

Welcome to the py4DSTEM documentation

py4DSTEM is an open source set of python tools for processing and analysis of four-dimensional scanning transmission electron microscopy (4D-STEM) data.

Contents

	What is 4D-STEM?

	Installation
	Setting up Python

	Recommended Installation

	Advanced Installation

	Troubleshooting

	Virtual Environments

	Examples
	First Steps

	Next Steps

	API
	py4DSTEM

	Classes

	io

	preprocess

	process

	visualize

	emd

	API Index
	py4DSTEM

	Classes

	io

	preprocess

	process

	visualize

	emd

	Graphical User Interface
	Overview

	Installation

	Support & Contributions
	Support

	Contributions

	License
	GPLv3

	Acknowledgements
	References

Indices and tables

	Index

	Module Index

	Search Page

[image: _images/py4DSTEM_logo.png]
[image: _images/toyota_research_institute1.png]

What is 4D-STEM?

Scanning Transmission Electron Micropscopy (STEM) is a powerful tool for materials characterization.
In a traditional STEM experiment, a beam of high energy electrons is focused to a very fine probe - on the order of, or even smaller than, the spacing between atoms - and rastered across the surface of the sample.
A conventional two-dimensional STEM image is formed by populating the value of each pixel with the electron flux through a detector at the corresponding beam position.
In a high resolution tool, this enables imaging at the level of atoms.

Four-dimensional scanning transmission electron microscopy (4D-STEM) uses a fast, pixelated electron detector to collect far more information than a traditional STEM experiment.
In 4D-STEM, a pixelated detector is used to record a 2D diffraction image at every raster position of the beam.
A 4D-STEM scan thus results in a 4D data array: two dimensions in diffraction space (i.e. the detector pixels), and two dimensions in real space (i.e. the rastering of the beam).

4D-STEM data is information rich.
A 4D datacube can be collapsed in real space to yield information comparable to nanobeam electron diffraction experiment, or in diffraction space to yield a variety of virtual images, corresponding to both traditional STEM imaging modes as well as more exotic virtual imaging modalities.
The structure, symmetries, and spacings of Bragg disks can be used to extract spatially resolved maps of crystallinity, grain orientations, and lattice strain.
Redundant information in overlapping Bragg disks can be leveraged to calculate the sample potential.
Structure in the diffracted halos of amorphous systems can be used to describe the short and medium range order.

py4DSTEM supports many different modes of 4D-STEM analysis.

Installation

Table of Contents

	Installation

	Setting up Python

	Recommended Installation

	Anaconda

	Windows

	Linux

	Mac (Intel)

	Mac (Apple Silicon M1/M2)

	Advanced Installation

	Installing optional dependencies:

	Anaconda

	Windows

	Linux

	Mac (Intel)

	Mac (Apple Silicon M1/M2)

	Pip

	Windows

	Linux

	Mac (Intel)

	Mac (Apple Silicon M1/M2)

	Installing from Source

	Docker

	Overview

	Installation

	Troubleshooting

	Virtual Environments

Setting up Python

The recommended installation for py4DSTEM uses the Anaconda [https://www.anaconda.com/] Python distribution. Alternatives such as Miniconda [https://docs.conda.io/en/latest/miniconda.html], Mamba [https://mamba.readthedocs.io/en/latest/], pip virtualenv [https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtual-environments/], and poetry [https://python-poetry.org] will work, but here we assume the use of Anaconda. See Virtual Environments, for more details.
The instructions to download and install Anaconda can be found here [http://www.anaconda.com/download].

Recommended Installation

There are three ways to install py4DSTEM:

	Anaconda (miniconda / mamba)

	Pip

	Installing from Source

The easiest way to install py4DSTEM is to use the pre packaged anaconda version. This is an overview of what the installation process looks like, for OS specific instructions see below.

Anaconda

Windows

Windows base install

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3conda install -c conda-forge py4dstem
4conda install -c conda-forge pywin32
5# optional but recomended
6conda install jupyterlab pymatgen

Linux

Linux base install

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3conda install -c conda-forge py4dstem
4# optional but recomended
5conda install jupyterlab pymatgen

Mac (Intel)

Intel Mac base install

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3conda install -c conda-forge py4dstem
4# optional but recomended
5conda install jupyterlab pymatgen

Mac (Apple Silicon M1/M2)

Apple Silicon Mac base install

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3conda install pyqt hdf5
4conda install -c conda-forge py4dstem
5# optional but recomended
6conda install jupyterlab pymatgen

Advanced Installation

Installing optional dependencies:

Some of the features and modules require extra dependencies which can easily be installed using either Anaconda or Pip.

Anaconda

Windows

Windows Anaconda install ACOM

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3conda install -c conda-forge py4dstem pymatgen
4conda install -c conda-forge pywin32

Running py4DSTEM code with GPU acceleration requires an NVIDIA GPU (AMD has beta support but hasn’t been tested) and Nvidia Drivers installed on the system.

Windows Anaconda install GPU

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3conda install -c conda-forge py4dstem cupy cudatoolkit
4conda install -c conda-forge pywin32

If you are looking to run the ML-AI features you are required to install tensorflow, this can be done with CPU only and GPU support.

Windows Anaconda install ML-AI CPU

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3conda install -c conda-forge py4dstem
4pip install tensorflow==2.4.1 tensorflow-addons<=0.14 crystal4D
5conda install -c conda-forge pywin32

Windows Anaconda install ML-AI GPU

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3conda install -c conda-forge py4dstem
4conda install -c conda-forge cupy cudatoolkit=11.0
5pip install tensorflow==2.4.1 tensorflow-addons<=0.14 crystal4D
6conda install -c conda-forge pywin32

Linux

Linux Anaconda install ACOM

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3conda install -c conda-forge py4dstem pymatgen

Running py4DSTEM code with GPU acceleration requires an NVIDIA GPU (AMD has beta support but hasn’t been tested) and Nvidia Drivers installed on the system.

Linux Anaconda install GPU

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3conda install -c conda-forge py4dstem cupy cudatoolkit

If you are looking to run the ML-AI features you are required to install tensorflow, this can be done with CPU only and GPU support.

Linux Anaconda install ML-AI CPU

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3conda install -c conda-forge py4dstem
4pip install tensorflow==2.4.1 tensorflow-addons<=0.14 crystal4D

Linux Anaconda install ML-AI GPU

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3conda install -c conda-forge py4dstem
4conda install -c conda-forge cupy cudatoolkit=11.0
5pip install tensorflow==2.4.1 tensorflow-addons<=0.14 crystal4D

Mac (Intel)

Intel Mac Anaconda install ACOM

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3conda install -c conda-forge py4dstem pymatgen

Tensorflow does not support AMD GPUs so while ML-AI features can be run on an Intel Mac they are not GPU accelerated

Intel Mac Anaconda install ML-AI CPU

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3conda install -c conda-forge py4dstem
4pip install tensorflow==2.4.1 tensorflow-addons<=0.14 crystal4D

Mac (Apple Silicon M1/M2)

Apple Silicon Mac Anaconda install ACOM

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3conda install -c conda-forge py4dstem pymatgen

Tensorflow’s support of Apple silicon GPUs is limited, and while there are steps that should enable GPU acceleration they have not been tested, but CPU only has been tested.

Apple Silicon Mac Anaconda install ML-AI CPU

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3conda install -c conda-forge py4dstem
4pip install tensorflow==2.4.1 tensorflow-addons<=0.14 crystal4D

Attention

GPU Accelerated Tensorflow on Apple Silicon

This is an untested install method and it may not work. If you try and face issues please post an issue on github [https://github.com/py4dstem/py4DSTEM/issues].

Apple Silicon Mac Anaconda install ML-AI GPU

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3conda install -c apple tensorflow-deps
4pip install tensorflow-macos==2.5.0 tensorflow-addons<=0.14 crystal4D tensorflow-metal
5conda install -c conda-forge py4dstem

Pip

Windows

Windows pip install ACOM

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3pip install py4dstem[acom]
4conda install -c conda-forge pywin32

Running py4DSTEM code with GPU acceleration requires an NVIDIA GPU (AMD has beta support but hasn’t been tested) and Nvidia Drivers installed on the system.

Windows pip install GPU

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3pip install py4dstem[cuda]
4conda install -c conda-forge pywin32

If you are looking to run the ML-AI features you are required to install tensorflow, this can be done with CPU only and GPU support.

Windows pip install ML-AI CPU

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3pip install py4dstem[aiml]
4conda install -c conda-forge pywin32

Windows pip install ML-AI GPU

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3conda install -c conda-forge cudatoolkit=11.0
4pip install py4dstem[aiml-cuda]
5conda install -c conda-forge pywin32

Linux

Linux pip install ACOM

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3pip install py4dstem[acom]

Running py4DSTEM code with GPU acceleration requires an NVIDIA GPU (AMD has beta support but hasn’t been tested) and Nvidia Drivers installed on the system.

Linux pip install GPU

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3pip install py4dstem[cuda]

If you are looking to run the ML-AI features you are required to install tensorflow, this can be done with CPU only and GPU support.

Linux pip install ML-AI CPU

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3pip install py4dstem[aiml]

Linux pip install ML-AI GPU

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3conda install -c conda-forge cudatoolkit=11.0
4pip install py4dstem[aiml-cuda]

Mac (Intel)

Intel Mac pip install ACOM

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3pip install py4dstem[acom]

Tensorflow does not support AMD GPUs so while ML-AI features can be run on an Intel Mac they are not GPU accelerated

Intel Mac pip install ML-AI CPU

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3pip install py4dstem[aiml]

Mac (Apple Silicon M1/M2)

Apple Silicon Mac pip install ACOM

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3pip install py4dstem[acom]
4conda install -c conda-forge py4dstem pymatgen

Tensorflow’s support of Apple silicon GPUs is limited, and while there are steps that should enable GPU acceleration they have not been tested, but CPU only has been tested.

Apple Silicon Mac Anaconda install ML-AI CPU

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3pip install py4dstem[aiml]

Attention

GPU Accelerated Tensorflow on Apple Silicon

This is an untested install method and it may not work. If you try and face issues please post an issue on github [https://github.com/py4dstem/py4DSTEM/issues].

Apple Silicon Mac Anaconda install ML-AI GPU

1conda create -n py4dstem python=3.9
2conda activate py4dstem
3conda install -c apple tensorflow-deps
4pip install tensorflow-macos==2.5.0 tensorflow-addons<=0.14 crystal4D tensorflow-metal py4dstem

Installing from Source

To checkout the latest bleeding edge features, or contriubte your own features you’ll need to install py4DSTEM from source. Luckily this is easy and can be done by simply running:

1git clone
2git checkout <branch> # e.g. git checkout dev
3pip install -e .

Alternatively, you can try single step method:

1pip install git+https://github.com/py4DSTEM/py4DSTEM.git@dev # install the dev branch

Docker

Overview

“Docker is an open platform for developing, shipping, and running applications. Docker enables you to separate your applications from your infrastructure so you can deliver software quickly. With Docker, you can manage your infrastructure in the same ways you manage your applications. By taking advantage of Docker’s methodologies for shipping, testing, and deploying code quickly, you can significantly reduce the delay between writing code and running it in production.”
c.f. Docker website [https://docs.docker.com/get-started/overview/]

Installation

There are py4DSTEM Docker images available on dockerhub, which can be pulled and run or built upon. Checkout the dockerhub repository to see all the versions aviale or simply run the below to get the latest version.
While Docker is extremely powerful and aims to greatly simplify depolying software, it is also a complex and nuanced topic. If you are interested in using it, and are having troubles getting it to work please file an issue on the github.
To use Docker you’ll first need to install Docker [https://docs.docker.com/engine/install/]. After which you can run the images with the following commands.

