx,ry) value. If a polar grid is requested, (qx0,qy0,e,theta) are required,
again either absolutely or via a Calibration instance.

Any arguments accepted by the show() function (e.g. image scaling, clipvalues, etc) may be passed to this
function as kwargs.

py4DSTEM.visualize.show_rectangles(ar, lims=(0, 1, 0, 1), color='r', fill=True, alpha=0.25, linewidth=2,
returnfig=False, **kwargs)

Visualization function which plots a 2D array with one or more overlayed rectangles. lims is specified in the order
(x0,xf,y0,yf). The rectangle bounds begin at the upper left corner of (x0,y0) and end at the upper left corner of
(xf,yf) – i.e inclusive in the lower bound, exclusive in the upper bound – so that the boxed region encloses the
area of array ar specified by ar[x0:xf,y0:yf].

To overlay one rectangle, lims must be a single 4-tuple. To overlay N rectangles, lims must be a list of N 4-tuples.
color, fill, and alpha may each be single values, which are then applied to all the rectangles, or a length N list.

See the docstring for py4DSTEM.visualize.show() for descriptions of all input parameters not listed below.

Accepts:
lims (4-tuple, or list of N 4-tuples) the rectangle bounds (x0,xf,y0,yf) color (valid matplotlib color, or list
of N colors) fill (bool or list of N bools) filled in or empty rectangles alpha (number, 0 to 1) transparency
linewidth (number)

Returns
If returnfig==False (default), the figure is plotted and nothing is returned. If returnfig==False,
the figure and its one axis are returned, and can be further edited.

py4DSTEM.visualize.show_circles(ar, center, R, color='r', fill=True, alpha=0.3, linewidth=2,
returnfig=False, **kwargs)

Visualization function which plots a 2D array with one or more overlayed circles. To overlay one circle, center
must be a single 2-tuple. To overlay N circles, center must be a list of N 2-tuples. color, fill, and alpha may each
be single values, which are then applied to all the circles, or a length N list.

210 Chapter 1. Contents

py4dstem, Release 0.14.14

See the docstring for py4DSTEM.visualize.show() for descriptions of all input parameters not listed below.

Accepts:
ar (2D array) the data center (2-tuple, or list of N 2-tuples) the center of the circle (x0,y0) R (number of
list of N numbers) the circles radius color (valid matplotlib color, or list of N colors) fill (bool or list of N
bools) filled in or empty rectangles alpha (number, 0 to 1) transparency linewidth (number)

Returns
If returnfig==False (default), the figure is plotted and nothing is returned. If returnfig==False,
the figure and its one axis are returned, and can be further edited.

py4DSTEM.visualize.show_ellipses(ar, center, a, b, theta, color='r', fill=True, alpha=0.3, linewidth=2,
returnfig=False, **kwargs)

Visualization function which plots a 2D array with one or more overlayed ellipses. To overlay one ellipse, center
must be a single 2-tuple. To overlay N circles, center must be a list of N 2-tuples. Similarly, the remaining ellipse
parameters - a, e, and theta - must each be a single number or a len-N list. color, fill, and alpha may each be
single values, which are then applied to all the circles, or length N lists.

See the docstring for py4DSTEM.visualize.show() for descriptions of all input parameters not listed below.

Accepts:
center (2-tuple, or list of N 2-tuples) the center of the circle (x0,y0) a (number or list of N numbers) the
semimajor axis length e (number or list of N numbers) ratio of semiminor/semimajor length theta (number
or list of N numbers) the tilt angle in radians color (valid matplotlib color, or list of N colors) fill (bool or
list of N bools) filled in or empty rectangles alpha (number, 0 to 1) transparency linewidth (number)

Returns
If returnfig==False (default), the figure is plotted and nothing is returned. If returnfig==False,
the figure and its one axis are returned, and can be further edited.

py4DSTEM.visualize.show_annuli(ar, center, radii, color='r', fill=True, alpha=0.3, linewidth=2,
returnfig=False, **kwargs)

Visualization function which plots a 2D array with one or more overlayed annuli. To overlay one annulus, center
must be a single 2-tuple. To overlay N annuli, center must be a list of N 2-tuples. color, fill, and alpha may each
be single values, which are then applied to all the circles, or a length N list.

See the docstring for py4DSTEM.visualize.show() for descriptions of all input parameters not listed below.

Accepts:
center (2-tuple, or list of N 2-tuples) the center of the annulus (x0,y0) radii (2-tuple, or list of N 2-tuples)
the inner and outer radii color (string of list of N strings) fill (bool or list of N bools) filled in or empty
rectangles alpha (number, 0 to 1) transparency linewidth (number)

Returns
If returnfig==False (default), the figure is plotted and nothing is returned. If returnfig==False,
the figure and its one axis are returned, and can be further edited.

py4DSTEM.visualize.show_points(ar, x, y, s=1, scale=50, alpha=1, pointcolor='r', open_circles=False,
title=None, returnfig=False, **kwargs)

Plots a 2D array with one or more points. x and y are the point centers and must have the same length, N. s is
the relative point sizes, and must have length 1 or N. scale is the size of the largest point. pointcolor have length
1 or N.

Accepts:
ar (array) the image x,y (number or iterable of numbers) the point positions s (number or iterable of num-

1.4. API 211

py4dstem, Release 0.14.14

bers) the relative point sizes scale (number) the maximum point size title (str) title for plot pointcolor
alpha

Returns
If returnfig==False (default), the figure is plotted and nothing is returned. If returnfig==False,
the figure and its one axis are returned, and can be further edited.

overlay

py4DSTEM.visualize.overlay.add_annuli(ax, d)
Adds one or more annuli to Axis ax using the parameters in dictionary d.

py4DSTEM.visualize.overlay.add_bragg_index_labels(ax, d)
Adds labels for indexed bragg directions to a plot, using the parameters in dict d.

The dictionary d has required and optional parameters as follows:
bragg_directions (req’d) (PointList) the Bragg directions. This PointList must have

the fields ‘qx’,’qy’,’h’, and ‘k’, and may optionally have ‘l’

voffset (number) vertical offset for the labels hoffset (number) horizontal offset for the labels color (color)
size (number) points (bool) pointsize (number) pointcolor (color)

py4DSTEM.visualize.overlay.add_cartesian_grid(ax, d)
Adds an overlaid cartesian coordinate grid over an image using the parameters in dictionary d.

The dictionary d has required and optional parameters as follows:
x0,y0 (req’d) the origin Nx,Ny (req’d) the image extent space (str) ‘Q’ or ‘R’ spacing (number) spacing
between gridlines pixelsize (number) pixelunits (str) lw (number) ls (str) color (color) label (bool) labelsize
(number) labelcolor (color) alpha (number)

py4DSTEM.visualize.overlay.add_circles(ax, d)
adds one or more circles to axis ax using the parameters in dictionary d.

py4DSTEM.visualize.overlay.add_ellipses(ax, d)
Adds one or more ellipses to axis ax using the parameters in dictionary d.

Parameters
• center –

• a –

• b –

• theta –

• color –

• fill –

• alpha –

• linewidth –

• linestyle –

py4DSTEM.visualize.overlay.add_grid_overlay(ax, d)
adds an overlaid grid over some subset of pixels in an image using the parameters in dictionary d.

212 Chapter 1. Contents

py4dstem, Release 0.14.14

The dictionary d has required and optional parameters as follows:
x0,y0 (req’d) (ints) the corner of the grid xL,xL (req’d) (ints) the extent of the grid color (color) linewidth
(number) alpha (number)

py4DSTEM.visualize.overlay.add_pointlabels(ax, d)
adds number indices for a set of points to axis ax using the parameters in dictionary d.

py4DSTEM.visualize.overlay.add_points(ax, d)
adds one or more points to axis ax using the parameters in dictionary d.

py4DSTEM.visualize.overlay.add_polarelliptical_grid(ax, d)
adds an overlaid polar-ellitpical coordinate grid over an image using the parameters in dictionary d.

The dictionary d has required and optional parameters as follows:
x0,y0 (req’d) the origin e,theta (req’d) the ellipticity (a/b) and major axis angle (radians) Nx,Ny (req’d) the
image extent space (str) ‘Q’ or ‘R’ spacing (number) spacing between radial gridlines N_thetalines (int)
the number of theta gridlines pixelsize (number) pixelunits (str) lw (number) ls (str) color (color) label
(bool) labelsize (number) labelcolor (color) alpha (number)

py4DSTEM.visualize.overlay.add_rectangles(ax, d)
Adds one or more rectangles to Axis ax using the parameters in dictionary d.

py4DSTEM.visualize.overlay.add_rtheta_grid(ar, d)

py4DSTEM.visualize.overlay.add_scalebar(ax, d)
Adds an overlaid scalebar to an image, using the parameters in dict d.

The dictionary d has required and optional parameters as follows:
Nx,Ny (req’d) the image extent space (str) ‘Q’ or ‘R’ length (number) the scalebar length width (num-
ber) the scalebar width pixelsize (number) pixelunits (str) color (color) label (bool) labelsize (number)
labelcolor (color) alpha (number) position (str) ‘ul’,’ur’,’bl’, or ‘br’ for the

upperleft, upperright, bottomleft, bottomright

ticks (bool) if False, turns off image border ticks

py4DSTEM.visualize.overlay.add_vector(ax, d)
Adds a vector to an image, using the parameters in dict d.

The dictionary d has required and optional parameters as follows:
x0,y0 (req’d) the tail position vx,vy (req’d) the vector color (color) width (number) label (str) labelsize
(number) labelcolor (color)

py4DSTEM.visualize.overlay.get_nice_spacing(Nx, Ny, pixelsize)
Get a nice distance for gridlines, scalebars, etc

Parameters
• Nx (int) – the image dimensions

• Nx – the image dimensions

• pixelsize (float) – the size of each pixel, in some units

Returns
A 3-tuple containing:

• spacing_units: the spacing in real units

• spacing_pixels:the spacing in pixels

• spacing: the leading digits of the spacing

1.4. API 213

py4dstem, Release 0.14.14

Return type
(3-tuple)

py4DSTEM.visualize.overlay.is_color_like(c)
Return whether c can be interpreted as an RGB(A) color.

virtualimage

vis_RQ

py4DSTEM.visualize.vis_RQ.ax_addaxes(ax, vx, vy, vlength, x0, y0, width=1, color='r', labelaxes=True,
labelsize=12, labelcolor='r', righthandedcoords=True)

Adds a pair of x/y axes to the matplotlib subplot ax. The user supplies the x-axis direction with (vx,vy), and the
y-axis is then chosen by rotating 90 degrees, in a direction set by righthandedcoords.

Accepts:
ax (matplotlib subplot) vx,vy (numbers) x,y components of the x-axis,

Only the orientation is used; the axis is normalized and rescaled by

vlength (number) the axis length x0,y0 (numbers) the origin of the axes labelaxes (bool) if True, label ‘x’
and ‘y’ righthandedcoords (bool) if True, y-axis is counterclockwise

with respect to x-axis

py4DSTEM.visualize.vis_RQ.ax_addaxes_QtoR(ax, vx, vy, vlength, x0, y0, QR_rotation, width=1, color='r',
labelaxes=True, labelsize=12, labelcolor='r')

Adds a pair of x/y axes to the matplotlib subplot ax. The user supplies the x-axis direction with (vx,vy) in
reciprocal space coordinates, and the function transforms and displays the corresponding vector in real space.

Accepts:
ax (matplotlib subplot) vx,vy (numbers) x,y components of the x-axis,

in reciprocal space coordinates. Only the orientation is used; the axes are normalized and
rescaled by

vlength (number) the axis length, in real space x0,y0 (numbers) the origin of the axes, in

real space

labelaxes (bool) if True, label ‘x’ and ‘y’ QR_rotation (number) the offset angle between real and

diffraction space. Specifically, this is the counterclockwise rotation of real space with respect
to diffraction space. In degrees.

py4DSTEM.visualize.vis_RQ.ax_addaxes_RtoQ(ax, vx, vy, vlength, x0, y0, QR_rotation, width=1, color='r',
labelaxes=True, labelsize=12, labelcolor='r')

Adds a pair of x/y axes to the matplotlib subplot ax. The user supplies the x-axis direction with (vx,vy) in real
space coordinates, and the function transforms and displays the corresponding vector in reciprocal space.

Accepts:
ax (matplotlib subplot) vx,vy (numbers) x,y components of the x-axis,

in real space coordinates. Only the orientation is used; the axes are normalized and rescaled by

vlength (number) the axis length, in reciprocal space x0,y0 (numbers) the origin of the axes, in

reciprocal space

labelaxes (bool) if True, label ‘x’ and ‘y’ QR_rotation (number) the offset angle between real and

214 Chapter 1. Contents

py4dstem, Release 0.14.14

diffraction space. Specifically, this is the counterclockwise rotation of real space with respect
to diffraction space. In degrees.

py4DSTEM.visualize.vis_RQ.ax_addvector(ax, vx, vy, vlength, x0, y0, width=1, color='r')
Adds a vector to the subplot at ax.

Accepts:
ax (matplotlib subplot) vx,vy (numbers) x,y components of the vector

Only the orientation is used, vector is normalized and rescaled by

vlength (number) the vector length x0,y0 (numbers) the origin / vector tail position

py4DSTEM.visualize.vis_RQ.ax_addvector_QtoR(ax, vx, vy, vlength, x0, y0, QR_rotation, width=1,
color='r')

Adds a vector to the subplot at ax, where the vector (vx,vy) passed to the function is in reciprocal space and the
plotted vector is transformed into and plotted in real space.

Accepts:
ax (matplotlib subplot) vx,vy (numbers) x,y components of the vector,

in reciprocal space. Only the orientation is used, vector is normalized and rescaled by

vlength (number) the vector length, in real space x0,y0 (numbers) the origin / vector tail position,

in real space

QR_rotation (number) the offset angle between real and
diffraction space. Specifically, this is the counterclockwise rotation of real space with respect to
diffraction space. In degrees.

py4DSTEM.visualize.vis_RQ.ax_addvector_RtoQ(ax, vx, vy, vlength, x0, y0, QR_rotation, width=1,
color='r')

Adds a vector to the subplot at ax, where the vector (vx,vy) passed to the function is in real space and the plotted
vector is transformed into and plotted in reciprocal space.

Accepts:
ax (matplotlib subplot) vx,vy (numbers) x,y components of the vector,

in real space. Only the orientation is used, vector is normalized and rescaled by

vlength (number) the vector length, in reciprocal
space

x0,y0 (numbers) the origin / vector tail position,
in reciprocal space

QR_rotation (number) the offset angle between real and
diffraction space. Specifically, this is the counterclockwise rotation of real space with respect to
diffraction space. In degrees.

1.4. API 215

py4dstem, Release 0.14.14

py4DSTEM.visualize.vis_RQ.show(ar, figsize=(5, 5), cmap='gray', scaling='none', intensity_range='ordered',
clipvals=None, vmin=None, vmax=None, min=None, max=None,
power=None, power_offset=True, combine_images=False, ticks=True,
bordercolor=None, borderwidth=5, show_image=True,
return_ar_scaled=False, return_intensity_range=False, returncax=False,
returnfig=False, figax=None, hist=False, n_bins=256, mask=None,
mask_color='k', mask_alpha=0.0, masked_intensity_range=False,
rectangle=None, circle=None, annulus=None, ellipse=None, points=None,
grid_overlay=None, cartesian_grid=None, polarelliptical_grid=None,
rtheta_grid=None, scalebar=None, calibration=None, rx=None, ry=None,
space='Q', pixelsize=None, pixelunits=None, x0=None, y0=None, a=None,
e=None, theta=None, title=None, show_fft=False,
apply_hanning_window=True, show_cbar=False, **kwargs)

General visualization function for 2D arrays.

The simplest use of this function is:

>>> show(ar)

which will generate and display a matplotlib figure showing the 2D array ar. Additional functionality includes:

• scaling the image (log scaling, power law scaling)

• displaying the image histogram

• altering the histogram clip values

• masking some subset of the image

• setting the colormap

• adding geometric overlays (e.g. points, circles, rectangles, annuli)

• adding informational overlays (scalebars, coordinate grids, oriented axes or vectors)

• further customization tools

These are each discussed in turn below.

Scaling:
Setting the parameter scalingwill scale the display image. Options are ‘none’, ‘auto’, ‘power’, or ‘log’. If
‘power’ is specified, the parameter power must also be passed. The underlying data is not altered. Values
less than or equal to zero are set to zero. If the image histogram is displayed using hist=True, the scaled
image histogram is shown.

Examples:

>>> show(ar,scaling='log')
>>> show(ar,power=0.5)
>>> show(ar,scaling='power',power=0.5,hist=True)

Histogram:
Setting the argument hist=True will display the image histogram, instead of the image. The displayed
histogram will reflect any scaling requested. The number of bins can be set with n_bins. The upper and
lower clip values, indicating where the image display will be saturated, are shown with dashed lines.

Intensity range:
Controlling the lower and upper values at which the display image will be saturated is accomplished
with the intensity_range parameter, or its (soon deprecated) alias clipvals, in combination with
vmin, and vmax. The method by which the upper and lower clip values are determined is controlled by

216 Chapter 1. Contents

py4dstem, Release 0.14.14

intensity_range, and must be a string in (‘None’,’ordered’,’minmax’,’absolute’,’std’,’centered’). See
the argument description for intensity_range for a description of the behavior for each. The clip val-
ues can be returned with the return_intensity_range parameter.

Masking:
If a numpy masked array is passed to show, the function will automatically mask the appropriate pixels.
Alternatively, a boolean array of the same shape as the data array may be passed to the mask argument,
and these pixels will be masked. Masked pixels are displayed as a single uniform color, black by default,
and which can be specified with the mask_color argument. Masked pixels are excluded when displaying
the histogram or computing clip values. The mask can also be blended with the hidden data by setting the
mask_alpha argument.

Overlays (geometric):
The function natively supports overlaying points, circles, rectangles, annuli, and ellipses. Each is invoked
by passing a dictionary to the appropriate input variable specifying the geometry and features of the re-
quested overlay. For example:

>>> show(ar, rectangle={'lims':(10,20,10,20),'color':'r'})

will overlay a single red square, and

>>> show(ar, annulus={'center':[(28,68),(92,160)],
'radii':[(16,24),(12,36)],
'fill':True,
'alpha':[0.9,0.3],
'color':['r',(0,1,1,1)]})

will overlay two annuli with two different centers, radii, colors, and transparencies. For a description of
the accepted dictionary parameters for each type of overlay, see the visualize functions add_*, where * =
(‘rectangle’,’circle’,’annulus’,’ellipse’,’points’). (These docstrings are under construction!)

Overlays (informational):
Informational overlays supported by this function include coordinate axes (cartesian, polar-elliptical, or r-
theta) and scalebars. These are added by passing the appropriate input argument a dictionary of the desired
parameters, as with geometric overlays. However, there are two key differences between these overlays and
the geometric overlays. First, informational overlays (coordinate systems and scalebars) require informa-
tion about the plot - e.g. the position of the origin, the pixel sizes, the pixel units, any elliptical distortions,
etc. The easiest way to pass this information is by pass a Calibration object containing this info to show
as the keyword calibration. Second, once the coordinate information has been passed, informational
overlays can autoselect their own parameters, thus simply passing an empty dict to one of these parameters
will add that overlay.

For example:

>>> show(dp, scalebar={}, calibration=calibration)

will display the diffraction pattern dp with a scalebar overlaid in the bottom left corner given the pixel size
and units described in calibration, and

>>> show(dp, calibration=calibration, scalebar={'length':0.5,'width':2,
'position':'ul','label':True'})

will display a more customized scalebar.

When overlaying coordinate grids, it is important to note that some relevant parameters, e.g. the position
of the origin, may change by scan position. In these cases, the parameters rx,``ry`` must also be passed to
show, to tell the Calibration object where to look for the relevant parameters. For example:

1.4. API 217

py4dstem, Release 0.14.14

>>> show(dp, cartesian_grid={}, calibration=calibration, rx=2,ry=5)

will overlay a cartesian coordinate grid on the diffraction pattern at scan position (2,5). Adding

>>> show(dp, calibration=calibration, rx=2, ry=5, cartesian_grid={'label':True,
'alpha':0.7,'color':'r'})

will customize the appearance of the grid further. And

>>> show(im, calibration=calibration, cartesian_grid={}, space='R')

displays a cartesian grid over a real space image. For more details, see the documentation for the visual-
ize functions add_*, where * = (‘scalebar’, ‘cartesian_grid’, ‘polarelliptical_grid’, ‘rtheta_grid’). (Under
construction!)

Further customization:
Most parameters accepted by a matplotlib axis will be accepted by show. Pass a valid matplotlib colormap
or a known string indicating a colormap as the argument cmap to specify the colormap. Pass figsize to
specify the figure size. Etc.

Further customization can be accomplished by either (1) returning the figure generated by show and then
manipulating it using the normal matplotlib functions, or (2) generating a matplotlib Figure with Axes any
way you like (e.g. with plt.subplots) and then using this function to plot inside a single one of the Axes
of your choice.