1docker pull arakowsk/py4dstem:latest
2docker run <Docker options> py4dstem:latest <commands> <args>

Alternatively, you can use Docker Desktop [https://www.docker.com/products/docker-desktop/] which is a GUI interface for Docker and may be an easier method for running the images for less experienced users.

Troubleshooting

If you face any issues, see the common errors below, and if there’s no solution please file an issue on the git repository [https://github.com/py4dstem/py4DSTEM/issues].

Some common errors:

	make sure you’ve activated the right environment

	when installing subsections sometimes the quotation marks can be tricky dpeending on os, terminal etc.

	GPU drivers - tricky to explain

Virtual Environments

Attention

Virtual environments

A Python virtual environment is its own siloed version of Python, with its own set of packages and modules, kept separate from any other Python installations on your system.
In the instructions above, we created a virtual environment to make sure packages that have different dependencies don’t conflict with one another.
For instance, as of this writing, some of the scientific Python packages don’t work well with Python 3.9 - but you might have some other applications on your computer that need Python 3.9.
Using virtual environments solves this problem.
In this example, we’re creating and navigating virtual environments using Anaconda.

Because these directions install py4DSTEM to its own virtual environment, each time you want to use py4DSTEM, you’ll need to activate this environment.

	In the command line, you can do this with conda activate py4dstem.

	In the Anaconda Navigator, you can do this by clicking on the Environments tab and then clicking on py4dstem.

Examples

First Steps

Once py4DSTEM has been succsesfully installed, you can start using it in Python the usual way. The most popular way is using Jupyter Notebooks, but py4DSTEM can be run in python scripts, iPython, spyder, etc.

Your first py4DSTEM script

 1# Import the needed packages
 2import py4DSTEM
 3
 4# This line displays the current version of py4DSTEM:
 5py4DSTEM.__version__
 6
 7# download the dataset
 8py4DSTEM.io.download_file_from_google_drive(
 9 '1PmbCYosA1eYydWmmZebvf6uon9k_5g_S',
10 'simulatedAuNanoplatelet_binned.h5'
11)
12file_data = "simulatedAuNanoplatelet_binned.h5"
13
14# Load the data
15datacube = py4DSTEM.io.read(
16 file_data,
17 data_id = 'polyAu_4DSTEM' # The file above has several blocks of data inside
18)
19
20# plot a diffraction pattern
21py4DSTEM.show(
22 datacube[10,30],
23 intensity_range='absolute',
24 vmin=20,
25 vmax=200,
26 cmap='viridis',
27)

[image: _images/dp.png]

Congratulations you’ve just plotted your first diffraction pattern.

If you run into trouble, refer back to the installation instructions Installation. Remember to make sure you’ve activated the right Python environment.

Next Steps

[image: _images/ADuTNKaQJdScAAAAAElFTkSuQmCC.svg]
 [https://mybinder.org/v2/gh/py4dstem/py4DSTEM_tutorials/main]For a more extensive overview checkout the tutorial github repository [https://github.com/py4dstem/py4DSTEM_tutorials] to see example notebooks demonstraing the features of py4DSTEM. These can be downloaded and run locally or run through the browser using binder [https://mybinder.org/v2/gh/py4dstem/py4DSTEM_tutorials/main]. Here are some example plots from different anaylses you’ll learn running the tutorials.

[image: _images/Advanced_plots.png]

API

For a full index of py4DSTEM functions and classes check out API Index

	py4DSTEM
	IO

	Plotting

	Utilities

	Classes
	Array

	BraggVectors

	Calibration

	Custom

	Data

	DataCube

	DiffractionSlice

	Metadata

	Node

	PointList

	PointListArray

	Probe

	QPoints

	RealSlice

	VirtualDiffraction

	VirtualImage

	io
	filereaders

	google_drive_downloader

	importfile

	legacy

	parsefiletype

	preprocess
	darkreference

	electroncount

	preprocess

	radialbkgrd

	utils

	process
	calibration

	classification

	diffraction

	diskdetection

	fit

	latticevectors

	phase

	probe

	rdf

	utils

	virtualdiffraction

	virtualimage

	wholepatternfit

	visualize
	show

	overlay

	virtualimage

	vis_RQ

	vis_grid

	vis_special

	emd
	Classes

	Functions

py4DSTEM

There are some shortcuts available for regularly used functions and utilities

Table of Contents

	py4DSTEM

	IO

	Plotting

	Utilities

IO

	
py4DSTEM.read(filepath: str | Path, datapath: str | None = None, tree: bool | str | None = True, verbose: bool | None = False, **kwargs)

	A file reader for native py4DSTEM / EMD files. To read non-native
formats, use py4DSTEM.import_file.

For files written by py4DSTEM version 0.14+, the function arguments
are those listed here - filepath, datapath, and tree. See below for
descriptions.

Files written by py4DSTEM v0.14+ are EMD 1.0 files, an HDF5 based
format. For a description and complete file specification, see
https://emdatasets.com/format/. For the Python implementation of
EMD 1.0 read-write routines which py4DSTEM is build on top of, see
https://github.com/py4dstem/emdfile.

To read file written by older verions of py4DSTEM, different keyword
arguments should be passed. See the docstring for
py4DSTEM.io.native.legacy.read_py4DSTEM_legacy for a complete list.
For example, data_id may need to be specified to select dataset.

	Parameters:

	
	filepath (str or Path) – the file path

	datapath (str or None) – the path within the H5 file to the data
group to read from. If there is a single EMD data tree in the
file, datapath may be left as None, and the path will
be set to the root node of that tree. If datapath is None
and there are multiple EMD trees, this function will issue a
warning a return a list of paths to the root nodes of all
EMD trees it finds. Otherwise, should be a ‘/’ delimited path
to the data node of interest, for example passing
‘rootnode/somedata/someotherdata’ will set the node called
‘someotherdata’ as the point to read from. To print the tree
of data nodes present in a file to the screen, use
py4DSTEM.print_h5_tree(filepath).

	tree (True or False or 'noroot') – indicates what data should be loaded,
relative to the target data group specified with datapath.
Enables reading the target data node only if tree is False,
reading the target node as well as recursively reading the tree
of data underneath it if tree is True, or recursively reading
the tree of data underneath the target node but excluding the
target node itself if tree is to ‘noroot’.

	Returns:

	(the data)

	
py4DSTEM.import_file(filepath: str | Path, mem: str | None = 'RAM', binfactor: int | None = 1, filetype: str | None = None, **kwargs)

	Reader for non-native file formats.
Parses the filetype, and calls the appropriate reader.
Supports Gatan DM3/4, some EMPAD file versions, Gatan K2 bin/gtg, and mib
formats.

	Parameters:

	
	filepath (str or Path) – Path to the file.

	mem (str) – Must be “RAM” or “MEMMAP”. Specifies how the data is
loaded; “RAM” transfer the data from storage to RAM, while “MEMMAP”
leaves the data in storage and creates a memory map which points to
the diffraction patterns, allowing them to be retrieved individually
from storage.

	binfactor (int) – Diffraction space binning factor for bin-on-load.

	filetype (str) – Used to override automatic filetype detection.
options include “dm”, “empad”, “gatan_K2_bin”, “mib”, “arina”, “abTEM”

	**kwargs – any additional kwargs are passed to the downstream reader -
refer to the individual filetype reader function call signatures
and docstrings for more details.

	Returns:

	(DataCube or Array) returns a DataCube if 4D data is found, otherwise
returns an Array

	
py4DSTEM.save(filepath, data, mode='w', emdpath=None, tree=True)

	Saves data to an EMD 1.0 formatted HDF5 file at filepath.

For the full docstring, see py4DSTEM.emdfile.save.

	
py4DSTEM.print_h5_tree(filepath, show_metadata=False)

	Prints the contents of an h5 file from a filepath.

Plotting

	
py4DSTEM.show(ar, figsize=(5, 5), cmap='gray', scaling='none', intensity_range='ordered', clipvals=None, vmin=None, vmax=None, min=None, max=None, power=None, power_offset=True, combine_images=False, ticks=True, bordercolor=None, borderwidth=5, show_image=True, return_ar_scaled=False, return_intensity_range=False, returncax=False, returnfig=False, figax=None, hist=False, n_bins=256, mask=None, mask_color='k', mask_alpha=0.0, masked_intensity_range=False, rectangle=None, circle=None, annulus=None, ellipse=None, points=None, grid_overlay=None, cartesian_grid=None, polarelliptical_grid=None, rtheta_grid=None, scalebar=None, calibration=None, rx=None, ry=None, space='Q', pixelsize=None, pixelunits=None, x0=None, y0=None, a=None, e=None, theta=None, title=None, show_fft=False, show_cbar=False, **kwargs)

	General visualization function for 2D arrays.

The simplest use of this function is:

>>> show(ar)

which will generate and display a matplotlib figure showing the 2D array ar.
Additional functionality includes:

	scaling the image (log scaling, power law scaling)

	displaying the image histogram

	altering the histogram clip values

	masking some subset of the image

	setting the colormap

	adding geometric overlays (e.g. points, circles, rectangles, annuli)

	adding informational overlays (scalebars, coordinate grids, oriented axes or
vectors)

	further customization tools

These are each discussed in turn below.

	Scaling:
	Setting the parameter scaling will scale the display image. Options are
‘none’, ‘auto’, ‘power’, or ‘log’. If ‘power’ is specified, the parameter power must
also be passed. The underlying data is not altered. Values less than or equal to
zero are set to zero. If the image histogram is displayed using hist=True,
the scaled image histogram is shown.

Examples:

>>> show(ar,scaling='log')
>>> show(ar,power=0.5)
>>> show(ar,scaling='power',power=0.5,hist=True)

	Histogram:
	Setting the argument hist=True will display the image histogram, instead of
the image. The displayed histogram will reflect any scaling requested. The number
of bins can be set with n_bins. The upper and lower clip values, indicating
where the image display will be saturated, are shown with dashed lines.

	Intensity range:
	Controlling the lower and upper values at which the display image will be
saturated is accomplished with the intensity_range parameter, or its
(soon deprecated) alias clipvals, in combination with vmin,
and vmax. The method by which the upper and lower clip values
are determined is controlled by intensity_range, and must be a string in
(‘None’,’ordered’,’minmax’,’absolute’,’std’,’centered’). See the argument
description for intensity_range for a description of the behavior for each.
The clip values can be returned with the return_intensity_range parameter.

	Masking:
	If a numpy masked array is passed to show, the function will automatically
mask the appropriate pixels. Alternatively, a boolean array of the same shape as
the data array may be passed to the mask argument, and these pixels will be
masked. Masked pixels are displayed as a single uniform color, black by default,
and which can be specified with the mask_color argument. Masked pixels
are excluded when displaying the histogram or computing clip values. The mask
can also be blended with the hidden data by setting the mask_alpha argument.

	Overlays (geometric):
	The function natively supports overlaying points, circles, rectangles, annuli,
and ellipses. Each is invoked by passing a dictionary to the appropriate input
variable specifying the geometry and features of the requested overlay. For
example:

>>> show(ar, rectangle={'lims':(10,20,10,20),'color':'r'})

will overlay a single red square, and

>>> show(ar, annulus={'center':[(28,68),(92,160)],
 'radii':[(16,24),(12,36)],
 'fill':True,
 'alpha':[0.9,0.3],
 'color':['r',(0,1,1,1)]})

will overlay two annuli with two different centers, radii, colors, and
transparencies. For a description of the accepted dictionary parameters
for each type of overlay, see the visualize functions add_*, where
* = (‘rectangle’,’circle’,’annulus’,’ellipse’,’points’). (These docstrings
are under construction!)

	Overlays (informational):
	Informational overlays supported by this function include coordinate axes
(cartesian, polar-elliptical, or r-theta) and scalebars. These are added
by passing the appropriate input argument a dictionary of the desired
parameters, as with geometric overlays. However, there are two key differences
between these overlays and the geometric overlays. First, informational
overlays (coordinate systems and scalebars) require information about the
plot - e.g. the position of the origin, the pixel sizes, the pixel units,
any elliptical distortions, etc. The easiest way to pass this information
is by pass a Calibration object containing this info to show as the
keyword calibration. Second, once the coordinate information has been
passed, informational overlays can autoselect their own parameters, thus simply
passing an empty dict to one of these parameters will add that overlay.

For example:

>>> show(dp, scalebar={}, calibration=calibration)

will display the diffraction pattern dp with a scalebar overlaid in the
bottom left corner given the pixel size and units described in calibration,
and

>>> show(dp, calibration=calibration, scalebar={'length':0.5,'width':2,
 'position':'ul','label':True'})

will display a more customized scalebar.

When overlaying coordinate grids, it is important to note that some relevant
parameters, e.g. the position of the origin, may change by scan position.
In these cases, the parameters rx,``ry`` must also be passed to show,
to tell the Calibration object where to look for the relevant parameters.
For example:

>>> show(dp, cartesian_grid={}, calibration=calibration, rx=2,ry=5)

will overlay a cartesian coordinate grid on the diffraction pattern at scan
position (2,5). Adding

>>> show(dp, calibration=calibration, rx=2, ry=5, cartesian_grid={'label':True,
 'alpha':0.7,'color':'r'})

will customize the appearance of the grid further. And

>>> show(im, calibration=calibration, cartesian_grid={}, space='R')

displays a cartesian grid over a real space image. For more details, see the
documentation for the visualize functions add_*, where * = (‘scalebar’,
‘cartesian_grid’, ‘polarelliptical_grid’, ‘rtheta_grid’). (Under construction!)

	Further customization:
	Most parameters accepted by a matplotlib axis will be accepted by show.
Pass a valid matplotlib colormap or a known string indicating a colormap
as the argument cmap to specify the colormap. Pass figsize to
specify the figure size. Etc.

Further customization can be accomplished by either (1) returning the figure
generated by show and then manipulating it using the normal matplotlib
functions, or (2) generating a matplotlib Figure with Axes any way you like
(e.g. with plt.subplots) and then using this function to plot inside a
single one of the Axes of your choice.

Option (1) is accomplished by simply passing this function returnfig=True.
Thus:

>>> fig,ax = show(ar, returnfig=True)

will now give you direct access to the figure and axes to continue to alter.
Option (2) is accomplished by passing an existing figure and axis to show
as a 2-tuple to the figax argument. Thus:

>>> fig,(ax1,ax2) = plt.subplots(1,2)
>>> show(ar, figax=(fig,ax1))
>>> show(ar, figax=(fig,ax2), hist=True)

will generate a 2-axis figure, and then plot the array ar as an image on
the left, while plotting its histogram on the right.

	Parameters:

	
	ar (2D array or a list of 2D arrays) – the data to plot. Normally this
is a 2D array of the data. If a list of 2D arrays is passed, plots
a corresponding grid of images.

	figsize (2-tuple) – size of the plot

	cmap (colormap) – any matplotlib cmap; default is gray

	scaling (str) – selects a scaling scheme for the intensity values. Default is
none. Accepted values:

	’none’: do not scale intensity values

	’full’: fill entire color range with sorted intensity values

	’power’: power law scaling

	’log’: values where ar<=0 are set to 0

	intensity_range (str) –
	method for setting clipvalues (min and max intensities).
	The original name “clipvals” is now deprecated.
Default is ‘ordered’. Accepted values:

	’ordered’: vmin/vmax are set to fractions of the
distribution of pixel values in the array, e.g. vmin=0.02
will set the minumum display value to saturate the lower 2% of pixels

	’minmax’: The vmin/vmax values are np.min(ar)/np.max(r)

	’absolute’: The vmin/vmax values are set to the values of
the vmin,vmax arguments received by this function

	
	’std’: The vmin/vmax values are np.median(ar) -/+ N*np.std(ar), and
	N is this functions min,max vals.

	’centered’: The vmin/vmax values are set to c -/+ m, where by default
‘c’ is zero and m is the max(abs(ar-c), or the two params can be user
specified using the kwargs vmin/vmax -> c/m.

	vmin (number) – min intensity, behavior depends on clipvals

	vmax (number) – max intensity, behavior depends on clipvals

	min – alias’ for vmin,vmax, throws deprecation warning

	max – alias’ for vmin,vmax, throws deprecation warning

	power (number) – specifies the scaling power

	power_offset (bool) – If true, image has min value subtracted before power scaling

	ticks (bool) – Turn outer tick marks on or off

	bordercolor (color or None) – if not None, add a border of this color.
The color can be anything matplotlib recognizes as a color.

	borderwidth (number) –

	returnfig (bool) – if True, the function returns the tuple (figure,axis)

	figax (None or 2-tuple) – controls which matplotlib Axes object draws the image.
If None, generates a new figure with a single Axes instance. Otherwise, ax
must be a 2-tuple containing the matplotlib class instances (Figure,Axes),
with ar then plotted in the specified Axes instance.

	hist (bool) – if True, instead of plotting a 2D image in ax, plots a histogram of
the intensity values of ar, after any scaling this function has performed.
Plots the clipvals as dashed vertical lines

	n_bins (int) – number of hist bins

	mask (None or boolean array) – if not None, must have the same shape as ‘ar’.
Wherever mask==True, plot the pixel normally, and where mask==False,
pixel values are set to mask_color. If hist==True, ignore these values in the
histogram. If mask_alpha is specified, the mask is blended with the array
underneath, with 0 yielding an opaque mask and 1 yielding a fully transparent
mask. If mask_color is set to 'empty' instead of a matplotlib.color,
nothing is done to pixels where mask==False, allowing overlaying multiple
arrays in different regions of an image by invoking the ``figax` kwarg over
multiple calls to show

	mask_color (color) – see ‘mask’

	mask_alpha (float) – see ‘mask’

	masked_intensity_range (bool) – controls if masked pixel values are included when
determining the display value range; False indicates that all pixel values
will be used to determine the intensity range, True indicates only unmasked
pixels will be used

	scalebar (None or dict or Bool) – if None, and a DiffractionSlice or RealSlice
with calibrations is passed, adds a scalebar. If scalebar is not displaying the proper
calibration, check .calibration pixel_size and pixel_units. If None and an array is passed,
does not add a scalebar. If a dict is passed, it is propagated to the add_scalebar function
which will attempt to use it to overlay a scalebar. If True, uses calibraiton or pixelsize/pixelunits
for scalebar. If False, no scalebar is added.

	show_fft (bool) – if True, plots 2D-fft of array

	show_cbar (bool) – if True, adds cbar

	**kwargs – any keywords accepted by matplotlib’s ax.matshow()

	Returns:

	if returnfig==False (default), the figure is plotted and nothing is returned.
if returnfig==True, return the figure and the axis.

Utilities

	
py4DSTEM.check_config(verbose: bool = False, gratuitously_verbose: bool = False) → None

	This function checks the state of required imports to run py4DSTEM.

Default behaviour will provide a summary of install dependencies for each module e.g. Base, ACOM etc.

	Parameters:

	
	verbose (bool, optional) – Will provide the status of all possible requriements for py4DSTEM, and perform any additonal checks. Defaults to False.

	gratuitously_verbose (bool, optional) – Provides more indepth analysis. Defaults to False.

	Returns:

	None

	
py4DSTEM.join(a, *p)

	Join two or more pathname components, inserting ‘/’ as needed.
If any component is an absolute path, all previous path components
will be discarded. An empty last part will result in a path that
ends with a separator.

	
py4DSTEM.tqdmnd(*args, **kwargs)

	An N-dimensional extension of tqdm providing an iterator and
progress bar over the product of multiple iterators.

Example Usage:

>>> for x,y in tqdmnd(5,6):
>>> <expression>

is equivalent to

>>> for x in range(5):
>>> for y in range(6):
>>> <expression>

with a tqdmnd-style progress bar printed to standard output.

	Accepts:
	
	*args: Any number of integers or iterators. Each integer N
	is converted to a range(N) iterator. Then a loop is
constructed from the Cartesian product of all iterables.

	**kwargs: keyword arguments passed through directly to tqdm.
	Full details are available at https://tqdm.github.io
A few useful ones:

disable (bool): if True, hide the progress bar
keep (bool): if True, delete the progress bar after completion
unit (str): unit name for the display of iteration speed
unit_scale (bool): whether to scale the displayed units and add

SI prefixes

desc (str): message displayed in front of the progress bar

	Returns:

	At each iteration, a tuple of indices is returned, corresponding to the
values of each input iterator (in the same order as the inputs).

Classes

Table of Contents

	Classes

	Array

	BraggVectors

	Calibration

	Custom

	Data

	DataCube

	DiffractionSlice

	Metadata

	Node

	PointList

	PointListArray

	Probe

	QPoints

	RealSlice

	VirtualDiffraction

	VirtualImage

Array

	
class py4DSTEM.Array(data: ndarray, name: str | None = 'array', units: str | None = '', dims: list | None = None, dim_names: list | None = None, dim_units: list | None = None, slicelabels=None)

	A class which stores any N-dimensional array-like data, plus basic metadata:
a name and units, as well as calibrations for each axis of the array, and names
and units for those axis calibrations.

In the simplest usage, only a data array is passed:

>>> ar = Array(np.ones((20,20,256,256)))

will create an array instance whose data is the numpy array passed, and with
automatically populated dimension calibrations in units of pixels.

Additional arguments may be passed to populate the object metadata:

>>> ar = Array(
>>> np.ones((20,20,256,256)),
>>> name = 'test_array',
>>> units = 'intensity',
>>> dims = [
>>> [0,5],
>>> [0,5],
>>> [0,0.01],
>>> [0,0.01]
>>>],
>>> dim_units = [
>>> 'nm',
>>> 'nm',
>>> 'A^-1',
>>> 'A^-1'
>>>],
>>> dim_names = [
>>> 'rx',
>>> 'ry',
>>> 'qx',
>>> 'qy'
>>>],
>>>)

will create an array with a name and units for its data, where its first two
dimensions are in units of nanometers, have pixel sizes of 5nm, and are
described by the handles ‘rx’ and ‘ry’, and where its last two dimensions
are in units of inverse Angstroms, have pixels sizes of 0.01A^-1, and are
described by the handles ‘qx’ and ‘qy’.

Arrays in which the length of each pixel is non-constant are also
supported. For instance,

>>> x = np.logspace(0,1,100)
>>> y = np.sin(x)
>>> ar = Array(
>>> y,
>>> dims = [
>>> x
>>>]
>>>)

generates an array representing the values of the sine function sampled
100 times along a logarithmic interval from 1 to 10. In this example,
this data could then be plotted with, e.g.

>>> plt.scatter(ar.dims[0], ar.data)

If the slicelabels keyword is passed, the first N-1 dimensions of the
array are treated normally, while the final dimension is used to represent
distinct arrays which share a common shape and set of dim vectors. Thus

>>> ar = Array(
>>> np.ones((50,50,4)),
>>> name = 'test_array_stack',
>>> units = 'intensity',
>>> dims = [
>>> [0,2],
>>> [0,2]
>>>],
>>> dim_units = [
>>> 'nm',
>>> 'nm'
>>>],
>>> dim_names = [
>>> 'rx',
>>> 'ry'
>>>],
>>> slicelabels = [
>>> 'a',
>>> 'b',
>>> 'c',
>>> 'd'
>>>]
>>>)

will generate a single Array instance containing 4 arrays which each have
a shape (50,50) and a common set of dim vectors [‘rx’,’ry’], and which
can be indexed into with the names assigned in slicelabels using

>>> ar.get_slice('a')

which will return a 2D (non-stack-like) Array instance with shape (50,50)
and the dims assigned above. The Array attribute .rank is equal to the
number of dimensions for a non-stack-like Array, and is equal to N-1
for stack-like arrays.