Option (1) is accomplished by simply passing this function returnfig=True. Thus:

>>> fig,ax = show(ar, returnfig=True)

will now give you direct access to the figure and axes to continue to alter. Option (2) is accomplished by
passing an existing figure and axis to show as a 2-tuple to the figax argument. Thus:

>>> fig,(ax1,ax2) = plt.subplots(1,2)
>>> show(ar, figax=(fig,ax1))
>>> show(ar, figax=(fig,ax2), hist=True)

will generate a 2-axis figure, and then plot the array ar as an image on the left, while plotting its histogram
on the right.

Parameters
• ar (2D array or a list of 2D arrays) – the data to plot. Normally this is a 2D

array of the data. If a list of 2D arrays is passed, plots a corresponding grid of images.

• figsize (2-tuple) – size of the plot

• cmap (colormap) – any matplotlib cmap; default is gray

• scaling (str) – selects a scaling scheme for the intensity values. Default is none. Ac-
cepted values:

– ’none’: do not scale intensity values

– ’full’: fill entire color range with sorted intensity values

– ’power’: power law scaling

– ’log’: values where ar<=0 are set to 0

• intensity_range (str) –

218 Chapter 1. Contents

py4dstem, Release 0.14.14

method for setting clipvalues (min and max intensities).
The original name “clipvals” is now deprecated. Default is ‘ordered’. Accepted val-
ues:

– ’ordered’: vmin/vmax are set to fractions of the distribution of pixel values in the
array, e.g. vmin=0.02 will set the minumum display value to saturate the lower 2%
of pixels

– ’minmax’: The vmin/vmax values are np.min(ar)/np.max(r)

– ’absolute’: The vmin/vmax values are set to the values of the vmin,vmax arguments
received by this function

– ’std’: The vmin/vmax values are np.median(ar) -/+ N*np.std(ar), and
N is this functions min,max vals.

– ’centered’: The vmin/vmax values are set to c -/+ m, where by default ‘c’ is zero
and m is the max(abs(ar-c), or the two params can be user specified using the kwargs
vmin/vmax -> c/m.

• vmin (number) – min intensity, behavior depends on clipvals

• vmax (number) – max intensity, behavior depends on clipvals

• min – alias’ for vmin,vmax, throws deprecation warning

• max – alias’ for vmin,vmax, throws deprecation warning

• power (number) – specifies the scaling power

• power_offset (bool) – If true, image has min value subtracted before power scaling

• ticks (bool) – Turn outer tick marks on or off

• bordercolor (color or None) – if not None, add a border of this color. The color can
be anything matplotlib recognizes as a color.

• borderwidth (number) –

• returnfig (bool) – if True, the function returns the tuple (figure,axis)

• figax (None or 2-tuple) – controls which matplotlib Axes object draws the image.
If None, generates a new figure with a single Axes instance. Otherwise, ax must be a
2-tuple containing the matplotlib class instances (Figure,Axes), with ar then plotted in the
specified Axes instance.

• hist (bool) – if True, instead of plotting a 2D image in ax, plots a histogram of the
intensity values of ar, after any scaling this function has performed. Plots the clipvals as
dashed vertical lines

• n_bins (int) – number of hist bins

• mask (None or boolean array) – if not None, must have the same shape as ‘ar’. Wher-
ever mask==True, plot the pixel normally, and where mask==False, pixel values are set
to mask_color. If hist==True, ignore these values in the histogram. If mask_alpha is
specified, the mask is blended with the array underneath, with 0 yielding an opaque mask
and 1 yielding a fully transparent mask. If mask_color is set to 'empty' instead of a
matplotlib.color, nothing is done to pixels where mask==False, allowing overlaying mul-
tiple arrays in different regions of an image by invoking the ``figax` kwarg over multiple
calls to show

• mask_color (color) – see ‘mask’

1.4. API 219

py4dstem, Release 0.14.14

• mask_alpha (float) – see ‘mask’

• masked_intensity_range (bool) – controls if masked pixel values are included when
determining the display value range; False indicates that all pixel values will be used to
determine the intensity range, True indicates only unmasked pixels will be used

• scalebar (None or dict or Bool) – if None, and a DiffractionSlice or RealSlice
with calibrations is passed, adds a scalebar. If scalebar is not displaying the proper cali-
bration, check .calibration pixel_size and pixel_units. If None and an array is passed, does
not add a scalebar. If a dict is passed, it is propagated to the add_scalebar function which
will attempt to use it to overlay a scalebar. If True, uses calibraiton or pixelsize/pixelunits
for scalebar. If False, no scalebar is added.

• show_fft (bool) – if True, plots 2D-fft of array

• apply_hanning_window (bool) – If True, a 2D Hann window is applied to the array
before applying the FFT

• show_cbar (bool) – if True, adds cbar

• **kwargs – any keywords accepted by matplotlib’s ax.matshow()

Returns
if returnfig==False (default), the figure is plotted and nothing is returned. if returnfig==True,
return the figure and the axis.

py4DSTEM.visualize.vis_RQ.show_RQ(realspace_image, diffractionspace_image, realspace_pdict={},
diffractionspace_pdict={'scaling': 'log'}, figsize=(12, 6),
returnfig=False)

Shows side-by-side real/reciprocal space images.

Accepts:
realspace_image (2D array) diffractionspace_image (2D array) realspace_pdict (dictionary) arguments and
values to pass

to the show() fn for the real space image

diffractionspace_pdict (dictionary)

py4DSTEM.visualize.vis_RQ.show_RQ_axes(realspace_image, diffractionspace_image, realspace_pdict,
diffractionspace_pdict, vx, vy, vlength_R, vlength_Q, x0_R, y0_R,
x0_Q, y0_Q, QR_rotation, vector_space='R', width_R=1,
color_R='r', width_Q=1, color_Q='r', labelaxes=True,
labelcolor_R='r', labelcolor_Q='r', labelsize_R=12,
labelsize_Q=12, figsize=(12, 6), returnfig=False)

Shows side-by-side real/reciprocal space images with a set of corresponding coordinate axes overlaid in each.
(vx,vy) specifies the x-axis, and the y-axis is rotated 90 degrees counterclockwise in reciprocal space (relevant
in case of an R/Q transposition).

Accepts:
realspace_image (2D array) diffractionspace_image (2D array) realspace_pdict (dictionary) arguments and
values to pass

to the show() fn for the real space image

diffractionspace_pdict (dictionary) vx,vy (numbers) x,y components of the x-axis

in either real or diffraction space, depending on the value of vector_space. Note (vx,vy) is used
for the orientation only - the vectors are normalized and rescaled by

220 Chapter 1. Contents

py4dstem, Release 0.14.14

vlength_R,vlength_Q (number or 1D arrays) the vector length in each
space, in pixels

x0_R,y0_R,x0_Q,y0_Q (number) the origins / vector tail positions QR_rotation (number) the offset angle
between real and

diffraction space. Specifically, this is the counterclockwise rotation of real space with respect
to diffraction space. In degrees.

vector_space (string) must be ‘R’ or ‘Q’. Specifies
whether the (vx,vy) values passed to this function describes a real or diffracation space vector.

py4DSTEM.visualize.vis_RQ.show_RQ_vector(realspace_image, diffractionspace_image, realspace_pdict,
diffractionspace_pdict, vx, vy, vlength_R, vlength_Q, x0_R,
y0_R, x0_Q, y0_Q, QR_rotation, vector_space='R',
width_R=1, color_R='r', width_Q=1, color_Q='r',
figsize=(12, 6), returnfig=False)

Shows side-by-side real/reciprocal space images with a vector overlaid in each showing corresponding directions.

Accepts:
realspace_image (2D array) diffractionspace_image (2D array) realspace_pdict (dictionary) arguments and
values to pass

to the show() fn for the real space image

diffractionspace_pdict (dictionary) vx,vy (numbers) x,y components of the vector

in either real or diffraction space, depending on the value of vector_space. Note (vx,vy) is used
for the orientation only - the two vectors are normalized and rescaled by

vlength_R,vlength_Q (number) the vector length in each
space, in pixels

x0_R,y0_R,x0_Q,y0_Q (numbers) the origins / vector tail positions QR_rotation (number) the offset angle
between real and

diffraction space. Specifically, this is the counterclockwise rotation of real space with respect
to diffraction space. In degrees.

vector_space (string) must be ‘R’ or ‘Q’. Specifies
whether the (vx,vy) values passed to this function describes a real or diffracation space vector.

py4DSTEM.visualize.vis_RQ.show_RQ_vectors(realspace_image, diffractionspace_image, realspace_pdict,
diffractionspace_pdict, vx, vy, vlength_R, vlength_Q, x0_R,
y0_R, x0_Q, y0_Q, QR_rotation, vector_space='R',
width_R=1, color_R='r', width_Q=1, color_Q='r',
figsize=(12, 6), returnfig=False)

Shows side-by-side real/reciprocal space images with several vectors overlaid in each showing corresponding
directions.

Accepts:
realspace_image (2D array) diffractionspace_image (2D array) realspace_pdict (dictionary) arguments and
values to pass

to the show() fn for the real space image

diffractionspace_pdict (dictionary) vx,vy (1D arrays) x,y components of the vectors

1.4. API 221

py4dstem, Release 0.14.14

in either real or diffraction space, depending on the value of vector_space. Note (vx,vy) is used
for the orientation only - the two vectors are normalized and rescaled by

vlength_R,vlenght_Q (number) the vector length in each
space, in pixels

x0_R,y0_R,x0_Q,y0_Q (numbers) the origins / vector tail positions QR_rotation (number) the offset angle
between real and

diffraction space. Specifically, this is the counterclockwise rotation of real space with respect
to diffraction space. In degrees.

vector_space (string) must be ‘R’ or ‘Q’. Specifies
whether the (vx,vy) values passed to this function describes a real or diffracation space vector.

py4DSTEM.visualize.vis_RQ.show_points(ar, x, y, s=1, scale=50, alpha=1, pointcolor='r',
open_circles=False, title=None, returnfig=False, **kwargs)

Plots a 2D array with one or more points. x and y are the point centers and must have the same length, N. s is
the relative point sizes, and must have length 1 or N. scale is the size of the largest point. pointcolor have length
1 or N.

Accepts:
ar (array) the image x,y (number or iterable of numbers) the point positions s (number or iterable of num-
bers) the relative point sizes scale (number) the maximum point size title (str) title for plot pointcolor
alpha

Returns
If returnfig==False (default), the figure is plotted and nothing is returned. If returnfig==False,
the figure and its one axis are returned, and can be further edited.

py4DSTEM.visualize.vis_RQ.show_selected_dp(datacube, image, rx, ry, figsize=(12, 6), returnfig=False,
pointsize=50, pointcolor='r', scaling='log', **kwargs)

vis_grid

py4DSTEM.visualize.vis_grid._show_grid_overlay(image, x0, y0, xL, yL, color='k', linewidth=1, alpha=1,
returnfig=False, **kwargs)

Shows the image with an overlaid boxgrid outline about the pixels beginning at (x0,y0) and with extent xL,yL in
the two directions.

Accepts:
image the image array x0,y0 the corner of the grid xL,xL the extent of the grid

py4DSTEM.visualize.vis_grid.add_grid_overlay(ax, d)
adds an overlaid grid over some subset of pixels in an image using the parameters in dictionary d.

The dictionary d has required and optional parameters as follows:
x0,y0 (req’d) (ints) the corner of the grid xL,xL (req’d) (ints) the extent of the grid color (color) linewidth
(number) alpha (number)

222 Chapter 1. Contents

py4dstem, Release 0.14.14

py4DSTEM.visualize.vis_grid.show(ar, figsize=(5, 5), cmap='gray', scaling='none',
intensity_range='ordered', clipvals=None, vmin=None, vmax=None,
min=None, max=None, power=None, power_offset=True,
combine_images=False, ticks=True, bordercolor=None, borderwidth=5,
show_image=True, return_ar_scaled=False,
return_intensity_range=False, returncax=False, returnfig=False,
figax=None, hist=False, n_bins=256, mask=None, mask_color='k',
mask_alpha=0.0, masked_intensity_range=False, rectangle=None,
circle=None, annulus=None, ellipse=None, points=None,
grid_overlay=None, cartesian_grid=None, polarelliptical_grid=None,
rtheta_grid=None, scalebar=None, calibration=None, rx=None,
ry=None, space='Q', pixelsize=None, pixelunits=None, x0=None,
y0=None, a=None, e=None, theta=None, title=None, show_fft=False,
apply_hanning_window=True, show_cbar=False, **kwargs)

General visualization function for 2D arrays.

The simplest use of this function is:

>>> show(ar)

which will generate and display a matplotlib figure showing the 2D array ar. Additional functionality includes:

• scaling the image (log scaling, power law scaling)

• displaying the image histogram

• altering the histogram clip values

• masking some subset of the image

• setting the colormap

• adding geometric overlays (e.g. points, circles, rectangles, annuli)

• adding informational overlays (scalebars, coordinate grids, oriented axes or vectors)

• further customization tools

These are each discussed in turn below.

Scaling:
Setting the parameter scalingwill scale the display image. Options are ‘none’, ‘auto’, ‘power’, or ‘log’. If
‘power’ is specified, the parameter power must also be passed. The underlying data is not altered. Values
less than or equal to zero are set to zero. If the image histogram is displayed using hist=True, the scaled
image histogram is shown.

Examples:

>>> show(ar,scaling='log')
>>> show(ar,power=0.5)
>>> show(ar,scaling='power',power=0.5,hist=True)

Histogram:
Setting the argument hist=True will display the image histogram, instead of the image. The displayed
histogram will reflect any scaling requested. The number of bins can be set with n_bins. The upper and
lower clip values, indicating where the image display will be saturated, are shown with dashed lines.

Intensity range:
Controlling the lower and upper values at which the display image will be saturated is accomplished
with the intensity_range parameter, or its (soon deprecated) alias clipvals, in combination with

1.4. API 223

py4dstem, Release 0.14.14

vmin, and vmax. The method by which the upper and lower clip values are determined is controlled by
intensity_range, and must be a string in (‘None’,’ordered’,’minmax’,’absolute’,’std’,’centered’). See
the argument description for intensity_range for a description of the behavior for each. The clip val-
ues can be returned with the return_intensity_range parameter.

Masking:
If a numpy masked array is passed to show, the function will automatically mask the appropriate pixels.
Alternatively, a boolean array of the same shape as the data array may be passed to the mask argument,
and these pixels will be masked. Masked pixels are displayed as a single uniform color, black by default,
and which can be specified with the mask_color argument. Masked pixels are excluded when displaying
the histogram or computing clip values. The mask can also be blended with the hidden data by setting the
mask_alpha argument.

Overlays (geometric):
The function natively supports overlaying points, circles, rectangles, annuli, and ellipses. Each is invoked
by passing a dictionary to the appropriate input variable specifying the geometry and features of the re-
quested overlay. For example:

>>> show(ar, rectangle={'lims':(10,20,10,20),'color':'r'})

will overlay a single red square, and

>>> show(ar, annulus={'center':[(28,68),(92,160)],
'radii':[(16,24),(12,36)],
'fill':True,
'alpha':[0.9,0.3],
'color':['r',(0,1,1,1)]})

will overlay two annuli with two different centers, radii, colors, and transparencies. For a description of
the accepted dictionary parameters for each type of overlay, see the visualize functions add_*, where * =
(‘rectangle’,’circle’,’annulus’,’ellipse’,’points’). (These docstrings are under construction!)

Overlays (informational):
Informational overlays supported by this function include coordinate axes (cartesian, polar-elliptical, or r-
theta) and scalebars. These are added by passing the appropriate input argument a dictionary of the desired
parameters, as with geometric overlays. However, there are two key differences between these overlays and
the geometric overlays. First, informational overlays (coordinate systems and scalebars) require informa-
tion about the plot - e.g. the position of the origin, the pixel sizes, the pixel units, any elliptical distortions,
etc. The easiest way to pass this information is by pass a Calibration object containing this info to show
as the keyword calibration. Second, once the coordinate information has been passed, informational
overlays can autoselect their own parameters, thus simply passing an empty dict to one of these parameters
will add that overlay.

For example:

>>> show(dp, scalebar={}, calibration=calibration)

will display the diffraction pattern dp with a scalebar overlaid in the bottom left corner given the pixel size
and units described in calibration, and

>>> show(dp, calibration=calibration, scalebar={'length':0.5,'width':2,
'position':'ul','label':True'})

will display a more customized scalebar.

When overlaying coordinate grids, it is important to note that some relevant parameters, e.g. the position
of the origin, may change by scan position. In these cases, the parameters rx,``ry`` must also be passed to

224 Chapter 1. Contents

py4dstem, Release 0.14.14

show, to tell the Calibration object where to look for the relevant parameters. For example:

>>> show(dp, cartesian_grid={}, calibration=calibration, rx=2,ry=5)

will overlay a cartesian coordinate grid on the diffraction pattern at scan position (2,5). Adding

>>> show(dp, calibration=calibration, rx=2, ry=5, cartesian_grid={'label':True,
'alpha':0.7,'color':'r'})

will customize the appearance of the grid further. And

>>> show(im, calibration=calibration, cartesian_grid={}, space='R')

displays a cartesian grid over a real space image. For more details, see the documentation for the visual-
ize functions add_*, where * = (‘scalebar’, ‘cartesian_grid’, ‘polarelliptical_grid’, ‘rtheta_grid’). (Under
construction!)

Further customization:
Most parameters accepted by a matplotlib axis will be accepted by show. Pass a valid matplotlib colormap
or a known string indicating a colormap as the argument cmap to specify the colormap. Pass figsize to
specify the figure size. Etc.

Further customization can be accomplished by either (1) returning the figure generated by show and then
manipulating it using the normal matplotlib functions, or (2) generating a matplotlib Figure with Axes any
way you like (e.g. with plt.subplots) and then using this function to plot inside a single one of the Axes
of your choice.

Option (1) is accomplished by simply passing this function returnfig=True. Thus:

>>> fig,ax = show(ar, returnfig=True)

will now give you direct access to the figure and axes to continue to alter. Option (2) is accomplished by
passing an existing figure and axis to show as a 2-tuple to the figax argument. Thus:

>>> fig,(ax1,ax2) = plt.subplots(1,2)
>>> show(ar, figax=(fig,ax1))
>>> show(ar, figax=(fig,ax2), hist=True)

will generate a 2-axis figure, and then plot the array ar as an image on the left, while plotting its histogram
on the right.

Parameters
• ar (2D array or a list of 2D arrays) – the data to plot. Normally this is a 2D

array of the data. If a list of 2D arrays is passed, plots a corresponding grid of images.

• figsize (2-tuple) – size of the plot

• cmap (colormap) – any matplotlib cmap; default is gray

• scaling (str) – selects a scaling scheme for the intensity values. Default is none. Ac-
cepted values:

– ’none’: do not scale intensity values

– ’full’: fill entire color range with sorted intensity values

– ’power’: power law scaling

– ’log’: values where ar<=0 are set to 0

1.4. API 225

py4dstem, Release 0.14.14

• intensity_range (str) –

method for setting clipvalues (min and max intensities).
The original name “clipvals” is now deprecated. Default is ‘ordered’. Accepted val-
ues:

– ’ordered’: vmin/vmax are set to fractions of the distribution of pixel values in the
array, e.g. vmin=0.02 will set the minumum display value to saturate the lower 2%
of pixels

– ’minmax’: The vmin/vmax values are np.min(ar)/np.max(r)

– ’absolute’: The vmin/vmax values are set to the values of the vmin,vmax arguments
received by this function

– ’std’: The vmin/vmax values are np.median(ar) -/+ N*np.std(ar), and
N is this functions min,max vals.

– ’centered’: The vmin/vmax values are set to c -/+ m, where by default ‘c’ is zero
and m is the max(abs(ar-c), or the two params can be user specified using the kwargs
vmin/vmax -> c/m.

• vmin (number) – min intensity, behavior depends on clipvals

• vmax (number) – max intensity, behavior depends on clipvals

• min – alias’ for vmin,vmax, throws deprecation warning

• max – alias’ for vmin,vmax, throws deprecation warning

• power (number) – specifies the scaling power

• power_offset (bool) – If true, image has min value subtracted before power scaling

• ticks (bool) – Turn outer tick marks on or off

• bordercolor (color or None) – if not None, add a border of this color. The color can
be anything matplotlib recognizes as a color.

• borderwidth (number) –

• returnfig (bool) – if True, the function returns the tuple (figure,axis)

• figax (None or 2-tuple) – controls which matplotlib Axes object draws the image.
If None, generates a new figure with a single Axes instance. Otherwise, ax must be a
2-tuple containing the matplotlib class instances (Figure,Axes), with ar then plotted in the
specified Axes instance.