	
__init__(data: ndarray, name: str | None = 'array', units: str | None = '', dims: list | None = None, dim_names: list | None = None, dim_units: list | None = None, slicelabels=None)

	
	Accepts:
	data (np.ndarray): the data
name (str): the name of the Array
units (str): units for the pixel values
dims (variable): calibration vectors for each of the axes of the data

array. Valid values for each element of the list are None,
a number, a 2-element list/array, or an M-element list/array
where M is the data array. If None is passed, the dim will be
populated with integer values starting at 0 and its units will
be set to pixels. If a number is passed, the dim is populated
with a vector beginning at zero and increasing linearly by this
step size. If a 2-element list/array is passed, the dim is
populated with a linear vector with these two numbers as the first
two elements. If a list/array of length M is passed, this is used
as the dim vector, (and must therefore match this dimension’s
length). If dims recieves a list of fewer than N arguments for an
N-dimensional data array, the extra dimensions are populated as if
None were passed, using integer pixel values. If the dims
parameter is not passed, all dim vectors are populated this way.

	dim_units (list): the units for the calibration dim vectors. If
	nothing is passed, dims vectors which have been populated
automatically with integers corresponding to pixel numbers
will be assigned units of ‘pixels’, and any other dim vectors
will be assigned units of ‘unknown’. If a list with length <
the array dimensions, the passed values are assumed to apply
to the first N dimensions, and the remaining values are
populated with ‘pixels’ or ‘unknown’ as above.

	dim_names (list): labels for each axis of the data array. Values
	which are not passed, following the same logic as described
above, will be autopopulated with the name “dim#” where #
is the axis number.

	slicelabels (None or True or list): if not None, must be True or a
	list of strings, indicating a “stack-like” array. In this case,
the first N-1 dimensions of the array are treated normally, in
the sense of populating dims, dim_names, and dim_units, while the
final dimension is treated distinctly: it indexes into
distinct arrays which share a set of dimension attributes, and
can be sliced into using the string labels from the slicelabels
list, with the syntax array[‘label’] or array.get_slice(‘label’).
If slicelabels is True or is a list with length less than the
final dimension length, unassigned dimensions are autopopulated
with labels array{i}. The flag array.is_stack is set to True
and the array.rank attribute is set to N-1.

	Returns:

	A new Array instance

	
get_dim(n)

	Return the n’th dim vector

	
dim(n)

	Return the n’th dim vector

	
set_dim(n: int, dim: list | ndarray, units: str | None = None, name: str | None = None)

	Sets the n’th dim vector, using dim as described in the Array
documentation. If units and/or name are passed, sets these
values for the n’th dim vector.

	Accepts:
	n (int): specifies which dim vector
dim (list or array): length must be either 2, or equal to the

length of the n’th axis of the data array

units (Optional, str):
name: (Optional, str):

	
get_dim_units(n)

	Return the n’th dim vector units

	
set_dim_units(n: int, units: str)

	Sets the n’th dim vector units to units.

	Accepts:
	n (int): specifies which dim vector
units (str): new units

	
get_dim_name(n)

	Get the n’th dim vector name

	
set_dim_name(n: int, name: str)

	Sets the n’th dim vector name to name.

	Accepts:
	n (int): specifies which dim vector
name (str): new name

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this Array, tags indicating its EMD type and Python class,
and the array’s data and metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new array’s Group

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

BraggVectors

	
class py4DSTEM.BraggVectors(Rshape, Qshape, name='braggvectors', verbose=False, calibration=None)

	Stores localized bragg scattering positions and intensities
for a 4D-STEM datacube.

Raw (detector coordinate) vectors are accessible as

>>> braggvectors.raw[scan_x, scan_y]

and calibrated vectors as

>>> braggvectors.cal[scan_x, scan_y]

To set which calibrations are being applied, call

>>> braggvectors.setcal(
>>> center = bool,
>>> ellipse = bool,
>>> pixel = bool,
>>> rotate = bool
>>>)

If .setcal is not called, calibrations will be automatically selected based
based on the contents of the instance’s calibrations property. The
calibrations performed in the last call to braggvectors.cal are exposed as

>>> braggvectors.calstate

After grabbing some vectors

>>> vects = braggvectors.raw[scan_x,scan_y]

the values themselves are accessible as

>>> vects.qx,vects.qy,vects.I
>>> vects['qx'],vects['qy'],vects['intensity']

Alternatively, you can access the centered vectors in pixel units with

>>> vects.get_vectors(
>>> scan_x,
>>> scan_y,
>>> center = bool,
>>> ellipse = bool,
>>> pixel = bool,
>>> rotate = bool
>>>)

which will return the vectors at scan position (scan_x,scan_y) with the
requested calibrations applied.

	
__init__(Rshape, Qshape, name='braggvectors', verbose=False, calibration=None)

	

	
set_raw_vectors(x)

	Given some PointListArray x of the correct shape, sets this to the raw vectors

	
property raw

	Calling

>>> raw[scan_x, scan_y]

returns those bragg vectors.

	
property cal

	Calling

>>> cal[scan_x, scan_y]

retrieves data. Use .setcal to set the calibrations to be applied, or
.calstate to see which calibrations are currently set. Calibrations
are initially all set to False. Call .setcal() (with no arguments)
to automatically detect which calibrations are present and apply those.

	
setcal(center=None, ellipse=None, pixel=None, rotate=None)

	Calling

>>> braggvectors.setcal(
>>> center = bool,
>>> ellipse = bool,
>>> pixel = bool,
>>> rotate = bool,
>>>)

sets the calibrations that will be applied to vectors subsequently
retrieved with

>>> braggvectors.cal[scan_x, scan_y]

Any arguments left as None will be automatically set based on
the calibration measurements available.

	
calibrate()

	Autoupdate the calstate when relevant calibrations are set

	
get_vectors(scan_x, scan_y, center, ellipse, pixel, rotate)

	Returns the bragg vectors at the specified scan position with
the specified calibration state.

	Parameters:

	
	scan_x (int) –

	scan_y (int) –

	center (bool) –

	ellipse (bool) –

	pixel (bool) –

	rotate (bool) –

	Returns:

	vectors

	Return type:

	BVects

	
to_h5(group)

	Constructs the group, adds the bragg vector pointlists,
and adds metadata describing the shape

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
attach(node)

	Attach node to the current object’s tree, attaching calibration and detaching
calibrations as needed.

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
fit_origin(mask=None, fitfunction='plane', robust=False, robust_steps=3, robust_thresh=2, mask_check_data=True, plot=True, plot_range=None, cmap='RdBu_r', returncalc=True, **kwargs)

	Fit origin of bragg vectors.

	Parameters:

	
	mask (2b boolean array, optional) – ignore points where mask=True

	fitfunction (str, optional) – must be ‘plane’ or ‘parabola’ or ‘bezier_two’

	robust (bool, optional) – If set to True, fit will be repeated with outliers
removed.

	robust_steps (int, optional) – Optional parameter. Number of robust iterations
performed after initial fit.

	robust_thresh (int, optional) – Threshold for including points, in units of
root-mean-square (standard deviations) error of the predicted values after
fitting.

	mask_check_data (bool) – Get mask from origin measurements equal to zero. (TODO - replace)

	plot (bool, optional) – plot results

	plot_range (float) – min and max color range for plot (pixels)

	cmap (colormap) – plotting colormap

	Returns:

	Return value depends on returnfitp. If returnfitp==False
(default), returns a 4-tuple containing:

	qx0_fit: (ndarray) the fit origin x-position

	qy0_fit: (ndarray) the fit origin y-position

	qx0_residuals: (ndarray) the x-position fit residuals

	qy0_residuals: (ndarray) the y-position fit residuals

	Return type:

	(variable)

	
fit_p_ellipse(bvm, center, fitradii, mask=None, returncalc=False, **kwargs)

	
	Parameters:

	
	bvm (BraggVectorMap) – a 2D array used for ellipse fitting

	center (2-tuple of floats) – the center (x0,y0) of the annular fitting region

	fitradii (2-tuple of floats) – inner and outer radii (ri,ro) of the fit region

	mask (ar-shaped ndarray of bools) – ignore data wherever mask==True

	Returns:

	p_ellipse if returncal is True

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
get_bragg_vector_map(mode='cal', sampling=1, weights=None, weights_thresh=0.005)

	Returns a 2D histogram of Bragg vector intensities in diffraction space,
aka a Bragg vector map.

	Parameters:

	
	mode (str) – Must be ‘cal’ or ‘raw’. Use the calibrated or raw vector positions.

	sampling (number) – The sampling rate of the histogram, in units of the camera’s sampling.
sampling = 2 upsamples and sampling = 0.5 downsamples, each by a
factor of 2.

	weights (None or array) – If None, use all real space scan positions. Otherwise must be a real
space shaped array representing a weighting factor applied to vector
intensities from each scan position. If weights is boolean uses beam
positions where weights is True. If weights is number-like, scales
by the values, and skips positions where wieghts<weights_thresh.

	weights_thresh (number) – If weights is an array of numbers, pixels where weights>weight_thresh
are skipped.

	Returns:

	An Array with .data representing the data, and .dim[0] and .dim[1]
representing the sampling grid.

	Return type:

	BraggVectorHistogram

	
get_bvm(mode='cal', sampling=1, weights=None, weights_thresh=0.005)

	Returns a 2D histogram of Bragg vector intensities in diffraction space,
aka a Bragg vector map.

	Parameters:

	
	mode (str) – Must be ‘cal’ or ‘raw’. Use the calibrated or raw vector positions.

	sampling (number) – The sampling rate of the histogram, in units of the camera’s sampling.
sampling = 2 upsamples and sampling = 0.5 downsamples, each by a
factor of 2.

	weights (None or array) – If None, use all real space scan positions. Otherwise must be a real
space shaped array representing a weighting factor applied to vector
intensities from each scan position. If weights is boolean uses beam
positions where weights is True. If weights is number-like, scales
by the values, and skips positions where wieghts<weights_thresh.

	weights_thresh (number) – If weights is an array of numbers, pixels where weights>weight_thresh
are skipped.

	Returns:

	An Array with .data representing the data, and .dim[0] and .dim[1]
representing the sampling grid.

	Return type:

	BraggVectorHistogram

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
get_masked_peaks(mask, update_inplace=False, returncalc=True)

	Alias for mask_in_Q.

	
get_virtual_image(mode=None, geometry=None, name='bragg_virtual_image', returncalc=True, center=True, ellipse=True, pixel=True, rotate=True)

	Calculates a virtual image based on the values of the Braggvectors
integrated over some detector function determined by mode and
geometry.

	Parameters:

	
	mode (str) –
	defines the type of detector used. Options:
	
	’circular’, ‘circle’: uses round detector, like bright field

	’annular’, ‘annulus’: uses annular detector, like dark field

	geometry (variable) –
	expected value depends on the value of mode, as follows:
	

	’circle’, ‘circular’: nested 2-tuple, ((qx,qy),radius)

	’annular’ or ‘annulus’: nested 2-tuple,
((qx,qy),(radius_i,radius_o))

Values can be in pixels or calibrated units. Note that (qx,qy)
can be skipped, which assumes peaks centered at (0,0).

	center (bool) – Apply calibration - center coordinate.

	ellipse (bool) – Apply calibration - elliptical correction.

	pixel (bool) – Apply calibration - pixel size.

	rotate (bool) – Apply calibration - QR rotation.

	Returns:

	virtual_im

	Return type:

	VirtualImage

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
histogram(mode='cal', sampling=1, weights=None, weights_thresh=0.005)

	Returns a 2D histogram of Bragg vector intensities in diffraction space,
aka a Bragg vector map.

	Parameters:

	
	mode (str) – Must be ‘cal’ or ‘raw’. Use the calibrated or raw vector positions.

	sampling (number) – The sampling rate of the histogram, in units of the camera’s sampling.
sampling = 2 upsamples and sampling = 0.5 downsamples, each by a
factor of 2.

	weights (None or array) – If None, use all real space scan positions. Otherwise must be a real
space shaped array representing a weighting factor applied to vector
intensities from each scan position. If weights is boolean uses beam
positions where weights is True. If weights is number-like, scales
by the values, and skips positions where wieghts<weights_thresh.

	weights_thresh (number) – If weights is an array of numbers, pixels where weights>weight_thresh
are skipped.

	Returns:

	An Array with .data representing the data, and .dim[0] and .dim[1]
representing the sampling grid.

	Return type:

	BraggVectorHistogram

	
mask_in_Q(mask, update_inplace=False, returncalc=True)

	Remove peaks which fall inside the diffraction shaped boolean array
mask, in raw (uncalibrated) peak positions.

	Parameters:

	
	mask (2d boolean array) – The mask. Must be diffraction space shaped

	update_inplace (bool) – If False (default) copies this BraggVectors instance and
removes peaks from the copied instance. If True, removes
peaks from this instance.

	returncalc (bool) – Toggles returning the answer

	Returns:

	bvects

	Return type:

	BraggVectors

	
mask_in_R(mask, update_inplace=False, returncalc=True)

	Remove peaks which fall inside the real space shaped boolean array
mask.

	Parameters:

	
	mask (2d boolean array) – The mask. Must be real space shaped

	update_inplace (bool) – If False (default) copies this BraggVectors instance and
removes peaks from the copied instance. If True, removes
peaks from this instance.

	returncalc (bool) – Toggles returning the answer

	Returns:

	bvects

	Return type:

	BraggVectors

	
measure_origin(center_guess=None, score_method=None, findcenter='max')

	Finds the diffraction shifts of the center beam using the raw Bragg
vector measurements.

If a center guess is not specified, first, a guess at the unscattered
beam position is determined, either by taking the CoM of the Bragg vector
map, or by taking its maximal pixel. Once a unscattered beam position is
determined, the Bragg peak closest to this position is identified. The
shifts in these peaks positions from their average are returned as the
diffraction shifts.

	Parameters:

	
	center_guess (2-tuple) – initial guess for the center

	score_method (str) –
	Method used to find center peak
	
	’intensity’: finds the most intense Bragg peak near the center

	’distance’: finds the closest Bragg peak to the center

	’intensity weighted distance’: determines center through a
combination of weighting distance and intensity

	(str) (findcenter) – position options: ‘CoM’, or ‘max.’ Only used if center_guess is None.
CoM finds the center of mass of bragg ector map, ‘max’ uses its
brightest pixel.

	Returns – (3-tuple): A 3-tuple comprised of:

	qx0 ((R_Nx,R_Ny)-shaped array): the origin x-coord

	qy0 ((R_Nx,R_Ny)-shaped array): the origin y-coord

	braggvectormap ((R_Nx,R_Ny)-shaped array): the Bragg vector map of only
the Bragg peaks identified with the unscattered beam. Useful for diagnostic
purposes.

	
measure_origin_beamstop(center_guess, radii, max_dist=None, max_iter=1, **kwargs)

	Find the origin from a set of braggpeaks assuming there is a beamstop, by identifying
pairs of conjugate peaks inside an annular region and finding their centers of mass.

	Parameters:

	
	center_guess (2-tuple) – qx0,qy0

	radii (2-tuple) – the inner and outer radii of the specified annular region

	max_dist (number) – the maximum allowed distance between the reflection of two
peaks to consider them conjugate pairs

	max_iter (integer) – for values >1, repeats the algorithm after updating center_guess

	Returns:

	the origins

	Return type:

	(2d masked array)

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
to_strainmap(name: str | None = None)

	Generate a StrainMap object from the BraggVectors
equivalent to py4DSTEM.StrainMap(braggvectors=braggvectors)

	Parameters:

	name (str, optional) – The name of the strainmap. Defaults to None which reverts to default name ‘strainmap’.

	Returns:

	A py4DSTEM StrainMap object generated from the BraggVectors

	Return type:

	py4DSTEM.StrainMap

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

Calibration

	
class py4DSTEM.Calibration(name: str | None = 'calibration', root: Root | None = None)

	Stores calibration measurements.

Usage

For some calibration instance c

>>> c['x'] = y

will set the value of some calibration item called ‘x’ to y, and

>>> _y = c['x']

will return the value currently stored as ‘x’ and assign it to _y.
Additionally, for calibration items in the list l given below,
the syntax

>>> c.set_p(p)
>>> p = c.get_p()

is equivalent to

>>> c.p = p
>>> p = c.p

is equivalent to

>>> c['p'] = p
>>> p = c['p']

where in the first line of each couplet the parameter p is set and in
the second it’s retrieved, for parameters p in the list

	l = [
	Q_pixel_size, *
R_pixel_size, *
Q_pixel_units, *
R_pixel_units, *
qx0,
qy0,
qx0_mean,
qy0_mean,
qx0shift,
qy0shift,
origin, *
origin_meas,
origin_meas_mask,
origin_shift,
a, *
b, *
theta, *
p_ellipse, *
ellipse, *
QR_rotation_degrees, *
QR_flip, *
QR_rotflip, *
probe_semiangle,
probe_param,
probe_center,
probe_convergence_semiangle_pixels,
probe_convergence_semiangle_mrad,

]

There are two advantages to using the getter/setter syntax for parameters
in l (e.g. either c.set_p or c.p) instead of the normal dictionary-like
getter/setter syntax (i.e. c[‘p’]). These are (1) enabling retrieving
parameters by beam scan position, and (2) enabling propagation of any
calibration changes to downstream data objects which are affected by the
altered calibrations. See below.

Get a parameter by beam scan position

Some parameters support retrieval by beam scan position. In these cases,
calling

>>> c.get_p(rx,ry)

will return the value of parameter p at beam position (rx,ry). This works
only for the above syntax. Using either of

>>> c.p
>>> c['p']

will return an R-space shaped array.

Trigger downstream calibrations

Some objects store their own internal calibration state, which depends on
the calibrations stored here. For example, a DataCube stores dimension
vectors which calibrate its 4 dimensions, and which depend on the pixel
sizes and the origin position.

Modifying certain parameters therefore can trigger other objects which
depend on these parameters to re-calibrate themselves by calling their
.calibrate() method, if the object has one. Methods marked with a * in the
list l above have this property. Only objects registered with the
Calibration instance will have their .calibrate method triggered by changing
these parameters. An object data can be registered by calling

>>> c.register_target(data)

and deregistered with

>>> c.deregister_target(data)

If an object without a .calibrate method is registerd when a * method is
called, nothing happens.

The .calibrate methods are triggered by setting some parameter p using
either

>>> c.set_p(val)

or

>>> c.p = val

syntax. Setting the parameter with

>>> c['p'] = val

will not trigger re-calibrations.

Calibration + Data

Data in py4DSTEM is stored in filetree like representations, and
Calibration instances are the top-level objects in these trees,
in that they live here:

	Root
	|–metadata
| |– *—> calibration <—*
|
|–some_object(e.g.datacube)
| |–another_object(e.g.max_dp)
| |–etc.
|–etc.
:

Every py4DSTEM Data object has a tree with a calibration, and calling

>>> data.calibration

will return the that Calibration instance. See also the docstring
for the Data class.

Attaching an object to a different Calibration

To modify the calibration associated with some object data, use

>>> c.attach(data)

where c is the new calibration instance. This (1) moves data into the
top level of c’s data tree, which means the new calibration will now be
accessible normally at

>>> data.calibration

and (2) if and only if data was registered with its old calibration,
de-registers it there and registers it with the new calibration. If
data was not registered with the old calibration and it should be
registered with the new one, c.register_target(data) should be
called.

To attach data to a different location in the calibration instance’s
tree, use node.attach(data). See the Data.attach docstring.

	
__init__(name: str | None = 'calibration', root: Root | None = None)

	
	Parameters:

	name (optional, str) –

	
attach(data)

	Attach data to this calibration instance, placing it in the top
level of the Calibration instance’s tree. If data was in a
different data tree, remove it. If data was registered with
a different calibration instance, de-register it there and
register it here. If data was not previously registerd and it
should be, after attaching it run self.register_target(data).

	
register_target(new_target)

	Register an object to recieve calls to it calibrate
method when certain calibrations get updated

	
unregister_target(target)

	Unlink an object from recieving calls to calibrate when
certain calibration values are changed

	
set_origin_meas(x)

	
	Parameters:

	x (2-tuple or 3 uple of 2D R-shaped arrays) – qx0,qy0,[mask]

	
set_probe_param(x)

	
	Parameters:

	x (3-tuple) – (probe size, x0, y0)

	
to_h5(group)

	Saves the metadata dictionary _params to group, then adds the
calibration’s target’s list

	
classmethod from_h5(group)

	Takes a valid group for an HDF5 file object which is open in
read mode. Determines if it’s a valid Metadata representation, and
if so loads and returns it as a Calibration instance. Otherwise,
raises an exception.

	Accepts:
	group (HDF5 group)

	Returns:

	A Calibration instance

Custom

	
class py4DSTEM.Custom(name='custom')

	
	
__init__(name='custom')

	

	
to_h5(group)

	Constructs an h5 group, adds metadata, and adds all attributes
which point to EMD nodes.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new node’s Group

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

Data

	
class py4DSTEM.Data(calibration=None)

	The purpose of the Data class is to ensure calibrations are linked
to data containing class instances, while allowing multiple objects
to share a single Calibration. The calibrations of a Data instance
data is accessible as

>>> data.calibration

In py4DSTEM, Data containing objects are stored internally in filetree
like representations, defined by the EMD1.0 and emdfile specifications,
e.g.

	Root
	|–metadata
| |–calibration
|
|–some_object(e.g.datacube)
| |–another_object(e.g.max_dp)
| |–etc.
|
|–one_more_object(e.g.crystal)
| |–etc.
:

Calibrations are metadata which always live in the root of such a tree.
Running data.calibration returns the calibrations from the tree root,
and therefore the same calibration instance is referred to be all objects
in the same tree. The root itself is accessible from any Data instance
as

>>> data.root

To examine the tree of a Data instance, in a Python interpreter do

>>> data.tree(True)

to display the whole data tree, and

>>> data.tree()

to display the tree of from the current node on, i.e. the branch
downstream of data.

Calling

>>> data.calibration

will raise a warning and return None if no root calibrations are found.

Some objects should be modified when the calibrations change - these
objects must have .calibrate() method, which is called any time relevant
calibration parameters change if the object has been registered with
the calibrations.

To transfer data from it’s current tree to another existing tree, use

>>> data.attach(some_other_data)

which will move the data to the new tree. If the data was registered with
it’s old calibrations, this will also de-register it there and register
it with the new calibrations such that .calibrate() is called when it
should be.

See also the Calibration docstring.

	
__init__(calibration=None)

	

	
attach(node)

	Attach node to the current object’s tree, attaching calibration and detaching
calibrations as needed.

DataCube

	
class py4DSTEM.DataCube(data: ndarray, name: str | None = 'datacube', slicelabels: bool | list | None = None, calibration: Calibration | None = None)

	Storage and processing methods for 4D-STEM datasets.