• hist (bool) – if True, instead of plotting a 2D image in ax, plots a histogram of the
intensity values of ar, after any scaling this function has performed. Plots the clipvals as
dashed vertical lines

• n_bins (int) – number of hist bins

• mask (None or boolean array) – if not None, must have the same shape as ‘ar’. Wher-
ever mask==True, plot the pixel normally, and where mask==False, pixel values are set
to mask_color. If hist==True, ignore these values in the histogram. If mask_alpha is
specified, the mask is blended with the array underneath, with 0 yielding an opaque mask
and 1 yielding a fully transparent mask. If mask_color is set to 'empty' instead of a
matplotlib.color, nothing is done to pixels where mask==False, allowing overlaying mul-
tiple arrays in different regions of an image by invoking the ``figax` kwarg over multiple
calls to show

226 Chapter 1. Contents

py4dstem, Release 0.14.14

• mask_color (color) – see ‘mask’

• mask_alpha (float) – see ‘mask’

• masked_intensity_range (bool) – controls if masked pixel values are included when
determining the display value range; False indicates that all pixel values will be used to
determine the intensity range, True indicates only unmasked pixels will be used

• scalebar (None or dict or Bool) – if None, and a DiffractionSlice or RealSlice
with calibrations is passed, adds a scalebar. If scalebar is not displaying the proper cali-
bration, check .calibration pixel_size and pixel_units. If None and an array is passed, does
not add a scalebar. If a dict is passed, it is propagated to the add_scalebar function which
will attempt to use it to overlay a scalebar. If True, uses calibraiton or pixelsize/pixelunits
for scalebar. If False, no scalebar is added.

• show_fft (bool) – if True, plots 2D-fft of array

• apply_hanning_window (bool) – If True, a 2D Hann window is applied to the array
before applying the FFT

• show_cbar (bool) – if True, adds cbar

• **kwargs – any keywords accepted by matplotlib’s ax.matshow()

Returns
if returnfig==False (default), the figure is plotted and nothing is returned. if returnfig==True,
return the figure and the axis.

py4DSTEM.visualize.vis_grid.show_DP_grid(datacube, x0, y0, xL, yL, axsize=(6, 6), returnfig=False,
space=0, **kwargs)

Shows a grid of diffraction patterns from DataCube datacube, starting from scan position (x0,y0) and extending
xL,yL.

Accepts:
datacube (DataCube) the 4D-STEM data (x0,y0) the corner of the grid of DPs to display xL,yL the extent
of the grid axsize the size of each diffraction pattern space (number) controls the space between subplots

Returns
if returnfig==false (default), the figure is plotted and nothing is returned. if returnfig==false,
the figure and its one axis are returned, and can be further edited.

py4DSTEM.visualize.vis_grid.show_grid_overlay(image, x0, y0, xL, yL, color='k', linewidth=1, alpha=1,
returnfig=False, **kwargs)

Shows the image with an overlaid boxgrid outline about the pixels beginning at (x0,y0) and with extent xL,yL in
the two directions.

Accepts:
image the image array x0,y0 the corner of the grid xL,xL the extent of the grid

py4DSTEM.visualize.vis_grid.show_image_grid(get_ar, H, W , axsize=(6, 6), returnfig=False, figax=None,
title=None, title_index=False, suptitle=None,
get_bordercolor=None, get_x=None, get_y=None,
get_pointcolors=None, get_s=None, open_circles=False,
**kwargs)

Displays a set of images in a grid.

The images are specified by some function get_ar(i), which returns an image for values of some integer index i.
The values of i passed to get_ar are 0 through HW-1.

To display the first 4 two-dimensional slices of some 3D array ar some 3D array ar, you can do

1.4. API 227

py4dstem, Release 0.14.14

>>> show_image_grid(lambda i:ar[:,:,i], H=2, W=2)

Its also possible to add colored borders, or overlaid points, using similar functions to get_ar, i.e. functions which
return the color or set of points of interest as a function of index i, which must be defined in the range [0,HW-1].

Accepts:
get_ar a function which returns a 2D array when passed

the integers 0 through HW-1

H,W integers, the dimensions of the grid axsize the size of each image figax controls which matplotlib
Axes object draws the image.

If None, generates a new figure with a single Axes instance. Otherwise, ax must be a 2-tuple
containing the matplotlib class instances (Figure,Axes), with ar then plotted in the specified
Axes instance.

title if title is sting, then prints title as suptitle. If a suptitle is also provided,
the suptitle is printed insead. if title is a list of strings (ex: [‘title 1’,’title 2’]), each array has corre-
sponding title in list.

title_index if True, prints the index i passed to get_ar over each image suptitle string, suptitle on plot
get_bordercolor

if not None, should be a function defined over the same i as get_ar, and which returns a valid
matplotlib color for each i. Adds a colored bounding box about each image. E.g. if colors is an
array of colors:

>>> show_image_grid(lambda i:ar[:,:,i],H=2,W=2,
get_bordercolor=lambda i:colors[i])

get_x,get_y functions which returns sets of x/y positions
as a function of index i

get_s function which returns a set of point sizes
as a function of index i

get_pointcolors a function which returns a color or list of colors
as a function of index i

Returns
if returnfig==false (default), the figure is plotted and nothing is returned. if returnfig==false,
the figure and its one axis are returned, and can be further edited.

py4DSTEM.visualize.vis_grid.show_points(ar, x, y, s=1, scale=50, alpha=1, pointcolor='r',
open_circles=False, title=None, returnfig=False, **kwargs)

Plots a 2D array with one or more points. x and y are the point centers and must have the same length, N. s is
the relative point sizes, and must have length 1 or N. scale is the size of the largest point. pointcolor have length
1 or N.

Accepts:
ar (array) the image x,y (number or iterable of numbers) the point positions s (number or iterable of num-
bers) the relative point sizes scale (number) the maximum point size title (str) title for plot pointcolor
alpha

228 Chapter 1. Contents

py4dstem, Release 0.14.14

Returns
If returnfig==False (default), the figure is plotted and nothing is returned. If returnfig==False,
the figure and its one axis are returned, and can be further edited.

vis_special

py4DSTEM.visualize.vis_special.Complex2RGB(complex_data, vmin=None, vmax=None, power=None,
chroma_boost=1)

complex_data (array): complex array to plot vmin (float) : minimum absolute value vmax (float) : maximum
absolute value power (float) : power to raise amplitude to chroma_boost (float): boosts chroma for higher-contrast
(~1-2.5)

py4DSTEM.visualize.vis_special.add_bragg_index_labels(ax, d)
Adds labels for indexed bragg directions to a plot, using the parameters in dict d.

The dictionary d has required and optional parameters as follows:
bragg_directions (req’d) (PointList) the Bragg directions. This PointList must have

the fields ‘qx’,’qy’,’h’, and ‘k’, and may optionally have ‘l’

voffset (number) vertical offset for the labels hoffset (number) horizontal offset for the labels color (color)
size (number) points (bool) pointsize (number) pointcolor (color)

py4DSTEM.visualize.vis_special.add_ellipses(ax, d)
Adds one or more ellipses to axis ax using the parameters in dictionary d.

Parameters
• center –

• a –

• b –

• theta –

• color –

• fill –

• alpha –

• linewidth –

• linestyle –

py4DSTEM.visualize.vis_special.add_pointlabels(ax, d)
adds number indices for a set of points to axis ax using the parameters in dictionary d.

py4DSTEM.visualize.vis_special.add_points(ax, d)
adds one or more points to axis ax using the parameters in dictionary d.

py4DSTEM.visualize.vis_special.add_scalebar(ax, d)
Adds an overlaid scalebar to an image, using the parameters in dict d.

The dictionary d has required and optional parameters as follows:
Nx,Ny (req’d) the image extent space (str) ‘Q’ or ‘R’ length (number) the scalebar length width (num-
ber) the scalebar width pixelsize (number) pixelunits (str) color (color) label (bool) labelsize (number)
labelcolor (color) alpha (number) position (str) ‘ul’,’ur’,’bl’, or ‘br’ for the

upperleft, upperright, bottomleft, bottomright

1.4. API 229

py4dstem, Release 0.14.14

ticks (bool) if False, turns off image border ticks

py4DSTEM.visualize.vis_special.add_vector(ax, d)
Adds a vector to an image, using the parameters in dict d.

The dictionary d has required and optional parameters as follows:
x0,y0 (req’d) the tail position vx,vy (req’d) the vector color (color) width (number) label (str) labelsize
(number) labelcolor (color)

py4DSTEM.visualize.vis_special.ax_addaxes(ax, vx, vy, vlength, x0, y0, width=1, color='r',
labelaxes=True, labelsize=12, labelcolor='r',
righthandedcoords=True)

Adds a pair of x/y axes to the matplotlib subplot ax. The user supplies the x-axis direction with (vx,vy), and the
y-axis is then chosen by rotating 90 degrees, in a direction set by righthandedcoords.

Accepts:
ax (matplotlib subplot) vx,vy (numbers) x,y components of the x-axis,

Only the orientation is used; the axis is normalized and rescaled by

vlength (number) the axis length x0,y0 (numbers) the origin of the axes labelaxes (bool) if True, label ‘x’
and ‘y’ righthandedcoords (bool) if True, y-axis is counterclockwise

with respect to x-axis

py4DSTEM.visualize.vis_special.ax_addaxes_QtoR(ax, vx, vy, vlength, x0, y0, QR_rotation, width=1,
color='r', labelaxes=True, labelsize=12,
labelcolor='r')

Adds a pair of x/y axes to the matplotlib subplot ax. The user supplies the x-axis direction with (vx,vy) in
reciprocal space coordinates, and the function transforms and displays the corresponding vector in real space.

Accepts:
ax (matplotlib subplot) vx,vy (numbers) x,y components of the x-axis,

in reciprocal space coordinates. Only the orientation is used; the axes are normalized and
rescaled by

vlength (number) the axis length, in real space x0,y0 (numbers) the origin of the axes, in

real space

labelaxes (bool) if True, label ‘x’ and ‘y’ QR_rotation (number) the offset angle between real and

diffraction space. Specifically, this is the counterclockwise rotation of real space with respect
to diffraction space. In degrees.

py4DSTEM.visualize.vis_special.make_axes_locatable(axes)

py4DSTEM.visualize.vis_special.select_point(ar, x, y, i, color='lightblue', color_selected='r', size=20,
returnfig=False, **kwargs)

Show enumerated index labels for a set of points, with one selected point highlighted

230 Chapter 1. Contents

py4dstem, Release 0.14.14

py4DSTEM.visualize.vis_special.show(ar, figsize=(5, 5), cmap='gray', scaling='none',
intensity_range='ordered', clipvals=None, vmin=None, vmax=None,
min=None, max=None, power=None, power_offset=True,
combine_images=False, ticks=True, bordercolor=None,
borderwidth=5, show_image=True, return_ar_scaled=False,
return_intensity_range=False, returncax=False, returnfig=False,
figax=None, hist=False, n_bins=256, mask=None, mask_color='k',
mask_alpha=0.0, masked_intensity_range=False, rectangle=None,
circle=None, annulus=None, ellipse=None, points=None,
grid_overlay=None, cartesian_grid=None,
polarelliptical_grid=None, rtheta_grid=None, scalebar=None,
calibration=None, rx=None, ry=None, space='Q', pixelsize=None,
pixelunits=None, x0=None, y0=None, a=None, e=None, theta=None,
title=None, show_fft=False, apply_hanning_window=True,
show_cbar=False, **kwargs)

General visualization function for 2D arrays.

The simplest use of this function is:

>>> show(ar)

which will generate and display a matplotlib figure showing the 2D array ar. Additional functionality includes:

• scaling the image (log scaling, power law scaling)

• displaying the image histogram

• altering the histogram clip values

• masking some subset of the image

• setting the colormap

• adding geometric overlays (e.g. points, circles, rectangles, annuli)

• adding informational overlays (scalebars, coordinate grids, oriented axes or vectors)

• further customization tools

These are each discussed in turn below.

Scaling:
Setting the parameter scalingwill scale the display image. Options are ‘none’, ‘auto’, ‘power’, or ‘log’. If
‘power’ is specified, the parameter power must also be passed. The underlying data is not altered. Values
less than or equal to zero are set to zero. If the image histogram is displayed using hist=True, the scaled
image histogram is shown.

Examples:

>>> show(ar,scaling='log')
>>> show(ar,power=0.5)
>>> show(ar,scaling='power',power=0.5,hist=True)

Histogram:
Setting the argument hist=True will display the image histogram, instead of the image. The displayed
histogram will reflect any scaling requested. The number of bins can be set with n_bins. The upper and
lower clip values, indicating where the image display will be saturated, are shown with dashed lines.

Intensity range:
Controlling the lower and upper values at which the display image will be saturated is accomplished

1.4. API 231

py4dstem, Release 0.14.14

with the intensity_range parameter, or its (soon deprecated) alias clipvals, in combination with
vmin, and vmax. The method by which the upper and lower clip values are determined is controlled by
intensity_range, and must be a string in (‘None’,’ordered’,’minmax’,’absolute’,’std’,’centered’). See
the argument description for intensity_range for a description of the behavior for each. The clip val-
ues can be returned with the return_intensity_range parameter.

Masking:
If a numpy masked array is passed to show, the function will automatically mask the appropriate pixels.
Alternatively, a boolean array of the same shape as the data array may be passed to the mask argument,
and these pixels will be masked. Masked pixels are displayed as a single uniform color, black by default,
and which can be specified with the mask_color argument. Masked pixels are excluded when displaying
the histogram or computing clip values. The mask can also be blended with the hidden data by setting the
mask_alpha argument.

Overlays (geometric):
The function natively supports overlaying points, circles, rectangles, annuli, and ellipses. Each is invoked
by passing a dictionary to the appropriate input variable specifying the geometry and features of the re-
quested overlay. For example:

>>> show(ar, rectangle={'lims':(10,20,10,20),'color':'r'})

will overlay a single red square, and

>>> show(ar, annulus={'center':[(28,68),(92,160)],
'radii':[(16,24),(12,36)],
'fill':True,
'alpha':[0.9,0.3],
'color':['r',(0,1,1,1)]})

will overlay two annuli with two different centers, radii, colors, and transparencies. For a description of
the accepted dictionary parameters for each type of overlay, see the visualize functions add_*, where * =
(‘rectangle’,’circle’,’annulus’,’ellipse’,’points’). (These docstrings are under construction!)

Overlays (informational):
Informational overlays supported by this function include coordinate axes (cartesian, polar-elliptical, or r-
theta) and scalebars. These are added by passing the appropriate input argument a dictionary of the desired
parameters, as with geometric overlays. However, there are two key differences between these overlays and
the geometric overlays. First, informational overlays (coordinate systems and scalebars) require informa-
tion about the plot - e.g. the position of the origin, the pixel sizes, the pixel units, any elliptical distortions,
etc. The easiest way to pass this information is by pass a Calibration object containing this info to show
as the keyword calibration. Second, once the coordinate information has been passed, informational
overlays can autoselect their own parameters, thus simply passing an empty dict to one of these parameters
will add that overlay.

For example:

>>> show(dp, scalebar={}, calibration=calibration)

will display the diffraction pattern dp with a scalebar overlaid in the bottom left corner given the pixel size
and units described in calibration, and

>>> show(dp, calibration=calibration, scalebar={'length':0.5,'width':2,
'position':'ul','label':True'})

will display a more customized scalebar.

When overlaying coordinate grids, it is important to note that some relevant parameters, e.g. the position

232 Chapter 1. Contents

py4dstem, Release 0.14.14

of the origin, may change by scan position. In these cases, the parameters rx,``ry`` must also be passed to
show, to tell the Calibration object where to look for the relevant parameters. For example:

>>> show(dp, cartesian_grid={}, calibration=calibration, rx=2,ry=5)

will overlay a cartesian coordinate grid on the diffraction pattern at scan position (2,5). Adding

>>> show(dp, calibration=calibration, rx=2, ry=5, cartesian_grid={'label':True,
'alpha':0.7,'color':'r'})

will customize the appearance of the grid further. And

>>> show(im, calibration=calibration, cartesian_grid={}, space='R')

displays a cartesian grid over a real space image. For more details, see the documentation for the visual-
ize functions add_*, where * = (‘scalebar’, ‘cartesian_grid’, ‘polarelliptical_grid’, ‘rtheta_grid’). (Under
construction!)

Further customization:
Most parameters accepted by a matplotlib axis will be accepted by show. Pass a valid matplotlib colormap
or a known string indicating a colormap as the argument cmap to specify the colormap. Pass figsize to
specify the figure size. Etc.

Further customization can be accomplished by either (1) returning the figure generated by show and then
manipulating it using the normal matplotlib functions, or (2) generating a matplotlib Figure with Axes any
way you like (e.g. with plt.subplots) and then using this function to plot inside a single one of the Axes
of your choice.

Option (1) is accomplished by simply passing this function returnfig=True. Thus:

>>> fig,ax = show(ar, returnfig=True)

will now give you direct access to the figure and axes to continue to alter. Option (2) is accomplished by
passing an existing figure and axis to show as a 2-tuple to the figax argument. Thus:

>>> fig,(ax1,ax2) = plt.subplots(1,2)
>>> show(ar, figax=(fig,ax1))
>>> show(ar, figax=(fig,ax2), hist=True)

will generate a 2-axis figure, and then plot the array ar as an image on the left, while plotting its histogram
on the right.

Parameters
• ar (2D array or a list of 2D arrays) – the data to plot. Normally this is a 2D

array of the data. If a list of 2D arrays is passed, plots a corresponding grid of images.

• figsize (2-tuple) – size of the plot

• cmap (colormap) – any matplotlib cmap; default is gray

• scaling (str) – selects a scaling scheme for the intensity values. Default is none. Ac-
cepted values:

– ’none’: do not scale intensity values

– ’full’: fill entire color range with sorted intensity values

– ’power’: power law scaling

1.4. API 233

py4dstem, Release 0.14.14

– ’log’: values where ar<=0 are set to 0

• intensity_range (str) –

method for setting clipvalues (min and max intensities).
The original name “clipvals” is now deprecated. Default is ‘ordered’. Accepted val-
ues:

– ’ordered’: vmin/vmax are set to fractions of the distribution of pixel values in the
array, e.g. vmin=0.02 will set the minumum display value to saturate the lower 2%
of pixels

– ’minmax’: The vmin/vmax values are np.min(ar)/np.max(r)

– ’absolute’: The vmin/vmax values are set to the values of the vmin,vmax arguments
received by this function

– ’std’: The vmin/vmax values are np.median(ar) -/+ N*np.std(ar), and
N is this functions min,max vals.

– ’centered’: The vmin/vmax values are set to c -/+ m, where by default ‘c’ is zero
and m is the max(abs(ar-c), or the two params can be user specified using the kwargs
vmin/vmax -> c/m.

• vmin (number) – min intensity, behavior depends on clipvals

• vmax (number) – max intensity, behavior depends on clipvals

• min – alias’ for vmin,vmax, throws deprecation warning

• max – alias’ for vmin,vmax, throws deprecation warning

• power (number) – specifies the scaling power

• power_offset (bool) – If true, image has min value subtracted before power scaling

• ticks (bool) – Turn outer tick marks on or off

• bordercolor (color or None) – if not None, add a border of this color. The color can
be anything matplotlib recognizes as a color.

• borderwidth (number) –

• returnfig (bool) – if True, the function returns the tuple (figure,axis)

• figax (None or 2-tuple) – controls which matplotlib Axes object draws the image.
If None, generates a new figure with a single Axes instance. Otherwise, ax must be a
2-tuple containing the matplotlib class instances (Figure,Axes), with ar then plotted in the
specified Axes instance.

• hist (bool) – if True, instead of plotting a 2D image in ax, plots a histogram of the
intensity values of ar, after any scaling this function has performed. Plots the clipvals as
dashed vertical lines

• n_bins (int) – number of hist bins

• mask (None or boolean array) – if not None, must have the same shape as ‘ar’. Wher-
ever mask==True, plot the pixel normally, and where mask==False, pixel values are set
to mask_color. If hist==True, ignore these values in the histogram. If mask_alpha is
specified, the mask is blended with the array underneath, with 0 yielding an opaque mask
and 1 yielding a fully transparent mask. If mask_color is set to 'empty' instead of a

234 Chapter 1. Contents

py4dstem, Release 0.14.14

matplotlib.color, nothing is done to pixels where mask==False, allowing overlaying mul-
tiple arrays in different regions of an image by invoking the ``figax` kwarg over multiple
calls to show

• mask_color (color) – see ‘mask’

• mask_alpha (float) – see ‘mask’

• masked_intensity_range (bool) – controls if masked pixel values are included when
determining the display value range; False indicates that all pixel values will be used to
determine the intensity range, True indicates only unmasked pixels will be used

• scalebar (None or dict or Bool) – if None, and a DiffractionSlice or RealSlice
with calibrations is passed, adds a scalebar. If scalebar is not displaying the proper cali-
bration, check .calibration pixel_size and pixel_units. If None and an array is passed, does
not add a scalebar. If a dict is passed, it is propagated to the add_scalebar function which
will attempt to use it to overlay a scalebar. If True, uses calibraiton or pixelsize/pixelunits
for scalebar. If False, no scalebar is added.