	
__init__(data: ndarray, name: str | None = 'datacube', slicelabels: bool | list | None = None, calibration: Calibration | None = None)

	
	Accepts:
	data (np.ndarray): the data
name (str): the name of the datacube
calibration (None or Calibration or ‘pass’): default (None)

creates and attaches a new Calibration instance to root
metadata, or, passing a Calibration instance uses this instead.

	slicelabels (None or list): names for slices if this is a
	stack of datacubes

	Returns:

	A new DataCube instance.

	
calibrate()

	Calibrate the coordinate axes of the datacube. Using the calibrations
at self.calibration, sets the 4 dim vectors (Qx,Qy,Rx,Ry) according
to the pixel size, units and origin positions, then updates the
meshgrids representing Q and R space.

	
copy()

	Copys datacube

	
add(data, name='')

	Adds a block of data to the DataCube’s tree. If data is an instance of
an EMD/py4DSTEM class, add it to the tree. If it’s a numpy array,
turn it into an Array instance, then save to the tree.

	
set_scan_shape(Rshape)

	Reshape the data given the real space scan shape.

	Accepts:
	Rshape (2-tuple)

	
swap_RQ()

	Swaps the first and last two dimensions of the 4D datacube.

	
swap_Rxy()

	Swaps the real space x and y coordinates.

	
swap_Qxy()

	Swaps the diffraction space x and y coordinates.

	
crop_Q(ROI)

	Crops the data in diffraction space about the region specified by ROI.

	Accepts:
	ROI (4-tuple): Specifies (Qx_min,Qx_max,Qy_min,Qy_max)

	
crop_R(ROI)

	Crops the data in real space about the region specified by ROI.

	Accepts:
	ROI (4-tuple): Specifies (Rx_min,Rx_max,Ry_min,Ry_max)

	
bin_Q(N, dtype=None)

	Bins the data in diffraction space by bin factor N

	Parameters:

	
	N (int) – The binning factor

	dtype (a datatype (optional)) – Specify the datatype for the output. If not passed, the datatype
is left unchanged

	Returns:

	datacube

	Return type:

	DataCube

	
pad_Q(N=None, output_size=None)

	Pads the data in diffraction space by pad factor N, or to match output_size.

	Accepts:
	N (float, or Sequence[float]): the padding factor
output_size ((int,int)): the padded output size

	
resample_Q(N=None, output_size=None, method='bilinear')

	Resamples the data in diffraction space by resampling factor N, or to match output_size,
using either ‘fourier’ or ‘bilinear’ interpolation.

	Accepts:
	N (float, or Sequence[float]): the resampling factor
output_size ((int,int)): the resampled output size
method (str): ‘fourier’ or ‘bilinear’ (default)

	
bin_Q_mmap(N, dtype=<class 'numpy.float32'>)

	Bins the data in diffraction space by bin factor N for memory mapped data

	Accepts:
	N (int): the binning factor
dtype: the data type

	
bin_R(N)

	Bins the data in real space by bin factor N

	Accepts:
	N (int): the binning factor

	
thin_R(N)

	Reduces the data in real space by skipping every N patterns in the x and y directions.

	Accepts:
	N (int): the thinning factor

	
filter_hot_pixels(thresh, ind_compare=1, return_mask=False)

	This function performs pixel filtering to remove hot / bright pixels. We first compute a moving local ordering filter,
applied to the mean diffraction image. This ordering filter will return a single value from the local sorted intensity
values, given by ind_compare. ind_compare=0 would be the highest intensity, =1 would be the second hightest, etc.
Next, a mask is generated for all pixels which are least a value thresh higher than the local ordering filter output.
Finally, we loop through all diffraction images, and any pixels defined by mask are replaced by their 3x3 local median.

	Parameters:

	
	datacube (DataCube) –

	thresh (float) – threshold for replacing hot pixels, if pixel value minus local ordering filter exceeds it.

	ind_compare (int) – which median filter value to compare against. 0 = brightest pixel, 1 = next brightest, etc.

	return_mask (bool) – if True, returns the filter mask

	Returns:

	datacube (DataCube)
mask (optional, boolean Array) the bad pixel mask

	
get_vacuum_probe(ROI=None, align=True, mask=None, threshold=0.2, expansion=12, opening=3, verbose=False, returncalc=True)

	Computes a vacuum probe.

Which diffraction patterns are included in the calculation is specified
by the ROI parameter. Diffraction patterns are aligned before averaging
if align is True (default). A global mask is applied to each diffraction
pattern before aligning/averaging if mask is specified. After averaging,
a final masking step is applied according to the parameters threshold,
expansion, and opening.

	Parameters:

	
	ROI (optional, boolean array or len 4 list/tuple) – If unspecified, uses the whole datacube. If a boolean array is
passed must be real-space shaped, and True pixels are used. If a
4-tuple is passed, uses the region inside the limits
(rx_min,rx_max,ry_min,ry_max)

	align (optional, bool) – if True, aligns the probes before averaging

	mask (optional, array) – mask applied to each diffraction pattern before alignment and
averaging

	threshold (float) – in the final masking step, values less than max(probe)*threshold
are considered outside the probe

	expansion (int) – number of pixels by which the final mask is expanded after
thresholding

	opening (int) – size of binary opening applied to the final mask to eliminate stray
bright pixels

	verbose (bool) – toggles verbose output

	returncalc (bool) – if True, returns the answer

	Returns:

	probe – the vacuum probe

	Return type:

	Probe, optional

	
get_probe_size(dp=None, thresh_lower=0.01, thresh_upper=0.99, N=100, plot=False, returncal=True, write_to_cal=True, **kwargs)

	Gets the center and radius of the probe in the diffraction plane.

The algorithm is as follows:
First, create a series of N binary masks, by thresholding the diffraction
pattern DP with a linspace of N thresholds from thresh_lower to
thresh_upper, measured relative to the maximum intensity in DP.
Using the area of each binary mask, calculate the radius r of a circular
probe. Because the central disk is typically very intense relative to
the rest of the DP, r should change very little over a wide range of
intermediate values of the threshold. The range in which r is trustworthy
is found by taking the derivative of r(thresh) and finding identifying
where it is small. The radius is taken to be the mean of these r values.
Using the threshold corresponding to this r, a mask is created and the
CoM of the DP times this mask it taken. This is taken to be the origin
x0,y0.

	Parameters:

	
	dp (str or array) – specifies the diffraction pattern in which to
find the central disk. A position averaged, or shift-corrected
and averaged, DP works best. If mode is None, the diffraction
pattern stored in the tree from ‘get_dp_mean’ is used. If mode
is a string it specifies the name of another virtual diffraction
pattern in the tree. If mode is an array, the array is used to
calculate probe size.

	thresh_lower (float, 0 to 1) – the lower limit of threshold values

	thresh_upper (float, 0 to 1) – the upper limit of threshold values

	N (int) – the number of thresholds / masks to use

	plot (bool) – if True plots results

	plot_params (dict) – dictionary to modify defaults in plot

	return_calc (bool) – if True returns 3-tuple described below

	write_to_cal (bool) – if True, looks for a Calibration instance
and writes the measured probe radius there

	Returns:

	A 3-tuple containing:

	r: (float) the central disk radius, in pixels

	x0: (float) the x position of the central disk center

	y0: (float) the y position of the central disk center

	Return type:

	(3-tuple)

	
find_Bragg_disks(template, data=None, radial_bksb=False, filter_function=None, corrPower=1, sigma=None, sigma_dp=0, sigma_cc=2, subpixel='multicorr', upsample_factor=16, minAbsoluteIntensity=0, minRelativeIntensity=0.005, relativeToPeak=0, minPeakSpacing=60, edgeBoundary=20, maxNumPeaks=70, CUDA=False, CUDA_batched=True, distributed=None, ML=False, ml_model_path=None, ml_num_attempts=1, ml_batch_size=8, name='braggvectors', returncalc=True)

	Finds the Bragg disks in the diffraction patterns represented by data by
cross/phase correlatin with template.

Behavior depends on data. If it is None (default), runs on the whole DataCube,
and stores the output in its tree. Otherwise, nothing is stored in tree,
but some value is returned. Valid entries are:

	
	a 2-tuple of numbers (rx,ry): run on this diffraction image,
	and return a QPoints instance

	
	a 2-tuple of arrays (rx,ry): run on these diffraction images,
	and return a list of QPoints instances

	
	an Rspace shapped 2D boolean array: run on the diffraction images
	specified by the True counts and return a list of QPoints
instances

For disk detection on a full DataCube, the calculation can be performed
on the CPU, GPU or a cluster. By default the CPU is used. If CUDA is set
to True, tries to use the GPU. If CUDA_batched is also set to True,
batches the FFT/IFFT computations on the GPU. For distribution to a cluster,
distributed must be set to a dictionary, with contents describing how
distributed processing should be performed - see below for details.

For each diffraction pattern, the algorithm works in 4 steps:

	any pre-processing is performed to the diffraction image. This is
accomplished by passing a callable function to the argument
filter_function, a bool to the argument radial_bksb, or a value >0
to sigma_dp. If none of these are passed, this step is skipped.

	the diffraction image is cross correlated with the template.
Phase/hybrid correlations can be used instead by setting the
corrPower argument. Cross correlation can be skipped entirely,
and the subsequent steps performed directly on the diffraction
image instead of the cross correlation, by passing None to
template.

	the maxima of the cross correlation are located and their
positions and intensities stored. The cross correlation may be
passed through a gaussian filter first by passing the sigma_cc
argument. The method for maximum detection can be set with
the subpixel parameter. Options, from something like fastest/least
precise to slowest/most precise are ‘pixel’, ‘poly’, and ‘multicorr’.

	filtering is applied to remove untrusted or undesired positive counts,
based on their intensity (minRelativeIntensity,`relativeToPeak`,
minAbsoluteIntensity) their proximity to one another or the
image edge (minPeakSpacing, edgeBoundary), and the total
number of peaks per pattern (maxNumPeaks).

	Parameters:

	
	template (2D array) – the vacuum probe template, in real space. For Probe instances,
this is probe.kernel. If None, does not perform a cross
correlation.

	data (variable) – see above

	radial_bksb (bool) – if True, computes a radial background given by the median of the
(circular) polar transform of each each diffraction pattern, and
subtracts this background from the pattern before applying any
filter function and computing the cross correlation. The origin
position must be set in the datacube’s calibrations. Currently
only supported for full datacubes on the CPU.

	filter_function (callable) – filtering function to apply to each diffraction pattern before
peak finding. Must be a function of only one argument (the
diffraction pattern) and return the filtered diffraction pattern.
The shape of the returned DP must match the shape of the probe
kernel (but does not need to match the shape of the input
diffraction pattern, e.g. the filter can be used to bin the
diffraction pattern). If using distributed disk detection, the
function must be able to be pickled with by dill.

	corrPower (float between 0 and 1, inclusive) – the cross correlation power. A value of 1 corresponds to a cross
correlation, 0 corresponds to a phase correlation, and intermediate
values correspond to hybrid correlations.

	sigma (float) – alias for sigma_cc

	sigma_dp (float) – if >0, a gaussian smoothing filter with this standard deviation
is applied to the diffraction pattern before maxima are detected

	sigma_cc (float) – if >0, a gaussian smoothing filter with this standard deviation
is applied to the cross correlation before maxima are detected

	subpixel (str) – Whether to use subpixel fitting, and which algorithm to use.
Must be in (‘none’,’poly’,’multicorr’).