• show_fft (bool) – if True, plots 2D-fft of array

• apply_hanning_window (bool) – If True, a 2D Hann window is applied to the array
before applying the FFT

• show_cbar (bool) – if True, adds cbar

• **kwargs – any keywords accepted by matplotlib’s ax.matshow()

Returns
if returnfig==False (default), the figure is plotted and nothing is returned. if returnfig==True,
return the figure and the axis.

py4DSTEM.visualize.vis_special.show_amorphous_ring_fit(dp, fitradii, p_dsg, N=12, cmap=('gray',
'gray'), fitborder=True, fitbordercolor='k',
fitborderlw=0.5, scaling='log',
ellipse=False, ellipse_color='r',
ellipse_alpha=0.7, ellipse_lw=2,
returnfig=False, **kwargs)

Display a diffraction pattern with a fit to its amorphous ring, interleaving the data and the fit in a pinwheel pattern.

Parameters
• dp (array) – the diffraction pattern

• fitradii (2-tuple of numbers) – the min/max distances of the fitting annulus

• p_dsg (11-tuple) – the fit parameters to the double-sided gaussian function returned by
fit_ellipse_amorphous_ring

• N (int) – the number of pinwheel sections

• cmap (colormap or 2-tuple of colormaps) – if passed a single cmap, uses this
colormap for both the data and the fit; if passed a 2-tuple of cmaps, uses the first for the
data and the second for the fit

• fitborder (bool) – if True, plots a border line around the fit data

• fitbordercolor (color) – color of the fitborder

• fitborderlw (number) – linewidth of the fitborder

• scaling (str) – the normal scaling param – see docstring for visualize.show

• ellipse (bool) – if True, overlay an ellipse

1.4. API 235

py4dstem, Release 0.14.14

• returnfig (bool) – if True, returns the figure

py4DSTEM.visualize.vis_special.show_class_BPs(ar, x, y, s, s2, color='r', color2='y', **kwargs)
words

py4DSTEM.visualize.vis_special.show_class_BPs_grid(ar, H, W , x, y, get_s, s2, color='r', color2='y',
returnfig=False, axsize=(6, 6), titlesize=0,
get_bordercolor=None, **kwargs)

words

py4DSTEM.visualize.vis_special.show_complex(ar_complex, vmin=None, vmax=None, power=None,
chroma_boost=1, cbar=True, scalebar=False,
pixelunits='pixels', pixelsize=1, returnfig=False,
**kwargs)

Function to plot complex arrays

Parameters
• ar_complex (2D array) – complex array to be plotted. If ar_complex is list of complex

arrarys such as [array1, array2], then arrays are horizonally plotted in one figure

• vmin (float, optional) – minimum absolute value

• vmax (float, optional) – maximum absolute value if None, vmin/vmax are set to frac-
tions of the distribution of pixel values in the array, e.g. vmin=0.02 will set the minumum
display value to saturate the lower 2% of pixels

• power (float,optional) – power to raise amplitude to

• chroma_boost (float) – boosts chroma for higher-contrast (~1-2.25)

• cbar (bool, optional) – if True, include color bar

• scalebar (bool, optional) – if True, adds scale bar

• pixelunits (str, optional) – units for scalebar

• pixelsize (float, optional) – size of one pixel in pixelunits for scalebar

• returnfig (bool, optional) – if True, the function returns the tuple (figure,axis)

Returns
if returnfig==False (default), the figure is plotted and nothing is returned. if returnfig==True,
return the figure and the axis.

py4DSTEM.visualize.vis_special.show_elliptical_fit(ar, fitradii, p_ellipse, fill=True, color_ann='y',
color_ell='r', alpha_ann=0.2, alpha_ell=0.7,
linewidth_ann=2, linewidth_ell=2,
returnfig=False, **kwargs)

Plots an elliptical curve over its annular fit region.

Parameters
• center (2-tuple) – the center

• fitradii (2-tuple of numbers) – the annulus inner and outer fit radii

• p_ellipse (5-tuple) – the parameters of the fit ellipse, (qx0,qy0,a,b,theta). See the
module docstring for utils.elliptical_coords for more details.

• fill (bool) – if True, fills in the annular fitting region, else shows only inner/outer edges

• color_ann (color) – annulus color

236 Chapter 1. Contents

py4dstem, Release 0.14.14

• color_ell (color) – ellipse color

• alpha_ann – transparency for the annulus

• alpha_ell – transparency forn the fit ellipse

• linewidth_ann –

• linewidth_ell –

py4DSTEM.visualize.vis_special.show_image_grid(get_ar, H, W , axsize=(6, 6), returnfig=False,
figax=None, title=None, title_index=False,
suptitle=None, get_bordercolor=None, get_x=None,
get_y=None, get_pointcolors=None, get_s=None,
open_circles=False, **kwargs)

Displays a set of images in a grid.

The images are specified by some function get_ar(i), which returns an image for values of some integer index i.
The values of i passed to get_ar are 0 through HW-1.

To display the first 4 two-dimensional slices of some 3D array ar some 3D array ar, you can do

>>> show_image_grid(lambda i:ar[:,:,i], H=2, W=2)

Its also possible to add colored borders, or overlaid points, using similar functions to get_ar, i.e. functions which
return the color or set of points of interest as a function of index i, which must be defined in the range [0,HW-1].

Accepts:
get_ar a function which returns a 2D array when passed

the integers 0 through HW-1

H,W integers, the dimensions of the grid axsize the size of each image figax controls which matplotlib
Axes object draws the image.

If None, generates a new figure with a single Axes instance. Otherwise, ax must be a 2-tuple
containing the matplotlib class instances (Figure,Axes), with ar then plotted in the specified
Axes instance.

title if title is sting, then prints title as suptitle. If a suptitle is also provided,
the suptitle is printed insead. if title is a list of strings (ex: [‘title 1’,’title 2’]), each array has corre-
sponding title in list.

title_index if True, prints the index i passed to get_ar over each image suptitle string, suptitle on plot
get_bordercolor

if not None, should be a function defined over the same i as get_ar, and which returns a valid
matplotlib color for each i. Adds a colored bounding box about each image. E.g. if colors is an
array of colors:

>>> show_image_grid(lambda i:ar[:,:,i],H=2,W=2,
get_bordercolor=lambda i:colors[i])

get_x,get_y functions which returns sets of x/y positions
as a function of index i

get_s function which returns a set of point sizes
as a function of index i

get_pointcolors a function which returns a color or list of colors
as a function of index i

1.4. API 237

py4dstem, Release 0.14.14

Returns
if returnfig==false (default), the figure is plotted and nothing is returned. if returnfig==false,
the figure and its one axis are returned, and can be further edited.

py4DSTEM.visualize.vis_special.show_kernel(kernel, R, L, W , figsize=(12, 6), returnfig=False, **kwargs)
Plots, side by side, the probe kernel and its line profile. R is the kernel plot’s window size. L and W are the
length and width of the lineprofile.

py4DSTEM.visualize.vis_special.show_max_peak_spacing(ar, spacing, braggdirections, color='g', lw=2,
returnfig=False, **kwargs)

Show a circle of radius spacing about each Bragg direction

py4DSTEM.visualize.vis_special.show_origin_fit(data, plot_range=None, axsize=(3, 3))
Show the measured, fit, and residuals of the origin positions.

Parameters
• data ((DataCube or Calibration or (3,2)-tuple of arrays) –

((qx0_meas,qy0_meas),(qx0_fit,qy0_fit),(qx0_residuals,qy0_residuals))

• plot_range ((tuple, list, or np.array)) – Plotting range in units of pixels

• axsize ((tuple)) – Size of each plot axis

py4DSTEM.visualize.vis_special.show_origin_meas(data)
Show the measured positions of the origin.

Parameters
data (DataCube or Calibration or 2-tuple of arrays (qx0,qy0)) –

py4DSTEM.visualize.vis_special.show_pointlabels(ar, x, y, color='lightblue', size=20, alpha=1,
returnfig=False, **kwargs)

Show enumerated index labels for a set of points

py4DSTEM.visualize.vis_special.show_qprofile(q, intensity, ymax=None, figsize=(12, 4), returnfig=False,
color='k', xlabel='q (pixels)', ylabel='Intensity (A.U.)',
labelsize=16, ticklabelsize=14, grid=True, label=None,
**kwargs)

Plots a diffraction space radial profile. Params:

q (1D array) the diffraction coordinate / x-axis intensity (1D array) the y-axis values ymax (number)
max value for the yaxis color (matplotlib color) profile color xlabel (str) ylabel labelsize size of x
and y labels ticklabelsize grid True or False label a legend label for the plotted curve

py4DSTEM.visualize.vis_special.show_selected_dps(datacube, positions, im, bragg_pos=None,
colors=None, HW=None, figsize_im=(6, 6),
figsize_dp=(4, 4), **kwargs)

Shows two plots: first, a real space image overlaid with colored dots at the specified positions; second, a grid of
diffraction patterns corresponding to these scan positions.

Parameters
• datacube (DataCube) –

• positions (len N list or tuple of 2-tuples) – the scan positions

• im (2d array) – a real space image

• bragg_pos (len N list of pointlistarrays) – bragg disk positions for each po-
sition. if passed, overlays the disk positions, and supresses plot of the real space image

238 Chapter 1. Contents

py4dstem, Release 0.14.14

• colors (len N list of colors or None) –

• HW (2-tuple of ints) – diffraction pattern grid shape

• figsize_im (2-tuple) – size of the image figure

• figsize_dp (2-tuple) – size of each diffraction pattern panel

• **kwargs (dict) – arguments passed to visualize.show for the diffraction patterns. De-
fault is scaling=’log’

py4DSTEM.visualize.vis_special.show_strain(data, vrange=[-3, 3], vrange_theta=[-3, 3],
vrange_exx=None, vrange_exy=None, vrange_eyy=None,
show_cbars=None, bordercolor='k', borderwidth=1,
titlesize=18, ticklabelsize=10, ticknumber=5,
unitlabelsize=16, cmap='RdBu_r', cmap_theta='PRGn',
mask_color='k', color_axes='k', show_legend=False,
rotation_deg=0, show_gvects=True, g1=None, g2=None,
color_gvects='r', legend_camera_length=1.6,
scale_gvects=0.6, layout='square', figsize=None,
returnfig=False, **kwargs)

Display a strain map, showing the 4 strain components (e_xx,e_yy,e_xy,theta), and masking each image with
strainmap.get_slice(‘mask’)

Parameters
• data (strainmap) –

• vrange (length 2 list or tuple) – The colorbar intensity range for exx,eyy, and
exy.

• vrange_theta (length 2 list or tuple) – The colorbar intensity range for theta.

• vrange_exx (length 2 list or tuple) – The colorbar intensity range for exx; over-
rides vrange for exx

• vrange_exy (length 2 list or tuple) – The colorbar intensity range for exy; over-
rides vrange for exy

• vrange_eyy (length 2 list or tuple) – The colorbar intensity range for eyy; over-
rides vrange for eyy

• show_cbars (None or a tuple of strings) – Show colorbars for the specified
axes. Valid strings are ‘exx’, ‘eyy’, ‘exy’, and ‘theta’.

• bordercolor (color) – Color for the image borders

• borderwidth (number) – Width of the image borders

• titlesize (number) – Size of the image titles

• ticklabelsize (number) – Size of the colorbar ticks

• ticknumber (number) – Number of ticks on colorbars

• unitlabelsize (number) – Size of the units label on the colorbars

• cmap (colormap) – Colormap for exx, exy, and eyy

• cmap_theta (colormap) – Colormap for theta

• mask_color (color) – Color for the background mask

• color_axes (color) – Color for the legend coordinate axes

• show_gvects (bool) – Toggles displaying the g-vectors in the legend

1.4. API 239

py4dstem, Release 0.14.14

• rotation_deg (float) – coordinate rotation for strainmap in degrees

• g1 (tuple) – g1 orientation (x,y)

• g2 (tuple) – g2 orientation (x,y)

• color_gvects (color) – Color for the legend g-vectors

• legend_camera_length (number) – The distance the legend is viewed from; a smaller
number yields a larger legend

• scale_gvects (number) – Scaling for the legend g-vectors relative to the coordinate
axes

• layout (int) – Determines the layout of the grid which the strain components will be
plotted in. Options are “square”, “horizontal”, “vertical.”

• figsize (length 2 tuple of numbers) – Size of the figure

• returnfig (bool) – Toggles returning the figure

• **kwargs (keywords passed to py4DSTEM show function) –

py4DSTEM.visualize.vis_special.show_voronoi(ar, x, y, color_points='r', color_lines='w', max_dist=None,
returnfig=False, **kwargs)

words

1.4.7 emd

Table of Contents

• emd

– Classes

– Functions

Classes

class emdfile.Array(data: ndarray, name: str | None = 'array', units: str | None = '', dims: list | None = None,
dim_names: list | None = None, dim_units: list | None = None, slicelabels=None)

A class which stores any N-dimensional array-like data, plus basic metadata: a name and units, as well as cali-
brations for each axis of the array, and names and units for those axis calibrations.

In the simplest usage, only a data array is passed:

>>> ar = Array(np.ones((20,20,256,256)))

will create an array instance whose data is the numpy array passed, and with automatically populated dimension
calibrations in units of pixels.

Additional arguments may be passed to populate the object metadata:

>>> ar = Array(
>>> np.ones((20,20,256,256)),
>>> name = 'test_array',
>>> units = 'intensity',

(continues on next page)

240 Chapter 1. Contents

py4dstem, Release 0.14.14

(continued from previous page)

>>> dims = [
>>> [0,5],
>>> [0,5],
>>> [0,0.01],
>>> [0,0.01]
>>>],
>>> dim_units = [
>>> 'nm',
>>> 'nm',
>>> 'A^-1',
>>> 'A^-1'
>>>],
>>> dim_names = [
>>> 'rx',
>>> 'ry',
>>> 'qx',
>>> 'qy'
>>>],
>>>)

will create an array with a name and units for its data, where its first two dimensions are in units of nanometers,
have pixel sizes of 5nm, and are described by the handles ‘rx’ and ‘ry’, and where its last two dimensions are in
units of inverse Angstroms, have pixels sizes of 0.01A^-1, and are described by the handles ‘qx’ and ‘qy’.

Arrays in which the length of each pixel is non-constant are also supported. For instance,

>>> x = np.logspace(0,1,100)
>>> y = np.sin(x)
>>> ar = Array(
>>> y,
>>> dims = [
>>> x
>>>]
>>>)

generates an array representing the values of the sine function sampled 100 times along a logarithmic interval
from 1 to 10. In this example, this data could then be plotted with, e.g.

>>> plt.scatter(ar.dims[0], ar.data)

If the slicelabels keyword is passed, the first N-1 dimensions of the array are treated normally, while the final
dimension is used to represent distinct arrays which share a common shape and set of dim vectors. Thus

>>> ar = Array(
>>> np.ones((50,50,4)),
>>> name = 'test_array_stack',
>>> units = 'intensity',
>>> dims = [
>>> [0,2],
>>> [0,2]
>>>],
>>> dim_units = [
>>> 'nm',

(continues on next page)

1.4. API 241

py4dstem, Release 0.14.14

(continued from previous page)

>>> 'nm'
>>>],
>>> dim_names = [
>>> 'rx',
>>> 'ry'
>>>],
>>> slicelabels = [
>>> 'a',
>>> 'b',
>>> 'c',
>>> 'd'
>>>]
>>>)

will generate a single Array instance containing 4 arrays which each have a shape (50,50) and a common set of
dim vectors [‘rx’,’ry’], and which can be indexed into with the names assigned in slicelabels using

>>> ar.get_slice('a')

which will return a 2D (non-stack-like) Array instance with shape (50,50) and the dims assigned above. The
Array attribute .rank is equal to the number of dimensions for a non-stack-like Array, and is equal to N-1 for
stack-like arrays.

__init__(data: ndarray, name: str | None = 'array', units: str | None = '', dims: list | None = None,
dim_names: list | None = None, dim_units: list | None = None, slicelabels=None)

Accepts:
data (np.ndarray): the data name (str): the name of the Array units (str): units for the pixel values
dims (variable): calibration vectors for each of the axes of the data

array. Valid values for each element of the list are None, a number, a 2-element list/array,
or an M-element list/array where M is the data array. If None is passed, the dim will be
populated with integer values starting at 0 and its units will be set to pixels. If a number is
passed, the dim is populated with a vector beginning at zero and increasing linearly by this
step size. If a 2-element list/array is passed, the dim is populated with a linear vector with
these two numbers as the first two elements. If a list/array of length M is passed, this is
used as the dim vector, (and must therefore match this dimension’s length). If dims recieves
a list of fewer than N arguments for an N-dimensional data array, the extra dimensions are
populated as if None were passed, using integer pixel values. If the dims parameter is not
passed, all dim vectors are populated this way.

dim_units (list): the units for the calibration dim vectors. If
nothing is passed, dims vectors which have been populated automatically with integers corre-
sponding to pixel numbers will be assigned units of ‘pixels’, and any other dim vectors will be
assigned units of ‘unknown’. If a list with length < the array dimensions, the passed values are
assumed to apply to the first N dimensions, and the remaining values are populated with ‘pixels’
or ‘unknown’ as above.

dim_names (list): labels for each axis of the data array. Values
which are not passed, following the same logic as described above, will be autopopulated with
the name “dim#” where # is the axis number.

slicelabels (None or True or list): if not None, must be True or a
list of strings, indicating a “stack-like” array. In this case, the first N-1 dimensions of the array
are treated normally, in the sense of populating dims, dim_names, and dim_units, while the final

242 Chapter 1. Contents

py4dstem, Release 0.14.14

dimension is treated distinctly: it indexes into distinct arrays which share a set of dimension
attributes, and can be sliced into using the string labels from the slicelabels list, with the syntax
array[‘label’] or array.get_slice(‘label’). If slicelabels is True or is a list with length less than
the final dimension length, unassigned dimensions are autopopulated with labels array{i}. The
flag array.is_stack is set to True and the array.rank attribute is set to N-1.

Returns
A new Array instance

get_dim(n)
Return the n’th dim vector

dim(n)
Return the n’th dim vector

set_dim(n: int, dim: list | ndarray, units: str | None = None, name: str | None = None)
Sets the n’th dim vector, using dim as described in the Array documentation. If units and/or name are
passed, sets these values for the n’th dim vector.

Accepts:
n (int): specifies which dim vector dim (list or array): length must be either 2, or equal to the

length of the n’th axis of the data array

units (Optional, str): name: (Optional, str):

get_dim_units(n)
Return the n’th dim vector units

set_dim_units(n: int, units: str)
Sets the n’th dim vector units to units.

Accepts:
n (int): specifies which dim vector units (str): new units

get_dim_name(n)
Get the n’th dim vector name

set_dim_name(n: int, name: str)
Sets the n’th dim vector name to name.

Accepts:
n (int): specifies which dim vector name (str): new name

to_h5(group)
Takes an h5py Group instance and creates a subgroup containing this Array, tags indicating its EMD type
and Python class, and the array’s data and metadata.

Accepts:
group (h5py Group)

Returns
(h5py Group) the new array’s Group

class emdfile.Custom(name='custom')

__init__(name='custom')

1.4. API 243

py4dstem, Release 0.14.14

to_h5(group)
Constructs an h5 group, adds metadata, and adds all attributes which point to EMD nodes.

Accepts:
group (h5py Group)

Returns
(h5py Group) the new node’s Group

class emdfile.Metadata(name: str | None = 'metadata', data: dict | None = None)
Stores metadata in the form of a flat (non-nested) dictionary. Keys are arbitrary strings. Values may be strings,
numbers, arrays, or lists of the above types.

Usage:

>>> meta = Metadata()
>>> meta['param'] = value
>>> val = meta['param']

If the parameter has not been set, the getter methods return None.

__init__(name: str | None = 'metadata', data: dict | None = None)

Parameters
name (Optional, string) –

copy(name=None)

to_h5(group)
Accepts an h5py Group which is open in write or append mode. Writes a new group with this object’s
name and saves its metadata in it.

Accepts:
group (h5py Group)

classmethod from_h5(group)
Accepts an h5py Group which is open in read mode, confirms that it represents an EMD MetadataDict
group, then loads and returns it as a Metadata instance.

Accepts:
group (HDF5 group)

Returns
(Metadata)

class emdfile.Node(name: str | None = 'node')
Nodes contain attributes and methods paralleling the EMD 1.0 file specification in Python runtime objects.

EMD 1.0 is a singly-rooted file format. That is to say: An EMD data object can and must exist in one and
only one EMD tree. An EMD file can contain any number of EMD trees, each containing data and metadata
which is, within the limits of the EMD group specifications, of some arbitrary complexity. An EMD 1.0 file thus
represents, stores, and enables access to some arbitrary data in long term storage on a file system in the form
of an HDF5 file. The Node class provides machinery for building trees of data and metadata which mirror the
EMD tree format but which exist in a live Python instance, rather than on the file system. This facilitates ease of
transfer between Python and the file system.

Nodes are intended to be used a base class on which other, more complex classes can be biult. Nodes themselves
contain the machinery for managing a tree heirarchy of other Nodes and Metadata instances, and for reading and

244 Chapter 1. Contents

py4dstem, Release 0.14.14

writing those trees. They do not contain any particular data. Classes storing data and analysis methods which
inherit from Node will inherit its tree management and EMD i/o functionality.

Below, the 4 elements of the node class are each described in turn: roots, trees, metadata, and i/o.

ROOTS

EMD data objects can and must exist in one and only one EMD tree, each of which must have a single, named
root node. To parallel this in our runtime objects, each Node has a root property, which can be found by calling
self.root.

By default new nodes have their root set to None. If a node with .root == None is saved to file, it is placed inside
a new root with the same name as the object itself, and this is then saved to the file as a new (minimal) EMD tree.

A new root node can be instantiated by calling

>>> rootnode = Root(name=some_name).

Objects added to an existing rooted tree (including a new root node) automatically have their root assigned to the
root of that tree. Adding objects to trees is discussed below.

TREES

The tree associated with a node can be manipulated with the .tree method. If we have some rooted node node1
and some unrooted node node2, the unrooted node can be added to the existing tree as a child of the rooted node
with

>>> node1.tree(node2)

If we have a rooted node node1 and another rooted node node2, we can’t simply add node2 with the code above,
as this would create a conflict between the two roots. In this case, we can move node2 from its current tree to the
new tree using

>>> node1.tree(graft=node2)

The .tree method has various additional functionalities, including printing the tree, retrieving objects from the
tree, and cutting branches from the tree. These are summarized below:

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keep root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string), i.e. in most cases, the keyword can be dropped. So

1.4. API 245

py4dstem, Release 0.14.14

>>> .tree()
>>> .tree(node)
>>> .tree(True)
>>> .tree('some/node')

will, respectively, print the tree from the current node to screen, add the node node to the tree, pring the tree from
the root node to screen, and return the node at the emdpath ‘some/node’.

If a node needs to be added to a tree and it may or may not already have its own root, calling

>>> .tree(add=node, force=True)

or

>>> .tree(node, force=True)

will add the node to the tree, using a simple add if node has no root, and grafting it if it does have a root.

METADATA

Nodes can contain any number of Metadata instances, each of which wraps a Python dictionary of some arbi-
trary complexity (to within the limits of the Metadata group EMD specification, which limits permissible values
somewhat).

The code:

>>> md1 = Metadata(name='md1')
>>> md2 = Metadata(name='md2')
>>> <<< some code populating md1 + md2 >>>
>>> node.metadata = md1
>>> node.metadata = md2

will create two Metadata objects, populate them with data, then add them to the node. Note that Node.metadata
is not a Python attribute, it is specially defined property, such that the last line of code does not overwrite the
line before it - rather, assigning to the .metadata property adds the new metadata object to a running dictionary
of arbitrarily many metadata objects. Both of these two metadata instances can therefore still be retrieved, using:

>>> x = node.metadata['md1']
>>> y = node.metadata['md2']

Note, however, that if the second metadata instance has an identical name to the first instance, then in will
overwrite the old instance.

I/O

TODO

__init__(name: str | None = 'node')

show_tree(root=False)
Display the object tree. If root is False, displays the branch of the tree downstream from this node. If root
is True, displays the full tree from the root node.

add_to_tree(node)
Add an unrooted node as a child of the current, rooted node. To move an already rooted node/branch, use
.graft(). To create a rooted node, use Root().

246 Chapter 1. Contents

py4dstem, Release 0.14.14

force_add_to_tree(node)
Add node node as a child of the current node, whether or not node is rooted. If it’s unrooted, performs a
simple add. If it is rooted, performs a graft, excluding the root metadata from node.

get_from_tree(name)
Finds and returns an object from an EMD tree using the string key name, with ‘/’ delimiters between
‘parent/child’ nodes. Search from the root node by adding a leading ‘/’; otherwise, searches from the
current node.

graft(node, merge_metadata=True)
Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree) either use that tree’s .graft method, or use
this tree’s ._graft.

Accepts:
node (Node): merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies
of all metadata from the old root to the new root.

Returns
(Node) this tree’s root node

cut_from_tree(root_metadata=True)
Removes a branch from an object tree at this node.

A new root node is created under this object with this object’s name. Metadata from the current root is
transferred/not transferred to the new root according to the value of root_metadata.

Accepts:
root_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new root; if ‘copy’ adds copies of all
metadata from the old root to the new root.

Returns
(Node) the new root node

tree(arg=None, **kwargs)
Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

1.4. API 247

py4dstem, Release 0.14.14

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

static newnode(method)
Decorator which may be added to node methods which product and return a new node. If such a method
is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a Metadata instance is added to the new node’s
metadata which stores information about how the node was created, namely: method’s name, the parent’s
class and name, and all the arguments passed to method.

classmethod from_h5(group)
Takes an h5py Group which is open in read mode. Confirms that a a Node of this name exists in this group,
and loads and returns it with it’s metadata.

Accepts:
group (h5py Group)

Returns
(Node)

to_h5(group)
Takes an h5py Group instance and creates a subgroup containing this node, tags indicating the groups
EMD type and Python class, and any metadata in this node.

Accepts:
group (h5py Group)

Returns
(h5py Group) the new node’s Group

class emdfile.PointList(data: ndarray, name: str | None = 'pointlist')
A wrapper around structured numpy arrays, with read/write functionality in/out of EMD formatted HDF5 files.

__init__(data: ndarray, name: str | None = 'pointlist')

Instantiate a PointList.

Parameters
• data (structured numpy ndarray) – the data; the dtype of this array will specify

the fields of the PointList.

• name (str) – name for the PointList

Returns
a PointList instance

add(data)
Appends a numpy structured array. Its dtypes must agree with the existing data.

remove(mask)
Removes points wherever mask==True

248 Chapter 1. Contents

py4dstem, Release 0.14.14

sort(field, order='ascending')
Sorts the point list according to field, which must be a field in self.dtype. order should be ‘descending’ or
‘ascending’.

copy(name=None)
Returns a copy of the PointList. If name=None, sets to {name}_copy

add_fields(new_fields, name='')
Creates a copy of the PointList, but with additional fields given by new_fields.

Parameters
• new_fields – a list of 2-tuples, (‘name’, dtype)

• name – a name for the new pointlist

add_data_by_field(data, fields=None)
Add a list of data arrays to the PointList, in the fields given by fields. If fields is not specified, assumes the
data arrays are in the same order as self.fields

Parameters
data (list) – arrays of data to add to each field

to_h5(group)
Takes an h5py Group instance and creates a subgroup containing this PointList, tags indicating its EMD
type and Python class, and the pointlist’s data and metadata.

Accepts:
group (h5py Group)

Returns
(h5py Group) the new pointlist’s group

class emdfile.PointListArray(dtype, shape, name: str | None = 'pointlistarray')
An 2D array of PointLists which share common coordinates.

__init__(dtype, shape, name: str | None = 'pointlistarray')

Creates an empty PointListArray.

Parameters
• dtype – the dtype of the numpy structured arrays which will comprise the data of each

PointList

• shape (2-tuple of ints) – the shape of the array of PointLists

• name (str) – a name for the PointListArray

Returns
a PointListArray instance

get_pointlist(i, j, name=None)
Returns the pointlist at i,j

copy(name='')
Returns a copy of itself.

1.4. API 249

py4dstem, Release 0.14.14

add_fields(new_fields, name='')
Creates a copy of the PointListArray, but with additional fields given by new_fields.

Parameters
• new_fields – a list of 2-tuples, (‘name’, dtype)

• name – a name for the new pointlist

to_h5(group)
Takes an h5py Group instance and creates a subgroup containing this PointListArray, tags indicating its
EMD type and Python class, and the pointlistarray’s data and metadata.

Accepts:
group (h5py Group)

Returns
(h5py Group) the new pointlistarray’s group

class emdfile.Root(name='root')
A Node instance with its .root property set to itself.

__init__(name='root')

Functions

emdfile._get_EMD_version(filepath, rootgroup=None)
Returns the version (major,minor,release) of an EMD file.

emdfile._is_EMD_file(filepath)
Returns True iff filepath points to a valid EMD 1.0 file.

emdfile._version_is_geq(current, minimum)

Returns True iff current version (major,minor,release) is greater than or equal to minimum.”

emdfile.dirname(p)
Returns the directory component of a pathname

emdfile.join(a, *p)
Join two or more pathname components, inserting ‘/’ as needed. If any component is an absolute path, all previous
path components will be discarded. An empty last part will result in a path that ends with a separator.

emdfile.print_h5_tree(filepath, show_metadata=False)
Prints the contents of an h5 file from a filepath.

emdfile.read(filepath, emdpath: str | None = None, tree: bool | str | None = True, **legacy_options)
File reader for EMD 1.0+ files.

Parameters
• filepath (str or Path) – the file path

• emdpath (str) – path to the node in an EMD object tree to read from. May be a root
node or some downstream node. Use ‘/’ delimiters between node names. If emdpath is
None, checks to see how many root nodes are present. If there is one, loads this tree. If
there are several, returns a list of the root names.

250 Chapter 1. Contents

py4dstem, Release 0.14.14

• tree (True or False or 'branch') – indicates what data should be loaded, relative to
the node specified by emdpath. If set to False, only data/metadata in the specified node
is loaded, plus any root metadata. If set to True, loads that node plus the subtree of data
objects it contains (and their metadata, and the root metadata). If set to ‘branch’, loads
the branch under this node as above, but does not load the node itself. If emdpath points
to a root node, setting tree to ‘branch’ or True are equivalent - both return the whole data
tree.

Returns
(Root) returns a Root instance containing (1) any root metadata from

the EMD tree loaded from, and (2) a tree of one or more pieces of data/metadata

emdfile.save(filepath, data, mode='w', emdpath=None, tree=True)
Saves data to a .h5 file at filepath.

Calling

>>> save(path, data)

if data is a Root instance saves this root and its entire tree to a new file. If data is any other type of rooted node
(i.e. a node inside of some runtime data tree), this code writes a new file with a single tree using this node’s root
(even if this node is far downstream of the root node), placing this node and the tree branch underneath it inside
that root. In both cases, the root metadata is stored in the new H5 root node. If data is an unrooted node (i.e. a
freestanding node not connected to a tree), this code creates a new root node with no metadata and this node’s
name, and places this node inside that root in a new file.

If data is a numpy array or Python dictionary, wraps data in either an emd.Array or emd.Metadata instance,
assigns the name ‘np.array’ or ‘dictionary’, places the object in a root of this name and saves. If data is a list of
objects which are all numpy arrays, Python dictionaries, or emd.Node instances, places all these objects into a
single root, assigns the roots name according to the first object in the list, and saves.

To write a single node from a tree, set tree to False. To write the tree underneath a node but exclude the node
itself set tree to None.

To add to an existing EMD file, use the mode argument to set append or appendover mode. If the emdpath
variable is not set and data has a runtime root that does not exist in the EMD root groups already present, adds
the new root and writes as described above. If emdpath is not set and the runtime root group matches a root
group that’s already present, this function performs a diff operation between the root metadata and data nodes
from data and those already in the H5 file. Append mode adds any data/metadata groups with no equivalent
(i.e. same name and tree location) in the H5 tree, while skipping any data/metadata already found in the tree.
Appendover adds any data/metadata with no equivalent already in the H5 tree, and overwrites any data/metadata
groups that are already represented in the HDF5 with the new data. Note that this function does not attempt to
take a diff between the contents of the groups and the runtime data groups - it only considers the names and their
locations in the tree. If append or appendover mode are used and filepath is set to a location that does not already
contain a file on the filesystem, behavior is identical to write mode. When appendover mode overwrites data, it
is erasing the old links and creating new links to new data; however, the HDF5 file does not release the space on
the filesystem. To free up storage, set mode to ‘appendover’, and this function will add a final step to re-write
then delete the old file.

The emdpath argument is used to append to a specific location in an extant EMD file downstream of some extant
root. If passed, it must point to a valid location in the EMD file. This function will then perform a diff and write
as described in the prior paragraph, except beginning from the H5 node specified in emdpath. Note that in this
case the root metadata is still compared to and added or overwritten in the H5 root node, even if the remaining
data is being added to some downstream branch.

Parameters
• filepath – path where the file will be saved

1.4. API 251

py4dstem, Release 0.14.14

• data – an EMD data class instance

• mode (str) –

supported modes and their keys are:
– write (‘w’,’write’)

– overwrite (‘o’,’overwrite’)

– append (‘a’,’+’,’append’)

– appendover (‘ao’,’oa’,’o+’,’+o’,’appendover’)

Write mode writes a new file, and raises an exception if a file of this name already exists.
Overwrite mode deletes any file of this name that already exists and writes a new file.
Append and appendover mode write a new file if no file of this name exists, or if a file
of this name does exist, adds new data to the file. The specific behavior of append and
appendover depend on the data,`emdpath`, and tree arguments as discussed in more detail
above. Broadly, both modes attempt to detemine the difference between the data passed
and that present in the extent HDF5 file tree, add any data not already in the H5, and then
either skips or overwrites conflicting nodes in append or appendover mode, respectively.

• tree – indicates how the object tree nested inside data should be treated. If True (default),
the entire tree is saved. If False, only this object is saved, without its tree. If None, saves
the entire tree underneath data, but not the node at data itself.

• emdpath (str or None) – optional parameter used in conjunction with append or ap-
pendover mode; if passed in write or overwrite mode, this argument is ignored. Indicates
where in an existing EMD file tree to place the data. Must be a ‘/’ delimited string pointing
to an existing EMD file tree node.

emdfile.set_author(author)
Accepts a string, which will be written to the “authoring_user” field in any EMD file headers written during this
Python session

emdfile.tqdmnd(*args, **kwargs)
An N-dimensional extension of tqdm providing an iterator and progress bar over the product of multiple iterators.

Example Usage:

>>> for x,y in tqdmnd(5,6):
>>> <expression>

is equivalent to

>>> for x in range(5):
>>> for y in range(6):
>>> <expression>

with a tqdmnd-style progress bar printed to standard output.

Accepts:
*args: Any number of integers or iterators. Each integer N

is converted to a range(N) iterator. Then a loop is constructed from the Cartesian product of all
iterables.

**kwargs: keyword arguments passed through directly to tqdm.
Full details are available at https://tqdm.github.io A few useful ones:

252 Chapter 1. Contents

https://tqdm.github.io

py4dstem, Release 0.14.14

disable (bool): if True, hide the progress bar keep (bool): if True, delete the progress bar
after completion unit (str): unit name for the display of iteration speed unit_scale (bool):
whether to scale the displayed units and add

SI prefixes

desc (str): message displayed in front of the progress bar

Returns
At each iteration, a tuple of indices is returned, corresponding to the values of each input
iterator (in the same order as the inputs).

1.5 API Index

1.6 Graphical User Interface

1.6.1 Overview

There is a GUI for viewing and performing some basic analysis of your 4D-STEM dataset. This feature is currently in
development and must be installed separately. For more details you can checkout the git repositoary here

1.6.2 Installation

Currently there are no pip or conda packages and it must be install in one of two ways:

git clone https://github.com/sezelt/py4D-browser.git
cd py4D-browser
python setupy.py

Alternatively,

pip install git+https://github.com/sezelt/py4D-browser

1.7 Support & Contributions

1.7.1 Support

Think you’ve found a bug or are facing issues using a feature? Please let us know by creating an issue on github

1.5. API Index 253

https://github.com/sezelt/py4D-browser
https://github.com/py4dstem/py4DSTEM/issues

py4dstem, Release 0.14.14

1.7.2 Contributions

Looking to contirbute? Awesome we love people contributing, and it’s a simple process.

1. Submit feature request on github

2. Follow the developer install instructions

3. Make any change alterations and document all functions (All code should be readable, so clarity beats cleverness)

4. Submit a PR on github.

1.8 License

py4DSTEM is released under the GNU GPV version 3 license.

1.8.1 GPLv3

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether
(continues on next page)

254 Chapter 1. Contents

https://github.com/py4dstem/py4DSTEM/issues

py4dstem, Release 0.14.14

(continued from previous page)

gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and
modification follow.

TERMS AND CONDITIONS

0. Definitions.

"This License" refers to version 3 of the GNU General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the

(continues on next page)

1.8. License 255

py4dstem, Release 0.14.14

(continued from previous page)

earlier work or a work "based on" the earlier work.

A "covered work" means either the unmodified Program or a work based
on the Program.

To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

1. Source Code.

The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free

(continues on next page)

256 Chapter 1. Contents

py4dstem, Release 0.14.14

(continued from previous page)

programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that
same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

3. Protecting Users' Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or

(continues on next page)

1.8. License 257

py4dstem, Release 0.14.14

(continued from previous page)

modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.

b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".

c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other

(continues on next page)

258 Chapter 1. Contents

py4dstem, Release 0.14.14

(continued from previous page)

parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be

(continues on next page)

1.8. License 259

py4dstem, Release 0.14.14

(continued from previous page)

included in conveying the object code work.

A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

7. Additional Terms.

"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.

(continues on next page)

260 Chapter 1. Contents

py4dstem, Release 0.14.14

(continued from previous page)

Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you

(continues on next page)

1.8. License 261

py4dstem, Release 0.14.14

(continued from previous page)

must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible

(continues on next page)

262 Chapter 1. Contents

py4dstem, Release 0.14.14

(continued from previous page)

for enforcing compliance by third parties with this License.

An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

11. Patents.

A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,

(continues on next page)

1.8. License 263

py4dstem, Release 0.14.14

(continued from previous page)

then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have

(continues on next page)

264 Chapter 1. Contents

py4dstem, Release 0.14.14

(continued from previous page)

permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF

(continues on next page)

1.8. License 265

py4dstem, Release 0.14.14

(continued from previous page)

DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

(continues on next page)

266 Chapter 1. Contents

py4dstem, Release 0.14.14

(continued from previous page)

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".

You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

1.9 Acknowledgements

• If you use py4DSTEM for a scientific study, please cite our open access py4DSTEM publication1 in Microscopy
and Microanalysis.

– py4DSTEM: A Software Package for Four-Dimensional Scanning Transmission Electron Mi-
croscopy Data Analysis

• Check out the Py4DSTEM Github2

• We’d like to thank The developers gratefully acknowledge the financial support of the Toyota Research Institute
for the research and development time which made this project possible.

• Additional funding has been provided by the US Department of Energy, Office of Science, Basic Energy Sciences.