	’none’: performs no subpixel fitting

	’poly’: polynomial interpolation of correlogram peaks (default)

	’multicorr’: uses the multicorr algorithm with DFT upsampling

	upsample_factor (int) – upsampling factor for subpixel fitting (only used when
subpixel=’multicorr’)

	minAbsoluteIntensity (float) – the minimum acceptable correlation peak intensity, on an absolute scale

	minRelativeIntensity (float) – the minimum acceptable correlation peak intensity, relative to the
intensity of the brightest peak

	relativeToPeak (int) – specifies the peak against which the minimum relative intensity is
measured – 0=brightest maximum. 1=next brightest, etc.

	minPeakSpacing (float) – the minimum acceptable spacing between detected peaks

	(int) (edgeBoundary) – the diffraction image edge, in pixels.

	maxNumPeaks (int) – the maximum number of peaks to return

	CUDA (bool) – If True, import cupy and use an NVIDIA GPU to perform disk detection

	CUDA_batched (bool) – If True, and CUDA is selected, the FFT and IFFT steps of disk detection
are performed in batches to better utilize GPU resources.

	distributed (dict) – contains information for parallel processing using an IPyParallel or
Dask distributed cluster. Valid keys are:

	ipyparallel (dict):

	
	client_file (str): path to client json for connecting to your
	existing IPyParallel cluster

	
	dask (dict): client (object): a dask client that connects to
	your existing Dask cluster

	
	data_file (str): the absolute path to your original data
	file containing the datacube

	
	cluster_path (str): defaults to the working directory during
	processing

if distributed is None, which is the default, processing will be in
serial

	name (str) – name for the output BraggVectors

	returncalc (bool) – if True, returns the answer

	Returns:

	See above.

	Return type:

	variable

	
get_beamstop_mask(threshold=0.25, distance_edge=2.0, include_edges=True, sigma=0, use_max_dp=False, scale_radial=None, name='mask_beamstop', returncalc=True)

	This function uses the mean diffraction pattern plus a threshold to
create a beamstop mask.

	Parameters:

	
	threshold (float) – Value from 0 to 1 defining initial threshold for
beamstop mask, taken from the sorted intensity values - 0 is the
dimmest pixel, while 1 uses the brighted pixels.

	distance_edge (float) – How many pixels to expand the mask.

	include_edges (bool) – If set to True, edge pixels will be included
in the mask.

	sigma (float) – Gaussain blur std to apply to image before thresholding.

	use_max_dp (bool) – Use the max DP instead of the mean DP.

	scale_radial (float) – Scale from center of image by this factor (can help with edge)

	name (string) – Name of the output array.

	returncalc (bool) – Set to true to return the result.

	Returns:

	if returncalc is True, returns the beamstop mask

	Return type:

	(Optional)

	
get_radial_bkgrnd(rx, ry, sigma=2)

	Computes and returns a background image for the diffraction
pattern at (rx,ry), populated by radial rings of constant intensity
about the origin, with the value of each ring given by the median
value of the diffraction pattern at that radial distance.

	Parameters:

	
	rx (int) – The x-coord of the beam position

	ry (int) – The y-coord of the beam position

	sigma (number) – If >0, applying a gaussian smoothing in the radial direction
before returning

	Returns:

	background – The radial background

	Return type:

	ndarray

	
get_radial_bksb_dp(rx, ry, sigma=2)

	Computes and returns the diffraction pattern at beam position (rx,ry)
with a radial background subtracted. See the docstring for
datacube.get_radial_background for more info.

	Parameters:

	
	rx (int) – The x-coord of the beam position

	ry (int) – The y-coord of the beam position

	sigma (number) – If >0, applying a gaussian smoothing in the radial direction
before returning

	Returns:

	data – The radial background subtracted diffraction image

	Return type:

	ndarray

	
get_local_ave_dp(rx, ry, radial_bksb=False, sigma=2, braggmask=False, braggvectors=None, braggmask_radius=None)

	Computes and returns the diffraction pattern at beam position (rx,ry)
after weighted local averaging with its nearest-neighbor patterns,
using a 3x3 gaussian kernel for the weightings.

	Parameters:

	
	rx (int) – The x-coord of the beam position

	ry (int) – The y-coord of the beam position

	radial_bksb (bool) – It True, apply a radial background subtraction to each pattern
before averaging

	sigma (number) – If radial_bksb is True, use this sigma for radial smoothing of
the background

	braggmask (bool) – If True, masks bragg scattering at each scan position before
averaging. braggvectors and braggmask_radius must be
specified.

	braggvectors (BraggVectors) – The Bragg vectors to use for masking

	braggmask_radius (number) – The radius about each Bragg point to mask

	Returns:

	data – The radial background subtracted diffraction image

	Return type:

	ndarray

	
get_braggmask(braggvectors, rx, ry, radius)

	Returns a boolean mask which is False in a radius of radius around
each bragg scattering vector at scan position (rx,ry).

	Parameters:

	
	braggvectors (BraggVectors) – The bragg vectors

	rx (int) – The x-coord of the beam position

	ry (int) – The y-coord of the beam position

	radius (number) – mask pixels about each bragg vector to this radial distance

	Returns:

	mask

	Return type:

	boolean ndarray

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
attach(node)

	Attach node to the current object’s tree, attaching calibration and detaching
calibrations as needed.

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
dim(n)

	Return the n’th dim vector

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
static get_calibrated_detector_geometry(calibration, mode, geometry, centered, calibrated)

	Determine the detector geometry in pixels, given some mode and geometry
in calibrated units, where the calibration state is specified by {
centered, calibrated}

	Parameters:

	
	calibration (Calibration) – Used to retrieve the center positions. If None, confirms that
centered and calibrated are False then passes, otherwise raises
an exception

	mode (str) – see the DataCube.get_virtual_image docstring

	geometry (variable) – see the DataCube.get_virtual_image docstring

	centered (bool) – see the DataCube.get_virtual_image docstring

	calibrated (bool) – see the DataCube.get_virtual_image docstring

	Returns:

	geo – the geometry in detector pixels

	Return type:

	tuple

	
get_dim(n)

	Return the n’th dim vector

	
get_dim_name(n)

	Get the n’th dim vector name

	
get_dim_units(n)

	Return the n’th dim vector units

	
get_dp_max(returncalc=True)

	Calculates the max diffraction pattern.

Calls DataCube.get_virtual_diffraction - see that method’s docstring
for more custimizable virtual diffraction.

	Parameters:

	returncalc (bool) – toggles returning the answer

	Returns:

	max_dp

	Return type:

	VirtualDiffraction

	
get_dp_mean(returncalc=True)

	Calculates the mean diffraction pattern.

Calls DataCube.get_virtual_diffraction - see that method’s docstring
for more custimizable virtual diffraction.

	Parameters:

	returncalc (bool) – toggles returning the answer

	Returns:

	mean_dp

	Return type:

	VirtualDiffraction

	
get_dp_median(returncalc=True)

	Calculates the max diffraction pattern.

Calls DataCube.get_virtual_diffraction - see that method’s docstring
for more custimizable virtual diffraction.

	Parameters:

	returncalc (bool) – toggles returning the answer

	Returns:

	max_dp

	Return type:

	VirtualDiffraction

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
get_virtual_diffraction(method, mask=None, shift_center=False, subpixel=False, verbose=True, name='virtual_diffraction', returncalc=True)

	Function to calculate virtual diffraction images.

	Parameters:

	
	method (str) – defines method used for averaging/combining diffraction patterns.
Options are (‘mean’, ‘median’, ‘max’)

	mask (None or 2D array) – if None (default), all pixels are used. Otherwise, must be a boolean
or floating point or complex array with the same shape as real space.
For bool arrays, only True pixels are used in the computation.
Otherwise a weighted average is performed.

	shift_center (bool) – toggles shifting the diffraction patterns to account for beam shift.
Currently only supported for ‘max’ and ‘mean’ modes. Default is
False.

	subpixel (bool) – if shift_center is True, toggles subpixel shifts via Fourier
interpolation. Ignored if shift_center is False.

	verbose (bool) – toggles progress bar

	name (string) – name for the output DiffractionImage instance

	returncalc (bool) – toggles returning the output

	Returns:

	diff_im

	Return type:

	DiffractionImage

	
get_virtual_image(mode, geometry, centered=False, calibrated=False, shift_center=False, subpixel=False, verbose=True, dask=False, return_mask=False, name='virtual_image', returncalc=True, test_config=False)

	Calculate a virtual image.

The detector is determined by the combination of the mode and
geometry arguments, supporting point, circular, rectangular,
annular, and custom mask detectors. The values passed to geometry
may be given with respect to an origin at the corner of the detector
array or with respect to the calibrated center position, and in units of
pixels or real calibrated units, depending on the values of the
centered and calibrated arguments, respectively. The mask may be
shifted pattern-by-pattern to account for diffraction scan shifts using
the shift_center argument.

The computed virtual image is stored in the datacube’s tree, and is
also returned by default.

	Parameters:

	
	mode (str) – defines geometry mode for calculating virtual image, and the
expected input for the geometry argument. options:

	’point’: uses a single pixel detector

	’circle’, ‘circular’: uses a round detector, like bright
field

	’annular’, ‘annulus’: uses an annular detector, like dark
field

	’rectangle’, ‘square’, ‘rectangular’: uses rectangular
detector

	’mask’: any diffraction-space shaped 2D array, representing
a flexible detector

	geometry (variable) – the expected value of this argument is determined by mode as
follows:

	’point’: 2-tuple, (qx,qy), ints

	’circle’, ‘circular’: nested 2-tuple, ((qx,qy),radius),

	’annular’, ‘annulus’: nested 2-tuple,
((qx,qy),(radius_i,radius_o)),

	’rectangle’, ‘square’, ‘rectangular’: 4-tuple,
(xmin,xmax,ymin,ymax)

	
	mask: any boolean or floating point 2D array with the same
	size as datacube.Qshape

	centered (bool) – if False, the origin is in the upper left corner. If True, the origin
is set to the mean origin in the datacube calibrations, so that a
bright-field image could be specified with, e.g., geometry=((0,0),R).
The origin can set with datacube.calibration.set_origin(). For
mode=”mask”, has no effect. Default is False.

	calibrated (bool) – if True, geometry is specified in units of ‘A^-1’ instead of pixels.
The datacube’s calibrations must have its “Q_pixel_units” parameter
set to “A^-1”. For mode=”mask”, has no effect. Default is False.

	shift_center (bool) – if True, the mask is shifted at each real space position to account
for any shifting of the origin of the diffraction images. The
datacube’s calibration[‘origin’] parameter must be set. The shift
applied to each pattern is the difference between the local origin
position and the mean origin position over all patterns, rounded to
the nearest integer for speed. Default is False. If shift_center is
True, centered is automatically set to True.

	subpixel (bool) – if True, applies subpixel shifts to virtual image

	verbose (bool) – toggles a progress bar

	dask (bool) – if True, use dask to distribute the calculation

	return_mask (bool) – if False (default) returns a virtual image as usual. Otherwise does
not compute or return a virtual image, instead finding and
returning the mask that will be used in subsequent calls to this
function using these same parameters. In this case, must be either
True or a 2-tuple of integers corresponding to (rx,ry). If True
is passed, returns the mask used if shift_center is set to False.
If a 2-tuple is passed, returns the mask used at scan position
(rx,ry) if shift_center is set to True. Nothing is added to the
datacube’s tree.

	name (str) – the output object’s name

	returncalc (bool) – if True, returns the output

	test_config (bool) – if True, prints the Boolean values of
(centered,`calibrated`,`shift_center`). Does not compute the
virtual image.

	Returns:

	virt_im

	Return type:

	VirtualImage (optional, if returncalc is True)

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
make_bragg_mask(Qshape, g1, g2, radius, origin, max_q, return_sum=True, **kwargs)

	Creates and returns a mask consisting of circular disks
about the points of a 2D lattice.