• You are also free to use the py4DSTEM logo in PDF format or logo in PNG format for presentations or posters.
1 https://doi.org/10.1017/S1431927621000477
2 http://github.com/py4DSTEM/py4DSTEM

1.9. Acknowledgements 267

https://doi.org/10.1017/S1431927621000477
https://doi.org/10.1017/S1431927621000477
http://github.com/py4DSTEM/py4DSTEM
https://doi.org/10.1017/S1431927621000477
http://github.com/py4DSTEM/py4DSTEM

py4dstem, Release 0.14.14

1.9.1 References

268 Chapter 1. Contents

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

269

py4dstem, Release 0.14.14

270 Chapter 2. Indices and tables

PYTHON MODULE INDEX

p
py4DSTEM.io, 86
py4DSTEM.io.filereaders, 86
py4DSTEM.io.filereaders.empad, 86
py4DSTEM.io.filereaders.read_K2, 87
py4DSTEM.io.filereaders.read_mib, 88
py4DSTEM.io.google_drive_downloader, 90
py4DSTEM.io.google_drive_downloader.gdown, 90
py4DSTEM.io.importfile, 90
py4DSTEM.io.legacy, 91
py4DSTEM.io.legacy.h5py, 91
py4DSTEM.io.legacy.legacy12, 91
py4DSTEM.io.legacy.legacy13, 91
py4DSTEM.io.legacy.read_legacy_12, 91
py4DSTEM.io.legacy.read_legacy_13, 91
py4DSTEM.io.legacy.read_utils, 92
py4DSTEM.io.parsefiletype, 92
py4DSTEM.preprocess.darkreference, 93
py4DSTEM.preprocess.electroncount, 94
py4DSTEM.preprocess.preprocess, 96
py4DSTEM.preprocess.radialbkgrd, 99
py4DSTEM.preprocess.utils, 100
py4DSTEM.process, 102
py4DSTEM.process.calibration, 102
py4DSTEM.process.calibration.ellipse, 102
py4DSTEM.process.calibration.origin, 105
py4DSTEM.process.calibration.probe, 107
py4DSTEM.process.calibration.qpixelsize, 108
py4DSTEM.process.calibration.rotation, 108
py4DSTEM.process.classification, 110
py4DSTEM.process.classification.braggvectorclassification,

110
py4DSTEM.process.classification.classutils,

118
py4DSTEM.process.classification.featurization,

119
py4DSTEM.process.diffraction, 125
py4DSTEM.process.diffraction.crystal, 125
py4DSTEM.process.diffraction.crystal_ACOM,

147
py4DSTEM.process.diffraction.crystal_bloch,

152

py4DSTEM.process.diffraction.crystal_calibrate,
157

py4DSTEM.process.diffraction.crystal_phase,
159

py4DSTEM.process.diffraction.crystal_viz, 160
py4DSTEM.process.diffraction.flowlines, 168
py4DSTEM.process.diffraction.sys, 173
py4DSTEM.process.diffraction.utils, 174
py4DSTEM.process.diffraction.WK_scattering_factors,

125
py4DSTEM.process.fit, 175
py4DSTEM.process.fit.fit, 175
py4DSTEM.process.phase, 176
py4DSTEM.process.phase.utils, 176
py4DSTEM.process.rdf.amorph, 187
py4DSTEM.process.rdf.rdf, 188
py4DSTEM.process.utils, 189
py4DSTEM.process.utils.cross_correlate, 189
py4DSTEM.process.utils.elliptical_coords, 190
py4DSTEM.process.utils.masks, 194
py4DSTEM.process.utils.multicorr, 194
py4DSTEM.process.utils.utils, 196
py4DSTEM.process.wholepatternfit, 198
py4DSTEM.process.wholepatternfit.wp_models,

198
py4DSTEM.process.wholepatternfit.wpf, 204
py4DSTEM.process.wholepatternfit.wpf_viz, 204

271

py4dstem, Release 0.14.14

272 Python Module Index

INDEX

Symbols
__init__() (emdfile.Array method), 242
__init__() (emdfile.Custom method), 243
__init__() (emdfile.Metadata method), 244
__init__() (emdfile.Node method), 246
__init__() (emdfile.PointList method), 248
__init__() (emdfile.PointListArray method), 249
__init__() (emdfile.Root method), 250
__init__() (py4DSTEM.Array method), 25
__init__() (py4DSTEM.BraggVectors method), 29
__init__() (py4DSTEM.Calibration method), 39
__init__() (py4DSTEM.Custom method), 40
__init__() (py4DSTEM.Data method), 43
__init__() (py4DSTEM.DataCube method), 43
__init__() (py4DSTEM.DiffractionSlice method), 57
__init__() (py4DSTEM.Metadata method), 60
__init__() (py4DSTEM.Node method), 63
__init__() (py4DSTEM.PointList method), 65
__init__() (py4DSTEM.PointListArray method), 67
__init__() (py4DSTEM.Probe method), 70
__init__() (py4DSTEM.QPoints method), 75
__init__() (py4DSTEM.RealSlice method), 78
__init__() (py4DSTEM.VirtualDiffraction method), 81
__init__() (py4DSTEM.VirtualImage method), 83
__init__() (py4DSTEM.io.filereaders.read_K2.K2DataArray

method), 88
__init__() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification

method), 112
__init__() (py4DSTEM.process.classification.featurization.Featurization

method), 120
__init__() (py4DSTEM.process.diffraction.crystal.Crystal

method), 140
__init__() (py4DSTEM.process.diffraction.crystal_bloch.DynamicalMatrixCache

method), 152
__init__() (py4DSTEM.process.diffraction.crystal_phase.Crystal_Phase

method), 159
__init__() (py4DSTEM.process.diffraction.utils.Orientation

method), 174
__init__() (py4DSTEM.process.diffraction.utils.OrientationMap

method), 174
__init__() (py4DSTEM.process.phase.utils.AffineTransform

method), 179

__init__() (py4DSTEM.process.phase.utils.ComplexProbe
method), 177

__init__() (py4DSTEM.process.wholepatternfit.wp_models.ComplexOverlapKernelDiskLattice
method), 203

__init__() (py4DSTEM.process.wholepatternfit.wp_models.DCBackground
method), 199

__init__() (py4DSTEM.process.wholepatternfit.wp_models.GaussianBackground
method), 200

__init__() (py4DSTEM.process.wholepatternfit.wp_models.GaussianRing
method), 200

__init__() (py4DSTEM.process.wholepatternfit.wp_models.KernelDiskLattice
method), 204

__init__() (py4DSTEM.process.wholepatternfit.wp_models.SyntheticDiskLattice
method), 202

__init__() (py4DSTEM.process.wholepatternfit.wp_models.SyntheticDiskMoire
method), 203

__init__() (py4DSTEM.process.wholepatternfit.wp_models.WPFModel
method), 199

_get_EMD_version() (in module emdfile), 250
_is_EMD_file() (in module emdfile), 250
_show_grid_overlay() (in module

py4DSTEM.visualize.vis_grid), 222
_version_is_geq() (in module emdfile), 250

A
accept() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification

method), 115
add() (emdfile.PointList method), 248
add() (py4DSTEM.DataCube method), 43
add() (py4DSTEM.PointList method), 65
add() (py4DSTEM.QPoints method), 76
add_annuli() (in module

py4DSTEM.visualize.overlay), 212
add_bragg_index_labels() (in module

py4DSTEM.visualize.overlay), 212
add_bragg_index_labels() (in module

py4DSTEM.visualize.vis_special), 229
add_cartesian_grid() (in module

py4DSTEM.visualize.overlay), 212
add_circles() (in module

py4DSTEM.visualize.overlay), 212
add_data_by_field() (emdfile.PointList method), 249

273

py4dstem, Release 0.14.14

add_data_by_field() (py4DSTEM.PointList method),
65

add_data_by_field() (py4DSTEM.QPoints method),
76

add_ellipses() (in module
py4DSTEM.visualize.overlay), 212

add_ellipses() (in module
py4DSTEM.visualize.vis_special), 229

add_features() (py4DSTEM.process.classification.featurization.Featurization
method), 121

add_fields() (emdfile.PointList method), 249
add_fields() (emdfile.PointListArray method), 249
add_fields() (py4DSTEM.PointList method), 65
add_fields() (py4DSTEM.PointListArray method), 68
add_fields() (py4DSTEM.QPoints method), 76
add_grid_overlay() (in module

py4DSTEM.visualize.overlay), 212
add_grid_overlay() (in module

py4DSTEM.visualize.vis_grid), 222
add_pointlabels() (in module

py4DSTEM.visualize.overlay), 213
add_pointlabels() (in module

py4DSTEM.visualize.vis_special), 229
add_points() (in module

py4DSTEM.visualize.overlay), 213
add_points() (in module

py4DSTEM.visualize.vis_special), 229
add_polarelliptical_grid() (in module

py4DSTEM.visualize.overlay), 213
add_rectangles() (in module

py4DSTEM.visualize.overlay), 213
add_rtheta_grid() (in module

py4DSTEM.visualize.overlay), 213
add_scalebar() (in module

py4DSTEM.visualize.overlay), 213
add_scalebar() (in module

py4DSTEM.visualize.vis_special), 229
add_to_2D_array_from_floats() (in module

py4DSTEM.process.utils.utils), 197
add_to_tree() (emdfile.Node method), 246
add_to_tree() (py4DSTEM.Array method), 26
add_to_tree() (py4DSTEM.BraggVectors method), 30
add_to_tree() (py4DSTEM.Custom method), 40
add_to_tree() (py4DSTEM.DataCube method), 50
add_to_tree() (py4DSTEM.DiffractionSlice method),

57
add_to_tree() (py4DSTEM.Node method), 63
add_to_tree() (py4DSTEM.PointList method), 65
add_to_tree() (py4DSTEM.PointListArray method),

68
add_to_tree() (py4DSTEM.Probe method), 73
add_to_tree() (py4DSTEM.QPoints method), 76
add_to_tree() (py4DSTEM.RealSlice method), 78
add_to_tree() (py4DSTEM.VirtualDiffraction

method), 81
add_to_tree() (py4DSTEM.VirtualImage method), 83
add_vector() (in module

py4DSTEM.visualize.overlay), 213
add_vector() (in module

py4DSTEM.visualize.vis_special), 230
AffineTransform (class in

py4DSTEM.process.phase.utils), 178
align_and_shift_images() (in module

py4DSTEM.process.utils.cross_correlate),
190

align_images_fourier() (in module
py4DSTEM.process.utils.cross_correlate),
189

Array (class in emdfile), 240
Array (class in py4DSTEM), 23
array_slice() (in module

py4DSTEM.process.phase.utils), 181
asarray() (py4DSTEM.process.phase.utils.AffineTransform

method), 179
asarray3() (py4DSTEM.process.phase.utils.AffineTransform

method), 179
astuple() (py4DSTEM.process.phase.utils.AffineTransform

method), 179
atomic_colors() (in module

py4DSTEM.process.diffraction.crystal_viz),
167

attach() (py4DSTEM.BraggVectors method), 30
attach() (py4DSTEM.Calibration method), 39
attach() (py4DSTEM.Data method), 43
attach() (py4DSTEM.DataCube method), 50
attach() (py4DSTEM.DiffractionSlice method), 57
attach() (py4DSTEM.Probe method), 73
attach() (py4DSTEM.QPoints method), 76
attach() (py4DSTEM.RealSlice method), 78
attach() (py4DSTEM.VirtualDiffraction method), 81
attach() (py4DSTEM.VirtualImage method), 84
ax_addaxes() (in module

py4DSTEM.visualize.vis_RQ), 214
ax_addaxes() (in module

py4DSTEM.visualize.vis_special), 230
ax_addaxes_QtoR() (in module

py4DSTEM.visualize.vis_RQ), 214
ax_addaxes_QtoR() (in module

py4DSTEM.visualize.vis_special), 230
ax_addaxes_RtoQ() (in module

py4DSTEM.visualize.vis_RQ), 214
ax_addvector() (in module

py4DSTEM.visualize.vis_RQ), 215
ax_addvector_QtoR() (in module

py4DSTEM.visualize.vis_RQ), 215
ax_addvector_RtoQ() (in module

py4DSTEM.visualize.vis_RQ), 215

274 Index

py4dstem, Release 0.14.14

B
bilinear_kernel_density_estimate() (in module

py4DSTEM.process.phase.utils), 185
bilinear_resample() (in module

py4DSTEM.process.phase.utils), 186
bilinearly_interpolate_array() (in module

py4DSTEM.process.phase.utils), 184
bin2D() (in module py4DSTEM.preprocess.utils), 100
bin_data_diffraction() (in module

py4DSTEM.preprocess.preprocess), 97
bin_data_mmap() (in module

py4DSTEM.preprocess.preprocess), 97
bin_data_real() (in module

py4DSTEM.preprocess.preprocess), 97
bin_Q() (py4DSTEM.DataCube method), 44
bin_Q_mmap() (py4DSTEM.DataCube method), 44
bin_R() (py4DSTEM.DataCube method), 44
braggpeak_labels (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification

attribute), 112
BraggVectorClassification (class in

py4DSTEM.process.classification.braggvectorclassification),
110

BraggVectors (class in py4DSTEM), 28
build() (py4DSTEM.process.phase.utils.ComplexProbe

method), 177

C
cal (py4DSTEM.BraggVectors property), 29
calc_1D_profile() (in module

py4DSTEM.process.diffraction.utils), 174
calculate_bragg_peak_histogram()

(py4DSTEM.process.diffraction.crystal.Crystal
method), 145

calculate_coef_strain() (in module
py4DSTEM.process.rdf.amorph), 187

calculate_dynamical_structure_factors() (in
module py4DSTEM.process.diffraction.crystal_bloch),
152

calculate_dynamical_structure_factors()
(py4DSTEM.process.diffraction.crystal.Crystal
method), 139

calculate_strain() (in module
py4DSTEM.process.diffraction.crystal_ACOM),
150

calculate_strain() (py4DSTEM.process.diffraction.crystal.Crystal
method), 128

calculate_structure_factors()
(py4DSTEM.process.diffraction.crystal.Crystal
method), 142

calculate_thresholds() (in module
py4DSTEM.preprocess.electroncount), 95

calibrate() (py4DSTEM.BraggVectors method), 30
calibrate() (py4DSTEM.DataCube method), 43

calibrate_pixel_size() (in module
py4DSTEM.process.diffraction.crystal_calibrate),
157

calibrate_pixel_size()
(py4DSTEM.process.diffraction.crystal.Crystal
method), 134

calibrate_unit_cell() (in module
py4DSTEM.process.diffraction.crystal_calibrate),
158

calibrate_unit_cell()
(py4DSTEM.process.diffraction.crystal.Crystal
method), 135

Calibration (class in py4DSTEM), 37
cartesian_to_polar_transform_2Ddata() (in mod-

ule py4DSTEM.process.phase.utils), 182
cartesian_to_polarelliptical_transform() (in

module py4DSTEM.process.utils.elliptical_coords),
191

check_config() (in module py4DSTEM), 22
cluster_grains() (in module

py4DSTEM.process.diffraction.crystal_ACOM),
150

cluster_grains() (py4DSTEM.process.diffraction.crystal.Crystal
method), 128

cluster_orientation_map() (in module
py4DSTEM.process.diffraction.crystal_ACOM),
150

cluster_orientation_map()
(py4DSTEM.process.diffraction.crystal.Crystal
method), 128

compare_QR_rotation() (in module
py4DSTEM.process.calibration.rotation),
108

Complex2RGB() (in module
py4DSTEM.visualize.vis_special), 229

ComplexOverlapKernelDiskLattice (class in
py4DSTEM.process.wholepatternfit.wp_models),
203

ComplexProbe (class in
py4DSTEM.process.phase.utils), 176

compute_divergence_periodic() (in module
py4DSTEM.process.phase.utils), 181

compute_gradient_periodic() (in module
py4DSTEM.process.phase.utils), 181

compute_polar_stack_symmetries() (in module
py4DSTEM.process.rdf.amorph), 188

compute_WK_factor() (in module
py4DSTEM.process.diffraction.WK_scattering_factors),
125

concatenate_features()
(py4DSTEM.process.classification.featurization.Featurization
method), 121

consensus() (py4DSTEM.process.classification.featurization.Featurization
method), 124

Index 275

py4dstem, Release 0.14.14

constrain_degenerate_ellipse() (in module
py4DSTEM.process.calibration.ellipse), 104

convert_ellipse_params() (in module
py4DSTEM.process.utils.elliptical_coords),
190

convert_ellipse_params_r() (in module
py4DSTEM.process.utils.elliptical_coords),
191

convert_stack_polar() (in module
py4DSTEM.process.rdf.amorph), 188

copy() (emdfile.Metadata method), 244
copy() (emdfile.PointList method), 249
copy() (emdfile.PointListArray method), 249
copy() (py4DSTEM.DataCube method), 43
copy() (py4DSTEM.Metadata method), 60
copy() (py4DSTEM.PointList method), 65
copy() (py4DSTEM.PointListArray method), 67
copy() (py4DSTEM.QPoints method), 76
copy_to_device() (in module

py4DSTEM.process.phase.utils), 187
counted_datacube_to_pointlistarray() (in mod-

ule py4DSTEM.preprocess.electroncount), 96
counted_pointlistarray_to_datacube() (in mod-

ule py4DSTEM.preprocess.electroncount), 96
crop_Q() (py4DSTEM.DataCube method), 44
crop_R() (py4DSTEM.DataCube method), 44
Crystal (class in py4DSTEM.process.diffraction.crystal),

125
Crystal_Phase (class in

py4DSTEM.process.diffraction.crystal_phase),
159

Custom (class in emdfile), 243
Custom (class in py4DSTEM), 40
cut_from_tree() (emdfile.Node method), 247
cut_from_tree() (py4DSTEM.Array method), 26
cut_from_tree() (py4DSTEM.BraggVectors method),

30
cut_from_tree() (py4DSTEM.Custom method), 40
cut_from_tree() (py4DSTEM.DataCube method), 51
cut_from_tree() (py4DSTEM.DiffractionSlice

method), 58
cut_from_tree() (py4DSTEM.Node method), 63
cut_from_tree() (py4DSTEM.PointList method), 65
cut_from_tree() (py4DSTEM.PointListArray method),

68
cut_from_tree() (py4DSTEM.Probe method), 73
cut_from_tree() (py4DSTEM.QPoints method), 76
cut_from_tree() (py4DSTEM.RealSlice method), 78
cut_from_tree() (py4DSTEM.VirtualDiffraction

method), 81
cut_from_tree() (py4DSTEM.VirtualImage method),

84

D
Data (class in py4DSTEM), 42
DataCube (class in py4DSTEM), 43
datacube_diffraction_shift() (in module

py4DSTEM.preprocess.preprocess), 98
DCBackground (class in

py4DSTEM.process.wholepatternfit.wp_models),
199

dct_II_using_FFT_base() (in module
py4DSTEM.process.phase.utils), 183

delete_features() (py4DSTEM.process.classification.featurization.Featurization
method), 122

dftUpsample() (in module
py4DSTEM.process.utils.multicorr), 195

DiffractionSlice (class in py4DSTEM), 57
dim() (emdfile.Array method), 243
dim() (py4DSTEM.Array method), 26
dim() (py4DSTEM.DataCube method), 51
dim() (py4DSTEM.DiffractionSlice method), 58
dim() (py4DSTEM.Probe method), 73
dim() (py4DSTEM.RealSlice method), 79
dim() (py4DSTEM.VirtualDiffraction method), 81
dim() (py4DSTEM.VirtualImage method), 84
dirname() (in module emdfile), 250
double_sided_gaussian() (in module

py4DSTEM.process.calibration.ellipse), 104
double_sided_gaussian_fiterr() (in module

py4DSTEM.process.calibration.ellipse), 104
DynamicalMatrixCache (class in

py4DSTEM.process.diffraction.crystal_bloch),
152

E
electron_count() (in module

py4DSTEM.preprocess.electroncount), 94
electron_count_GPU() (in module

py4DSTEM.preprocess.electroncount), 95
ellipse_err() (in module

py4DSTEM.process.calibration.ellipse), 103
elliptical_resample() (in module

py4DSTEM.process.utils.elliptical_coords),
192

elliptical_resample_datacube() (in module
py4DSTEM.process.utils.elliptical_coords),
192

estimate_global_transformation() (in module
py4DSTEM.process.phase.utils), 179

estimate_global_transformation_ransac() (in
module py4DSTEM.process.phase.utils), 179

excitation_errors()
(py4DSTEM.process.diffraction.crystal.Crystal
method), 145

276 Index

py4dstem, Release 0.14.14

F
Featurization (class in

py4DSTEM.process.classification.featurization),
119

fft_shift() (in module
py4DSTEM.process.phase.utils), 178

filter_2D_maxima() (in module
py4DSTEM.preprocess.utils), 101

filter_hot_pixels() (in module
py4DSTEM.preprocess.preprocess), 97

filter_hot_pixels() (py4DSTEM.DataCube
method), 44

find_Bragg_disks() (py4DSTEM.DataCube method),
46

fit_1D_gaussian() (in module
py4DSTEM.process.fit.fit), 175

fit_2D() (in module py4DSTEM.process.fit.fit), 175
fit_2D_polar_gaussian() (in module

py4DSTEM.process.fit.fit), 175
fit_ellipse_1D() (in module

py4DSTEM.process.calibration.ellipse), 102
fit_ellipse_amorphous_ring() (in module

py4DSTEM.process.calibration.ellipse), 103
fit_origin() (in module

py4DSTEM.process.calibration.origin), 105
fit_origin() (py4DSTEM.BraggVectors method), 30
fit_p_ellipse() (py4DSTEM.BraggVectors method),

31
fit_scattering_factor() (in module

py4DSTEM.process.rdf.rdf), 188
fit_stack() (in module

py4DSTEM.process.rdf.amorph), 187
force_add_to_tree() (emdfile.Node method), 246
force_add_to_tree() (py4DSTEM.Array method), 27
force_add_to_tree() (py4DSTEM.BraggVectors

method), 31
force_add_to_tree() (py4DSTEM.Custom method),

40
force_add_to_tree() (py4DSTEM.DataCube

method), 51
force_add_to_tree() (py4DSTEM.DiffractionSlice

method), 58
force_add_to_tree() (py4DSTEM.Node method), 63
force_add_to_tree() (py4DSTEM.PointList method),

66
force_add_to_tree() (py4DSTEM.PointListArray

method), 68
force_add_to_tree() (py4DSTEM.Probe method), 73
force_add_to_tree() (py4DSTEM.QPoints method),

76
force_add_to_tree() (py4DSTEM.RealSlice method),

79
force_add_to_tree() (py4DSTEM.VirtualDiffraction

method), 81

force_add_to_tree() (py4DSTEM.VirtualImage
method), 84

fourier_resample() (in module
py4DSTEM.process.utils.utils), 197

fourier_ring_correlation() (in module
py4DSTEM.process.phase.utils), 179

fourier_rotate_real_volume() (in module
py4DSTEM.process.phase.utils), 181

fourier_translation_operator() (in module
py4DSTEM.process.phase.utils), 177

from_ase() (py4DSTEM.process.diffraction.crystal.Crystal
static method), 141

from_braggvectors()
(py4DSTEM.process.classification.featurization.Featurization
method), 121

from_CIF() (py4DSTEM.process.diffraction.crystal.Crystal
static method), 141

from_h5() (emdfile.Metadata class method), 244
from_h5() (emdfile.Node class method), 248
from_h5() (py4DSTEM.Array class method), 27
from_h5() (py4DSTEM.BraggVectors class method), 31
from_h5() (py4DSTEM.Calibration class method), 40
from_h5() (py4DSTEM.Custom class method), 40
from_h5() (py4DSTEM.DataCube class method), 51
from_h5() (py4DSTEM.DiffractionSlice class method),

58
from_h5() (py4DSTEM.Metadata class method), 60
from_h5() (py4DSTEM.Node class method), 64
from_h5() (py4DSTEM.PointList class method), 66
from_h5() (py4DSTEM.PointListArray class method),

68
from_h5() (py4DSTEM.Probe class method), 73
from_h5() (py4DSTEM.QPoints class method), 76
from_h5() (py4DSTEM.RealSlice class method), 79
from_h5() (py4DSTEM.VirtualDiffraction class

method), 81
from_h5() (py4DSTEM.VirtualImage class method), 84
from_prismatic() (py4DSTEM.process.diffraction.crystal.Crystal

static method), 141
from_pymatgen_structure()

(py4DSTEM.process.diffraction.crystal.Crystal
static method), 141

from_unitcell_parameters()
(py4DSTEM.process.diffraction.crystal.Crystal
static method), 142

from_vacuum_data() (py4DSTEM.Probe class
method), 70

fromarray() (py4DSTEM.process.phase.utils.AffineTransform
class method), 179

G
GaussianBackground (class in

py4DSTEM.process.wholepatternfit.wp_models),
199

Index 277

py4dstem, Release 0.14.14

GaussianRing (class in
py4DSTEM.process.wholepatternfit.wp_models),
200

gdrive_download() (in module
py4DSTEM.io.google_drive_downloader),
90

generate_CBED() (in module
py4DSTEM.process.diffraction.crystal_bloch),
155

generate_CBED() (py4DSTEM.process.diffraction.crystal.Crystal
method), 138

generate_diffraction_pattern()
(py4DSTEM.process.diffraction.crystal.Crystal
method), 143

generate_dynamical_diffraction_pattern() (in
module py4DSTEM.process.diffraction.crystal_bloch),
153

generate_dynamical_diffraction_pattern()
(py4DSTEM.process.diffraction.crystal.Crystal
method), 136

generate_moire_diffraction_pattern() (in mod-
ule py4DSTEM.process.diffraction.crystal),
145

generate_projected_potential()
(py4DSTEM.process.diffraction.crystal.Crystal
method), 144

generate_ring_pattern()
(py4DSTEM.process.diffraction.crystal.Crystal
method), 143

generate_synthetic_probe() (py4DSTEM.Probe
class method), 70

get_1D_polar_background() (in module
py4DSTEM.preprocess.radialbkgrd), 99

get_2D_polar_background() (in module
py4DSTEM.preprocess.radialbkgrd), 99

get_background_streaks() (in module
py4DSTEM.preprocess.darkreference), 93

get_background_streaks_x() (in module
py4DSTEM.preprocess.darkreference), 94

get_background_streaks_y() (in module
py4DSTEM.preprocess.darkreference), 94

get_beamstop_mask() (in module
py4DSTEM.process.utils.masks), 194

get_beamstop_mask() (py4DSTEM.DataCube
method), 49

get_bksbtr_DP() (in module
py4DSTEM.preprocess.darkreference), 93

get_bragg_vector_map() (py4DSTEM.BraggVectors
method), 31

get_braggmask() (py4DSTEM.DataCube method), 50
get_braggpeak_labels_by_scan_position() (in

module py4DSTEM.process.classification.braggvectorclassification),
117

get_bvm() (py4DSTEM.BraggVectors method), 32

get_calibrated_detector_geometry()
(py4DSTEM.DataCube static method), 51

get_candidate_class()
(py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification
method), 116

get_candidate_class_BPs()
(py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification
method), 117

get_candidate_class_image()
(py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification
method), 117

get_class() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification
method), 116

get_class_BPs() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification
method), 116

get_class_DP() (in module
py4DSTEM.process.classification.classutils),
118

get_class_DP_without_Bragg_scattering() (in
module py4DSTEM.process.classification.classutils),
119

get_class_DPs() (py4DSTEM.process.classification.featurization.Featurization
method), 123

get_class_image() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification
method), 116

get_class_ims() (py4DSTEM.process.classification.featurization.Featurization
method), 124

get_CoM() (in module py4DSTEM.process.utils.utils),
196

get_cross_correlation() (in module
py4DSTEM.process.utils.cross_correlate),
189

get_cross_correlation_FT() (in module
py4DSTEM.process.utils.cross_correlate),
189

get_darkreference() (in module
py4DSTEM.preprocess.darkreference), 93

get_dim() (emdfile.Array method), 243
get_dim() (py4DSTEM.Array method), 26
get_dim() (py4DSTEM.DataCube method), 51
get_dim() (py4DSTEM.DiffractionSlice method), 58
get_dim() (py4DSTEM.Probe method), 74
get_dim() (py4DSTEM.RealSlice method), 79
get_dim() (py4DSTEM.VirtualDiffraction method), 82
get_dim() (py4DSTEM.VirtualImage method), 84
get_dim_name() (emdfile.Array method), 243
get_dim_name() (py4DSTEM.Array method), 26
get_dim_name() (py4DSTEM.DataCube method), 51
get_dim_name() (py4DSTEM.DiffractionSlice method),

58
get_dim_name() (py4DSTEM.Probe method), 74
get_dim_name() (py4DSTEM.RealSlice method), 79
get_dim_name() (py4DSTEM.VirtualDiffraction

method), 82

278 Index

py4dstem, Release 0.14.14

get_dim_name() (py4DSTEM.VirtualImage method), 84
get_dim_units() (emdfile.Array method), 243
get_dim_units() (py4DSTEM.Array method), 26
get_dim_units() (py4DSTEM.DataCube method), 52
get_dim_units() (py4DSTEM.DiffractionSlice

method), 58
get_dim_units() (py4DSTEM.Probe method), 74
get_dim_units() (py4DSTEM.RealSlice method), 79
get_dim_units() (py4DSTEM.VirtualDiffraction

method), 82
get_dim_units() (py4DSTEM.VirtualImage method),

84
get_dp_max() (py4DSTEM.DataCube method), 52
get_dp_mean() (py4DSTEM.DataCube method), 52
get_dp_median() (py4DSTEM.DataCube method), 52
get_dq_from_indexed_peaks() (in module

py4DSTEM.process.calibration.qpixelsize),
108

get_ewpc_filter_function() (in module
py4DSTEM.process.utils.utils), 197

get_from_tree() (emdfile.Node method), 247
get_from_tree() (py4DSTEM.Array method), 27
get_from_tree() (py4DSTEM.BraggVectors method),

32
get_from_tree() (py4DSTEM.Custom method), 41
get_from_tree() (py4DSTEM.DataCube method), 52
get_from_tree() (py4DSTEM.DiffractionSlice

method), 58
get_from_tree() (py4DSTEM.Node method), 63
get_from_tree() (py4DSTEM.PointList method), 66
get_from_tree() (py4DSTEM.PointListArray method),

68
get_from_tree() (py4DSTEM.Probe method), 74
get_from_tree() (py4DSTEM.QPoints method), 77
get_from_tree() (py4DSTEM.RealSlice method), 79
get_from_tree() (py4DSTEM.VirtualDiffraction

method), 82
get_from_tree() (py4DSTEM.VirtualImage method),

84
get_hdr_bits() (in module

py4DSTEM.io.filereaders.read_mib), 89
get_initial_classes() (in module

py4DSTEM.process.classification.braggvectorclassification),
117

get_initial_classes_by_cooccurrence()
(py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification
method), 112

get_initial_classes_from_images()
(py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification
method), 113

get_kernel() (py4DSTEM.Probe method), 71
get_local_ave_dp() (py4DSTEM.DataCube method),

50
get_mask() (in module py4DSTEM.process.rdf.rdf), 189

get_masked_peaks() (py4DSTEM.BraggVectors
method), 32

get_maxima_1D() (in module
py4DSTEM.process.utils.utils), 196

get_maxima_2D() (in module
py4DSTEM.preprocess.utils), 100

get_mib_depth() (in module
py4DSTEM.io.filereaders.read_mib), 89

get_mib_memmap() (in module
py4DSTEM.io.filereaders.read_mib), 89

get_N_dataobjects() (in module
py4DSTEM.io.legacy.read_utils), 92

get_nice_spacing() (in module
py4DSTEM.visualize.overlay), 213

get_origin() (in module
py4DSTEM.process.calibration.origin), 106

get_origin_friedel() (in module
py4DSTEM.process.calibration.origin), 106

get_origin_single_dp() (in module
py4DSTEM.process.calibration.origin), 106

get_phi() (in module py4DSTEM.process.rdf.rdf), 189
get_pointlist() (emdfile.PointListArray method), 249
get_pointlist() (py4DSTEM.PointListArray method),

67
get_probe_kernel_edge_gaussian()

(py4DSTEM.Probe static method), 72
get_probe_kernel_edge_sigmoid()

(py4DSTEM.Probe static method), 72
get_probe_kernel_flat() (py4DSTEM.Probe static

method), 72
get_probe_size() (in module

py4DSTEM.process.calibration.probe), 107
get_probe_size() (py4DSTEM.DataCube method), 46
get_py4DSTEM_topgroups() (in module

py4DSTEM.io.legacy.read_utils), 92
get_py4DSTEM_version() (in module

py4DSTEM.io.legacy.read_utils), 92
get_Q_pixel_size() (in module

py4DSTEM.process.calibration.qpixelsize),
108

get_Qvector_from_Rvector() (in module
py4DSTEM.process.calibration.rotation),
109

get_qx_qy_1d() (in module
py4DSTEM.process.utils.utils), 196

get_radial_bkgrnd() (py4DSTEM.DataCube
method), 49

get_radial_bksb_dp() (py4DSTEM.DataCube
method), 49

get_radial_intensity() (in module
py4DSTEM.process.rdf.rdf), 188

get_rdf() (in module py4DSTEM.process.rdf.rdf), 189
get_Rvector_from_Qvector() (in module

py4DSTEM.process.calibration.rotation),

Index 279

py4dstem, Release 0.14.14

110
get_shift() (in module

py4DSTEM.process.utils.cross_correlate),
189

get_shifted_ar() (in module
py4DSTEM.preprocess.utils), 100

get_strained_crystal()
(py4DSTEM.process.diffraction.crystal.Crystal
method), 140

get_UUID() (in module
py4DSTEM.io.legacy.read_utils), 92

get_vacuum_probe() (py4DSTEM.DataCube method),
45

get_vectors() (py4DSTEM.BraggVectors method), 30
get_virtual_diffraction() (py4DSTEM.DataCube

method), 52
get_virtual_image() (py4DSTEM.BraggVectors

method), 32
get_virtual_image() (py4DSTEM.DataCube

method), 53
get_voronoi_vertices() (in module

py4DSTEM.process.utils.utils), 197
GMM() (py4DSTEM.process.classification.featurization.Featurization

method), 123
graft() (emdfile.Node method), 247
graft() (py4DSTEM.Array method), 27
graft() (py4DSTEM.BraggVectors method), 33
graft() (py4DSTEM.Custom method), 41
graft() (py4DSTEM.DataCube method), 54
graft() (py4DSTEM.DiffractionSlice method), 58
graft() (py4DSTEM.Node method), 63
graft() (py4DSTEM.PointList method), 66
graft() (py4DSTEM.PointListArray method), 69
graft() (py4DSTEM.Probe method), 74
graft() (py4DSTEM.QPoints method), 77
graft() (py4DSTEM.RealSlice method), 79
graft() (py4DSTEM.VirtualDiffraction method), 82
graft() (py4DSTEM.VirtualImage method), 84

H
histogram() (py4DSTEM.BraggVectors method), 33

I
ICA() (py4DSTEM.process.classification.featurization.Featurization

method), 122
idct_II_using_FFT() (in module

py4DSTEM.process.phase.utils), 183
idct_II_using_FFT_base() (in module

py4DSTEM.process.phase.utils), 183
import_file() (in module py4DSTEM), 17
import_file() (in module py4DSTEM.io.importfile),

90
interleave_ndarray_symmetrically() (in module

py4DSTEM.process.phase.utils), 182

interleave_ndarray_symmetrically_inverse()
(in module py4DSTEM.process.phase.utils),
183

is_color_like() (in module
py4DSTEM.visualize.overlay), 214

is_py4DSTEM_file() (in module
py4DSTEM.io.legacy.read_utils), 92

is_py4DSTEM_version13() (in module
py4DSTEM.io.legacy.read_utils), 92

J
join() (in module emdfile), 250
join() (in module py4DSTEM), 22

K
K2DataArray (class in

py4DSTEM.io.filereaders.read_K2), 87
KernelDiskLattice (class in

py4DSTEM.process.wholepatternfit.wp_models),
203

L
lanczos_interpolate_array() (in module

py4DSTEM.process.phase.utils), 184
lanczos_kernel_density_estimate() (in module

py4DSTEM.process.phase.utils), 185
linear_interpolation_1D() (in module

py4DSTEM.process.utils.utils), 197
linear_interpolation_2D() (in module

py4DSTEM.preprocess.utils), 101
load_mib() (in module

py4DSTEM.io.filereaders.read_mib), 88

M
make_axes_locatable() (in module

py4DSTEM.visualize.vis_special), 230
make_bragg_mask() (py4DSTEM.DataCube method),

54
make_circular_mask() (in module

py4DSTEM.process.utils.masks), 194
make_detector() (py4DSTEM.DataCube static

method), 55
make_flowline_combined_image() (in module

py4DSTEM.process.diffraction.flowlines), 171
make_flowline_map() (in module

py4DSTEM.process.diffraction.flowlines),
169

make_flowline_rainbow_image() (in module
py4DSTEM.process.diffraction.flowlines), 170

make_flowline_rainbow_legend() (in module
py4DSTEM.process.diffraction.flowlines), 171

make_Fourier_coords2D() (in module
py4DSTEM.preprocess.utils), 100

280 Index

py4dstem, Release 0.14.14

make_orientation_histogram() (in module
py4DSTEM.process.diffraction.flowlines),
168

manageHeader() (in module
py4DSTEM.io.filereaders.read_mib), 88

mask_in_Q() (py4DSTEM.BraggVectors method), 34
mask_in_R() (py4DSTEM.BraggVectors method), 34
match_orientations() (in module

py4DSTEM.process.diffraction.crystal_ACOM),
148

match_orientations()
(py4DSTEM.process.diffraction.crystal.Crystal
method), 126

match_single_pattern() (in module
py4DSTEM.process.diffraction.crystal_ACOM),
149

match_single_pattern()
(py4DSTEM.process.diffraction.crystal.Crystal
method), 127

max_feature() (py4DSTEM.process.classification.featurization.Featurization
method), 122

mean_feature() (py4DSTEM.process.classification.featurization.Featurization
method), 122

measure_disk() (py4DSTEM.Probe method), 71
measure_origin() (py4DSTEM.BraggVectors method),

34
measure_origin_beamstop()

(py4DSTEM.BraggVectors method), 35
median_feature() (py4DSTEM.process.classification.featurization.Featurization

method), 122
median_filter_masked_pixels() (in module

py4DSTEM.preprocess.preprocess), 98
median_filter_masked_pixels()

(py4DSTEM.DataCube method), 45
merge() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification

method), 114
merge_by_class_index()

(py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification
method), 115

merge_iterative() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification
method), 115

Metadata (class in emdfile), 244
Metadata (class in py4DSTEM), 60
MinMaxScaler() (py4DSTEM.process.classification.featurization.Featurization

method), 122
module

py4DSTEM.io, 86
py4DSTEM.io.filereaders, 86
py4DSTEM.io.filereaders.empad, 86
py4DSTEM.io.filereaders.read_K2, 87
py4DSTEM.io.filereaders.read_mib, 88
py4DSTEM.io.google_drive_downloader, 90
py4DSTEM.io.google_drive_downloader.gdown,

90

py4DSTEM.io.importfile, 90
py4DSTEM.io.legacy, 91
py4DSTEM.io.legacy.h5py, 91
py4DSTEM.io.legacy.legacy12, 91
py4DSTEM.io.legacy.legacy13, 91
py4DSTEM.io.legacy.read_legacy_12, 91
py4DSTEM.io.legacy.read_legacy_13, 91
py4DSTEM.io.legacy.read_utils, 92
py4DSTEM.io.parsefiletype, 92
py4DSTEM.preprocess.darkreference, 93
py4DSTEM.preprocess.electroncount, 94
py4DSTEM.preprocess.preprocess, 96
py4DSTEM.preprocess.radialbkgrd, 99
py4DSTEM.preprocess.utils, 100
py4DSTEM.process, 102
py4DSTEM.process.calibration, 102
py4DSTEM.process.calibration.ellipse, 102
py4DSTEM.process.calibration.origin, 105
py4DSTEM.process.calibration.probe, 107
py4DSTEM.process.calibration.qpixelsize,

108
py4DSTEM.process.calibration.rotation,

108
py4DSTEM.process.classification, 110
py4DSTEM.process.classification.braggvectorclassification,

110
py4DSTEM.process.classification.classutils,

118
py4DSTEM.process.classification.featurization,

119
py4DSTEM.process.diffraction, 125
py4DSTEM.process.diffraction.crystal, 125
py4DSTEM.process.diffraction.crystal_ACOM,

147
py4DSTEM.process.diffraction.crystal_bloch,

152
py4DSTEM.process.diffraction.crystal_calibrate,

157
py4DSTEM.process.diffraction.crystal_phase,

159
py4DSTEM.process.diffraction.crystal_viz,

160
py4DSTEM.process.diffraction.flowlines,

168
py4DSTEM.process.diffraction.sys, 173
py4DSTEM.process.diffraction.utils, 174
py4DSTEM.process.diffraction.WK_scattering_factors,

125
py4DSTEM.process.fit, 175
py4DSTEM.process.fit.fit, 175
py4DSTEM.process.phase, 176
py4DSTEM.process.phase.utils, 176
py4DSTEM.process.rdf.amorph, 187
py4DSTEM.process.rdf.rdf, 188

Index 281

py4dstem, Release 0.14.14

py4DSTEM.process.utils, 189
py4DSTEM.process.utils.cross_correlate,

189
py4DSTEM.process.utils.elliptical_coords,

190
py4DSTEM.process.utils.masks, 194
py4DSTEM.process.utils.multicorr, 194
py4DSTEM.process.utils.utils, 196
py4DSTEM.process.wholepatternfit, 198
py4DSTEM.process.wholepatternfit.wp_models,

198
py4DSTEM.process.wholepatternfit.wpf, 204
py4DSTEM.process.wholepatternfit.wpf_viz,

204

N
N_feat (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification

attribute), 112
N_meas (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification

attribute), 112
newnode() (emdfile.Node static method), 248
newnode() (py4DSTEM.Array static method), 27
newnode() (py4DSTEM.BraggVectors static method), 35
newnode() (py4DSTEM.Custom static method), 41
newnode() (py4DSTEM.DataCube static method), 55
newnode() (py4DSTEM.DiffractionSlice static method),

59
newnode() (py4DSTEM.Node static method), 64
newnode() (py4DSTEM.PointList static method), 66
newnode() (py4DSTEM.PointListArray static method),

69
newnode() (py4DSTEM.Probe static method), 74
newnode() (py4DSTEM.QPoints static method), 77
newnode() (py4DSTEM.RealSlice static method), 79
newnode() (py4DSTEM.VirtualDiffraction static

method), 82
newnode() (py4DSTEM.VirtualImage static method), 85
nmf() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification

method), 113
NMF() (py4DSTEM.process.classification.featurization.Featurization

method), 122
Node (class in emdfile), 244
Node (class in py4DSTEM), 61

O
Orientation (class in

py4DSTEM.process.diffraction.utils), 174
orientation_correlation() (in module

py4DSTEM.process.diffraction.flowlines),
172

orientation_plan() (in module
py4DSTEM.process.diffraction.crystal_ACOM),
147

orientation_plan() (py4DSTEM.process.diffraction.crystal.Crystal
method), 125

OrientationMap (class in
py4DSTEM.process.diffraction.utils), 174

P
pad_data_diffraction() (in module

py4DSTEM.preprocess.preprocess), 98
pad_Q() (py4DSTEM.DataCube method), 44
parse_hdr() (in module

py4DSTEM.io.filereaders.read_mib), 88
partition_list() (in module

py4DSTEM.process.phase.utils), 187
PCA() (py4DSTEM.process.classification.featurization.Featurization

method), 122
periodic_centered_difference() (in module

py4DSTEM.process.phase.utils), 181
pixel_rolling_kernel_density_estimate() (in

module py4DSTEM.process.phase.utils), 184
plot() (py4DSTEM.BraggVectors method), 35
plot_all_phase_maps()

(py4DSTEM.process.diffraction.crystal_phase.Crystal_Phase
method), 159

plot_cluster_size() (in module
py4DSTEM.process.diffraction.crystal_viz),
167

plot_cluster_size()
(py4DSTEM.process.diffraction.crystal.Crystal
method), 134

plot_clusters() (in module
py4DSTEM.process.diffraction.crystal_viz),
166

plot_clusters() (py4DSTEM.process.diffraction.crystal.Crystal
method), 134

plot_diffraction_pattern() (in module
py4DSTEM.process.diffraction.crystal_viz),
163

plot_fiber_orientation_maps() (in module
py4DSTEM.process.diffraction.crystal_viz),
165

plot_fiber_orientation_maps()
(py4DSTEM.process.diffraction.crystal.Crystal
method), 133

plot_moire_diffraction_pattern() (in module
py4DSTEM.process.diffraction.crystal), 146

plot_orientation_correlation() (in module
py4DSTEM.process.diffraction.flowlines), 172

plot_orientation_maps() (in module
py4DSTEM.process.diffraction.crystal_viz),
164

plot_orientation_maps()
(py4DSTEM.process.diffraction.crystal.Crystal
method), 132

plot_orientation_plan() (in module

282 Index

py4dstem, Release 0.14.14

py4DSTEM.process.diffraction.crystal_viz),
163

plot_orientation_plan()
(py4DSTEM.process.diffraction.crystal.Crystal
method), 132

plot_orientation_zones() (in module
py4DSTEM.process.diffraction.crystal_viz),
162

plot_orientation_zones()
(py4DSTEM.process.diffraction.crystal.Crystal
method), 131

plot_ring_pattern() (in module
py4DSTEM.process.diffraction.crystal_viz),
167

plot_scattering_intensity() (in module
py4DSTEM.process.diffraction.crystal_viz),
162

plot_scattering_intensity()
(py4DSTEM.process.diffraction.crystal.Crystal
method), 131

plot_strains() (in module
py4DSTEM.process.rdf.amorph), 188

plot_structure() (in module
py4DSTEM.process.diffraction.crystal_viz),
160

plot_structure() (py4DSTEM.process.diffraction.crystal.Crystal
method), 129

plot_structure_factors() (in module
py4DSTEM.process.diffraction.crystal_viz),
161

plot_structure_factors()
(py4DSTEM.process.diffraction.crystal.Crystal
method), 130

plot_symmetries() (in module
py4DSTEM.process.rdf.amorph), 188

PointList (class in emdfile), 248
PointList (class in py4DSTEM), 65
PointListArray (class in emdfile), 249
PointListArray (class in py4DSTEM), 67
polar_aliases (in module

py4DSTEM.process.phase.utils), 176
polar_coordinates()

(py4DSTEM.process.phase.utils.ComplexProbe
method), 177

polar_symbols (in module
py4DSTEM.process.phase.utils), 176

polar_to_cartesian_transform_2Ddata() (in mod-
ule py4DSTEM.process.phase.utils), 182

position_detector() (py4DSTEM.DataCube
method), 55

positions (py4DSTEM.process.diffraction.crystal.Crystal
attribute), 140

preconditioned_laplacian_neumann_2D() (in mod-
ule py4DSTEM.process.phase.utils), 183

preconditioned_laplacian_periodic_3D() (in
module py4DSTEM.process.phase.utils), 181

preconditioned_poisson_solver_neumann_2D()
(in module py4DSTEM.process.phase.utils),
183

preconditioned_poisson_solver_periodic_3D()
(in module py4DSTEM.process.phase.utils),
181

print_h5_tree() (in module emdfile), 250
print_h5_tree() (in module py4DSTEM), 17
print_v13h5_tree() (in module

py4DSTEM.io.legacy.read_legacy_13), 92
print_v13h5pyFile_tree() (in module

py4DSTEM.io.legacy.read_legacy_13), 92
Probe (class in py4DSTEM), 70
project_vector_field_divergence_periodic_3D()

(in module py4DSTEM.process.phase.utils),
182

py4DSTEM.io
module, 86

py4DSTEM.io.filereaders
module, 86

py4DSTEM.io.filereaders.empad
module, 86

py4DSTEM.io.filereaders.read_K2
module, 87

py4DSTEM.io.filereaders.read_mib
module, 88

py4DSTEM.io.google_drive_downloader
module, 90

py4DSTEM.io.google_drive_downloader.gdown
module, 90

py4DSTEM.io.importfile
module, 90

py4DSTEM.io.legacy
module, 91

py4DSTEM.io.legacy.h5py
module, 91

py4DSTEM.io.legacy.legacy12
module, 91

py4DSTEM.io.legacy.legacy13
module, 91

py4DSTEM.io.legacy.read_legacy_12
module, 91

py4DSTEM.io.legacy.read_legacy_13
module, 91

py4DSTEM.io.legacy.read_utils
module, 92

py4DSTEM.io.parsefiletype
module, 92

py4DSTEM.preprocess.darkreference
module, 93

py4DSTEM.preprocess.electroncount
module, 94

Index 283

py4dstem, Release 0.14.14

py4DSTEM.preprocess.preprocess
module, 96

py4DSTEM.preprocess.radialbkgrd
module, 99

py4DSTEM.preprocess.utils
module, 100

py4DSTEM.process
module, 102

py4DSTEM.process.calibration
module, 102

py4DSTEM.process.calibration.ellipse
module, 102

py4DSTEM.process.calibration.origin
module, 105

py4DSTEM.process.calibration.probe
module, 107

py4DSTEM.process.calibration.qpixelsize
module, 108

py4DSTEM.process.calibration.rotation
module, 108

py4DSTEM.process.classification
module, 110

py4DSTEM.process.classification.braggvectorclassification
module, 110

py4DSTEM.process.classification.classutils
module, 118

py4DSTEM.process.classification.featurization
module, 119

py4DSTEM.process.diffraction
module, 125

py4DSTEM.process.diffraction.crystal
module, 125

py4DSTEM.process.diffraction.crystal_ACOM
module, 147

py4DSTEM.process.diffraction.crystal_bloch
module, 152

py4DSTEM.process.diffraction.crystal_calibrate
module, 157

py4DSTEM.process.diffraction.crystal_phase
module, 159

py4DSTEM.process.diffraction.crystal_viz
module, 160

py4DSTEM.process.diffraction.flowlines
module, 168

py4DSTEM.process.diffraction.sys
module, 173

py4DSTEM.process.diffraction.utils
module, 174

py4DSTEM.process.diffraction.WK_scattering_factors
module, 125

py4DSTEM.process.fit
module, 175

py4DSTEM.process.fit.fit
module, 175

py4DSTEM.process.phase
module, 176

py4DSTEM.process.phase.utils
module, 176

py4DSTEM.process.rdf.amorph
module, 187

py4DSTEM.process.rdf.rdf
module, 188

py4DSTEM.process.utils
module, 189

py4DSTEM.process.utils.cross_correlate
module, 189

py4DSTEM.process.utils.elliptical_coords
module, 190

py4DSTEM.process.utils.masks
module, 194

py4DSTEM.process.utils.multicorr
module, 194

py4DSTEM.process.utils.utils
module, 196

py4DSTEM.process.wholepatternfit
module, 198

py4DSTEM.process.wholepatternfit.wp_models
module, 198

py4DSTEM.process.wholepatternfit.wpf
module, 204

py4DSTEM.process.wholepatternfit.wpf_viz
module, 204

Q
QPoints (class in py4DSTEM), 75
quantify_phase() (py4DSTEM.process.diffraction.crystal_phase.Crystal_Phase

method), 159
quantify_phase_pointlist()

(py4DSTEM.process.diffraction.crystal_phase.Crystal_Phase
method), 160

Qx (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification
attribute), 112

Qy (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification
attribute), 112

R
R_Nx (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification

attribute), 112
R_Ny (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification

attribute), 112
radial_elliptical_integral() (in module

py4DSTEM.process.utils.elliptical_coords),
193

radial_integral() (in module
py4DSTEM.process.utils.elliptical_coords),
193

radial_reduction() (in module
py4DSTEM.process.utils.utils), 196

284 Index

py4dstem, Release 0.14.14

raw (py4DSTEM.BraggVectors property), 29
read() (in module emdfile), 250
read() (in module py4DSTEM), 16
read_empad() (in module

py4DSTEM.io.filereaders.empad), 86
read_gatan_K2_bin() (in module

py4DSTEM.io.filereaders.read_K2), 87
read_legacy12() (in module

py4DSTEM.io.legacy.read_legacy_12), 91
read_legacy13() (in module

py4DSTEM.io.legacy.read_legacy_13), 91
RealSlice (class in py4DSTEM), 78
register_target() (py4DSTEM.Calibration method),

39
regularize_probe_amplitude() (in module

py4DSTEM.process.phase.utils), 182
reject() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification

method), 116
remove() (emdfile.PointList method), 248
remove() (py4DSTEM.PointList method), 65
remove() (py4DSTEM.QPoints method), 77
remove_class() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification

method), 115
resample_data_diffraction() (in module

py4DSTEM.preprocess.preprocess), 98
resample_Q() (py4DSTEM.DataCube method), 44
return_1D_profile() (in module

py4DSTEM.process.phase.utils), 180
RIH2() (in module py4DSTEM.process.diffraction.WK_scattering_factors),

125
RobustScaler() (py4DSTEM.process.classification.featurization.Featurization

method), 122
Root (class in emdfile), 250
rotate_point() (in module

py4DSTEM.process.phase.utils), 183

S
save() (in module emdfile), 251
save() (in module py4DSTEM), 17
save_ang_file() (in module

py4DSTEM.process.diffraction.crystal_ACOM),
151

save_ang_file() (py4DSTEM.process.diffraction.crystal.Crystal
method), 129

sector_mask() (in module
py4DSTEM.process.utils.utils), 196

select_point() (in module
py4DSTEM.visualize.vis_special), 230

set_author() (in module emdfile), 252
set_dim() (emdfile.Array method), 243
set_dim() (py4DSTEM.Array method), 26
set_dim() (py4DSTEM.DataCube method), 56
set_dim() (py4DSTEM.DiffractionSlice method), 59
set_dim() (py4DSTEM.Probe method), 74

set_dim() (py4DSTEM.RealSlice method), 80
set_dim() (py4DSTEM.VirtualDiffraction method), 82
set_dim() (py4DSTEM.VirtualImage method), 85
set_dim_name() (emdfile.Array method), 243
set_dim_name() (py4DSTEM.Array method), 26
set_dim_name() (py4DSTEM.DataCube method), 56
set_dim_name() (py4DSTEM.DiffractionSlice method),

59
set_dim_name() (py4DSTEM.Probe method), 74
set_dim_name() (py4DSTEM.RealSlice method), 80
set_dim_name() (py4DSTEM.VirtualDiffraction

method), 82
set_dim_name() (py4DSTEM.VirtualImage method), 85
set_dim_units() (emdfile.Array method), 243
set_dim_units() (py4DSTEM.Array method), 26
set_dim_units() (py4DSTEM.DataCube method), 56
set_dim_units() (py4DSTEM.DiffractionSlice

method), 59
set_dim_units() (py4DSTEM.Probe method), 74
set_dim_units() (py4DSTEM.RealSlice method), 80
set_dim_units() (py4DSTEM.VirtualDiffraction

method), 82
set_dim_units() (py4DSTEM.VirtualImage method),

85
set_origin_meas() (py4DSTEM.Calibration method),

39
set_parameters() (py4DSTEM.process.phase.utils.ComplexProbe

method), 177
set_probe_param() (py4DSTEM.Calibration method),

39
set_raw_vectors() (py4DSTEM.BraggVectors

method), 29
set_scan_shape() (in module

py4DSTEM.preprocess.preprocess), 96
set_scan_shape() (py4DSTEM.DataCube method), 43
setcal() (py4DSTEM.BraggVectors method), 29
setup_diffraction()

(py4DSTEM.process.diffraction.crystal.Crystal
method), 142

shift_positive() (py4DSTEM.process.classification.featurization.Featurization
method), 122

show() (in module py4DSTEM), 17
show() (in module py4DSTEM.visualize), 205
show() (in module py4DSTEM.visualize.vis_grid), 222
show() (in module py4DSTEM.visualize.vis_RQ), 215
show() (in module py4DSTEM.visualize.vis_special),

230
show_amorphous_ring_fit() (in module

py4DSTEM.visualize.vis_special), 235
show_annuli() (in module py4DSTEM.visualize), 211
show_circles() (in module py4DSTEM.visualize), 210
show_class_BPs() (in module

py4DSTEM.visualize.vis_special), 236
show_class_BPs_grid() (in module

Index 285

py4dstem, Release 0.14.14

py4DSTEM.visualize.vis_special), 236
show_complex() (in module

py4DSTEM.visualize.vis_special), 236
show_DP_grid() (in module

py4DSTEM.visualize.vis_grid), 227
show_ellipses() (in module py4DSTEM.visualize),

211
show_elliptical_fit() (in module

py4DSTEM.visualize.vis_special), 236
show_grid_overlay() (in module

py4DSTEM.visualize.vis_grid), 227
show_hist() (in module py4DSTEM.visualize), 209
show_image_grid() (in module

py4DSTEM.visualize.vis_grid), 227
show_image_grid() (in module

py4DSTEM.visualize.vis_special), 237
show_kernel() (in module

py4DSTEM.visualize.vis_special), 238
show_lattice_points() (in module

py4DSTEM.process.wholepatternfit.wpf_viz),
204

show_max_peak_spacing() (in module
py4DSTEM.visualize.vis_special), 238

show_origin_fit() (in module
py4DSTEM.visualize.vis_special), 238

show_origin_meas() (in module
py4DSTEM.visualize.vis_special), 238

show_pointlabels() (in module
py4DSTEM.visualize.vis_special), 238

show_points() (in module py4DSTEM.visualize), 211
show_points() (in module

py4DSTEM.visualize.vis_grid), 228
show_points() (in module

py4DSTEM.visualize.vis_RQ), 222
show_Q() (in module py4DSTEM.visualize), 210
show_qprofile() (in module

py4DSTEM.visualize.vis_special), 238
show_rectangles() (in module py4DSTEM.visualize),

210
show_RQ() (in module py4DSTEM.visualize.vis_RQ),

220
show_RQ_axes() (in module

py4DSTEM.visualize.vis_RQ), 220
show_RQ_vector() (in module

py4DSTEM.visualize.vis_RQ), 221
show_RQ_vectors() (in module

py4DSTEM.visualize.vis_RQ), 221
show_selected_dp() (in module

py4DSTEM.visualize.vis_RQ), 222
show_selected_dps() (in module

py4DSTEM.visualize.vis_special), 238
show_strain() (in module

py4DSTEM.visualize.vis_special), 239
show_tree() (emdfile.Node method), 246

show_tree() (py4DSTEM.Array method), 28
show_tree() (py4DSTEM.BraggVectors method), 36
show_tree() (py4DSTEM.Custom method), 41
show_tree() (py4DSTEM.DataCube method), 56
show_tree() (py4DSTEM.DiffractionSlice method), 59
show_tree() (py4DSTEM.Node method), 63
show_tree() (py4DSTEM.PointList method), 66
show_tree() (py4DSTEM.PointListArray method), 69
show_tree() (py4DSTEM.Probe method), 75
show_tree() (py4DSTEM.QPoints method), 77
show_tree() (py4DSTEM.RealSlice method), 80
show_tree() (py4DSTEM.VirtualDiffraction method),

83
show_tree() (py4DSTEM.VirtualImage method), 85
show_voronoi() (in module

py4DSTEM.visualize.vis_special), 240
sort() (emdfile.PointList method), 248
sort() (py4DSTEM.PointList method), 65
sort() (py4DSTEM.QPoints method), 77
sort_orientation_maps() (in module

py4DSTEM.process.diffraction.utils), 174
spatial_frequencies() (in module

py4DSTEM.process.phase.utils), 177
spatial_separation()

(py4DSTEM.process.classification.featurization.Featurization
method), 124

split() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification
method), 114

split_by_class_index()
(py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification
method), 115

subdivide_into_batches() (in module
py4DSTEM.process.phase.utils), 178

swap_Qxy() (in module
py4DSTEM.preprocess.preprocess), 97

swap_Qxy() (py4DSTEM.DataCube method), 43
swap_RQ() (in module

py4DSTEM.preprocess.preprocess), 96
swap_RQ() (py4DSTEM.DataCube method), 43
swap_Rxy() (in module

py4DSTEM.preprocess.preprocess), 97
swap_Rxy() (py4DSTEM.DataCube method), 43
symmetry_reduce_directions() (in module

py4DSTEM.process.diffraction.crystal_ACOM),
152

symmetry_reduce_directions()
(py4DSTEM.process.diffraction.crystal.Crystal
method), 129

SyntheticDiskLattice (class in
py4DSTEM.process.wholepatternfit.wp_models),
200

SyntheticDiskMoire (class in
py4DSTEM.process.wholepatternfit.wp_models),
202

286 Index

py4dstem, Release 0.14.14

T
thin_data_real() (in module

py4DSTEM.preprocess.preprocess), 97
thin_R() (py4DSTEM.DataCube method), 44
to_h5() (emdfile.Array method), 243
to_h5() (emdfile.Custom method), 243
to_h5() (emdfile.Metadata method), 244
to_h5() (emdfile.Node method), 248
to_h5() (emdfile.PointList method), 249
to_h5() (emdfile.PointListArray method), 250
to_h5() (py4DSTEM.Array method), 26
to_h5() (py4DSTEM.BraggVectors method), 30
to_h5() (py4DSTEM.Calibration method), 40
to_h5() (py4DSTEM.Custom method), 40
to_h5() (py4DSTEM.DataCube method), 56
to_h5() (py4DSTEM.DiffractionSlice method), 59
to_h5() (py4DSTEM.Metadata method), 60
to_h5() (py4DSTEM.Node method), 64
to_h5() (py4DSTEM.PointList method), 67
to_h5() (py4DSTEM.PointListArray method), 68
to_h5() (py4DSTEM.Probe method), 75
to_h5() (py4DSTEM.QPoints method), 77
to_h5() (py4DSTEM.RealSlice method), 80
to_h5() (py4DSTEM.VirtualDiffraction method), 83
to_h5() (py4DSTEM.VirtualImage method), 85
to_strainmap() (py4DSTEM.BraggVectors method),

36
torch_bin() (in module

py4DSTEM.preprocess.electroncount), 96
tqdmnd() (in module emdfile), 252
tqdmnd() (in module py4DSTEM), 22
tree() (emdfile.Node method), 247
tree() (py4DSTEM.Array method), 28
tree() (py4DSTEM.BraggVectors method), 36
tree() (py4DSTEM.Custom method), 41
tree() (py4DSTEM.DataCube method), 57
tree() (py4DSTEM.DiffractionSlice method), 59
tree() (py4DSTEM.Node method), 63
tree() (py4DSTEM.PointList method), 66
tree() (py4DSTEM.PointListArray method), 69
tree() (py4DSTEM.Probe method), 75
tree() (py4DSTEM.QPoints method), 77
tree() (py4DSTEM.RealSlice method), 80
tree() (py4DSTEM.VirtualDiffraction method), 83
tree() (py4DSTEM.VirtualImage method), 85

U
unregister_target() (py4DSTEM.Calibration

method), 39
unwrap_phase_2d() (in module

py4DSTEM.process.phase.utils), 183
upsampled_correlation() (in module

py4DSTEM.process.utils.multicorr), 194

upsampleFFT() (in module
py4DSTEM.process.utils.multicorr), 195

V
vectorized_fourier_resample() (in module

py4DSTEM.process.phase.utils), 186
version_is_geq() (in module

py4DSTEM.io.legacy.read_utils), 92
VirtualDiffraction (class in py4DSTEM), 81
VirtualImage (class in py4DSTEM), 83
visualize() (py4DSTEM.process.phase.utils.ComplexProbe

method), 177

W
WPFModel (class in py4DSTEM.process.wholepatternfit.wp_models),

198
WPFModelType (class in

py4DSTEM.process.wholepatternfit.wp_models),
198

X
X (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification

attribute), 112

Index 287

	Contents
	What is 4D-STEM?
	Installation
	Setting up Python
	Recommended Installation
	Anaconda
	Windows
	Linux
	Mac (Intel)
	Mac (Apple Silicon M1/M2)

	Advanced Installation
	Installing optional dependencies:
	Anaconda
	Windows
	Linux
	Mac (Intel)
	Mac (Apple Silicon M1/M2)

	Pip
	Windows
	Linux
	Mac (Intel)
	Mac (Apple Silicon M1/M2)

	Installing from Source
	Docker
	Overview
	Installation

	Troubleshooting
	Virtual Environments

	Examples
	First Steps
	Next Steps

	API
	py4DSTEM
	IO
	Plotting
	Utilities

	Classes
	Array
	BraggVectors
	Calibration
	Usage
	Get a parameter by beam scan position
	Trigger downstream calibrations
	Calibration + Data
	Attaching an object to a different Calibration

	Custom
	Data
	DataCube
	DiffractionSlice
	Metadata
	Node
	PointList
	PointListArray
	Probe
	QPoints
	RealSlice
	VirtualDiffraction
	VirtualImage

	io
	filereaders
	google_drive_downloader
	importfile
	legacy
	parsefiletype

	preprocess
	darkreference
	electroncount
	preprocess
	radialbkgrd
	utils

	process
	calibration
	classification
	diffraction
	diskdetection
	fit
	latticevectors
	phase
	probe
	rdf
	utils
	virtualdiffraction
	virtualimage
	wholepatternfit

	visualize
	show
	overlay
	virtualimage
	vis_RQ
	vis_grid
	vis_special

	emd
	Classes
	Functions

	API Index
	Graphical User Interface
	Overview
	Installation

	Support & Contributions
	Support
	Contributions

	License
	GPLv3

	Acknowledgements
	References

	Indices and tables
	Python Module Index
	Index