	Parameters:

	
	Qshape (2 tuple) – the shape of diffraction space

	g1 (len 2 array or tuple) – the lattice vectors

	g2 (len 2 array or tuple) – the lattice vectors

	radius (number) – the disk radius

	origin (len 2 array or tuple) – the origin

	max_q (nuumber) – the maxima distance to tile to

	return_sum (bool) – if False, return a 3D array, where each
slice contains a single disk; if False, return a single
2D masks of all disks

	Returns:

	(2 or 3D array) the mask

	
static make_detector(shape, mode, geometry)

	Generate a 2D mask representing a detector function.

	Parameters:

	
	shape (2-tuple) – defines shape of mask. Should be the shape of diffraction space.

	mode (str) – defines geometry mode for calculating virtual image. See the
docstring for DataCube.get_virtual_image

	geometry (variable) – defines geometry for calculating virtual image. See the
docstring for DataCube.get_virtual_image

	Returns:

	detector_mask

	Return type:

	2d array

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
position_detector(mode, geometry, data=None, centered=None, calibrated=None, shift_center=False, subpixel=True, scan_position=None, invert=False, color='r', alpha=0.7, **kwargs)

	Position a virtual detector by displaying a mask over a diffraction
space image. Calling .get_virtual_image() using the same mode
and geometry parameters will compute a virtual image using this
detector.

	Parameters:

	
	mode (str) – see the DataCube.get_virtual_image docstring

	geometry (variable) – see the DataCube.get_virtual_image docstring

	data (None or 2d-array or 2-tuple of ints) – The diffraction image to overlay the mask on. If None (default),
looks for a max or mean or median diffraction image in this order
and if found, uses it, otherwise, uses the diffraction pattern at
scan position (0,0). If a 2d array is passed, must be diffraction
space shaped array. If a 2-tuple is passed, uses the diffraction
pattern at scan position (rx,ry).

	centered (bool) – see the DataCube.get_virtual_image docstring

	calibrated (bool) – see the DataCube.get_virtual_image docstring

	shift_center (None or bool or 2-tuple of ints) – If None (default) and data is either None or an array, the mask
is not shifted. If None and data is a 2-tuple, shifts the mask
according to the origin at the scan position (rx,ry) specified in
data. If False, does not shift the mask. If True and data is
a 2-tuple, shifts the mask accordingly, and if True and data is
any other value, raises an error. If shift_center is a 2-tuple,
shifts the mask according to the origin value at this 2-tuple
regardless of the value of data (enabling e.g. overlaying the
mask for a specific scan position on a max or mean diffraction
image.)

	subpixel (bool) – if True, applies subpixel shifts to virtual image

	invert (bool) – if True, invert the masked pixel (i.e. pixels outside the detector
are overlaid with a mask)

	color (any matplotlib color specification) – the mask color

	alpha (number) – the mask transparency

	kwargs (dict) – Any additional arguments are passed on to the show() function

	
set_dim(n: int, dim: list | ndarray, units: str | None = None, name: str | None = None)

	Sets the n’th dim vector, using dim as described in the Array
documentation. If units and/or name are passed, sets these
values for the n’th dim vector.

	Accepts:
	n (int): specifies which dim vector
dim (list or array): length must be either 2, or equal to the

length of the n’th axis of the data array

units (Optional, str):
name: (Optional, str):

	
set_dim_name(n: int, name: str)

	Sets the n’th dim vector name to name.

	Accepts:
	n (int): specifies which dim vector
name (str): new name

	
set_dim_units(n: int, units: str)

	Sets the n’th dim vector units to units.

	Accepts:
	n (int): specifies which dim vector
units (str): new units

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this Array, tags indicating its EMD type and Python class,
and the array’s data and metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new array’s Group

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

DiffractionSlice

	
class py4DSTEM.DiffractionSlice(data: ndarray, name: str | None = 'diffractionslice', units: str | None = 'intensity', slicelabels: bool | list | None = None, calibration=None)

	Stores a diffraction-space shaped 2D data array.

	
__init__(data: ndarray, name: str | None = 'diffractionslice', units: str | None = 'intensity', slicelabels: bool | list | None = None, calibration=None)

	
	Accepts:
	data (np.ndarray): the data
name (str): the name of the diffslice
units (str): units of the pixel values
slicelabels(None or list): names for slices if this is a 3D stack

	Returns:

	(DiffractionSlice instance)

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
attach(node)

	Attach node to the current object’s tree, attaching calibration and detaching
calibrations as needed.

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
dim(n)

	Return the n’th dim vector

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
get_dim(n)

	Return the n’th dim vector

	
get_dim_name(n)

	Get the n’th dim vector name

	
get_dim_units(n)

	Return the n’th dim vector units

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
set_dim(n: int, dim: list | ndarray, units: str | None = None, name: str | None = None)

	Sets the n’th dim vector, using dim as described in the Array
documentation. If units and/or name are passed, sets these
values for the n’th dim vector.

	Accepts:
	n (int): specifies which dim vector
dim (list or array): length must be either 2, or equal to the

length of the n’th axis of the data array

units (Optional, str):
name: (Optional, str):

	
set_dim_name(n: int, name: str)

	Sets the n’th dim vector name to name.

	Accepts:
	n (int): specifies which dim vector
name (str): new name

	
set_dim_units(n: int, units: str)

	Sets the n’th dim vector units to units.

	Accepts:
	n (int): specifies which dim vector
units (str): new units

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this Array, tags indicating its EMD type and Python class,
and the array’s data and metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new array’s Group

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

Metadata

	
class py4DSTEM.Metadata(name: str | None = 'metadata', data: dict | None = None)

	Stores metadata in the form of a flat (non-nested) dictionary.
Keys are arbitrary strings. Values may be strings, numbers, arrays,
or lists of the above types.

Usage:

>>> meta = Metadata()
>>> meta['param'] = value
>>> val = meta['param']

If the parameter has not been set, the getter methods return None.

	
__init__(name: str | None = 'metadata', data: dict | None = None)

	
	Parameters:

	name (Optional, string) –

	
copy(name=None)

	

	
to_h5(group)

	Accepts an h5py Group which is open in write or append mode. Writes
a new group with this object’s name and saves its metadata in it.

	Accepts:
	group (h5py Group)

	
classmethod from_h5(group)

	Accepts an h5py Group which is open in read mode, confirms that
it represents an EMD MetadataDict group, then loads and returns it
as a Metadata instance.

	Accepts:
	group (HDF5 group)

	Returns:

	(Metadata)

Node

	
class py4DSTEM.Node(name: str | None = 'node')

	Nodes contain attributes and methods paralleling
the EMD 1.0 file specification in Python runtime objects.

EMD 1.0 is a singly-rooted file format. That is to say:
An EMD data object can and must exist in one and only one
EMD tree. An EMD file can contain any number of EMD trees, each
containing data and metadata which is, within the limits of
the EMD group specifications, of some arbitrary complexity.
An EMD 1.0 file thus represents, stores, and enables
access to some arbitrary data in long term storage on a file
system in the form of an HDF5 file. The Node class provides
machinery for building trees of data and metadata which mirror
the EMD tree format but which exist in a live Python instance,
rather than on the file system. This facilitates ease of
transfer between Python and the file system.

Nodes are intended to be used a base class on which other, more
complex classes can be biult. Nodes themselves contain the
machinery for managing a tree heirarchy of other Nodes and
Metadata instances, and for reading and writing those trees.
They do not contain any particular data. Classes storing data
and analysis methods which inherit from Node will inherit its
tree management and EMD i/o functionality.

Below, the 4 elements of the node class are each described in turn:
roots, trees, metadata, and i/o.

ROOTS

EMD data objects can and must exist in one and only one EMD tree,
each of which must have a single, named root node. To parallel this in
our runtime objects, each Node has a root property, which can be found
by calling self.root.

By default new nodes have their root set to None. If a node
with .root == None is saved to file, it is placed inside a
new root with the same name as the object itself, and this
is then saved to the file as a new (minimal) EMD tree.

A new root node can be instantiated by calling

>>> rootnode = Root(name=some_name).

Objects added to an existing rooted tree (including a new root node)
automatically have their root assigned to the root of that tree.
Adding objects to trees is discussed below.

TREES

The tree associated with a node can be manipulated with the .tree
method. If we have some rooted node node1 and some unrooted node
node2, the unrooted node can be added to the existing tree as a
child of the rooted node with

>>> node1.tree(node2)

If we have a rooted node node1 and another rooted node node2,
we can’t simply add node2 with the code above, as this would
create a conflict between the two roots. In this case, we can
move node2 from its current tree to the new tree using

>>> node1.tree(graft=node2)

The .tree method has various additional functionalities, including
printing the tree, retrieving objects from the tree, and cutting
branches from the tree. These are summarized below:

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keep root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string), i.e.
in most cases, the keyword can be dropped. So

>>> .tree()
>>> .tree(node)
>>> .tree(True)
>>> .tree('some/node')

will, respectively, print the tree from the current node to screen,
add the node node to the tree, pring the tree from the root node
to screen, and return the node at the emdpath ‘some/node’.

If a node needs to be added to a tree and it may or may not
already have its own root, calling

>>> .tree(add=node, force=True)

or

>>> .tree(node, force=True)

will add the node to the tree, using a simple add if node has no
root, and grafting it if it does have a root.

METADATA

Nodes can contain any number of Metadata instances, each of which
wraps a Python dictionary of some arbitrary complexity (to within
the limits of the Metadata group EMD specification, which limits
permissible values somewhat).

The code:

>>> md1 = Metadata(name='md1')
>>> md2 = Metadata(name='md2')
>>> <<< some code populating md1 + md2 >>>
>>> node.metadata = md1
>>> node.metadata = md2

will create two Metadata objects, populate them with data, then
add them to the node. Note that Node.metadata is not a Python
attribute, it is specially defined property, such that the last
line of code does not overwrite the line before it - rather,
assigning to the .metadata property adds the new metadata object
to a running dictionary of arbitrarily many metadata objects.
Both of these two metadata instances can therefore still be
retrieved, using:

>>> x = node.metadata['md1']
>>> y = node.metadata['md2']

Note, however, that if the second metadata instance has an identical
name to the first instance, then in will overwrite the old instance.

I/O

TODO

	
__init__(name: str | None = 'node')

	

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this node, tags indicating the groups EMD type and Python class,
and any metadata in this node.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new node’s Group

PointList

	
class py4DSTEM.PointList(data: ndarray, name: str | None = 'pointlist')

	A wrapper around structured numpy arrays, with read/write functionality in/out of
EMD formatted HDF5 files.

	
__init__(data: ndarray, name: str | None = 'pointlist')

	
Instantiate a PointList.

	Parameters:

	
	data (structured numpy ndarray) – the data; the dtype of this array will
specify the fields of the PointList.

	name (str) – name for the PointList

	Returns:

	a PointList instance

	
add(data)

	Appends a numpy structured array. Its dtypes must agree with the existing data.

	
remove(mask)

	Removes points wherever mask==True

	
sort(field, order='ascending')

	Sorts the point list according to field,
which must be a field in self.dtype.
order should be ‘descending’ or ‘ascending’.

	
copy(name=None)

	Returns a copy of the PointList. If name=None, sets to {name}_copy

	
add_fields(new_fields, name='')

	Creates a copy of the PointList, but with additional fields given by new_fields.

	Parameters:

	
	new_fields – a list of 2-tuples, (‘name’, dtype)

	name – a name for the new pointlist

	
add_data_by_field(data, fields=None)

	Add a list of data arrays to the PointList, in the fields
given by fields. If fields is not specified, assumes the data
arrays are in the same order as self.fields

	Parameters:

	data (list) – arrays of data to add to each field

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this PointList, tags indicating its EMD type and Python class,
and the pointlist’s data and metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new pointlist’s group

PointListArray

	
class py4DSTEM.PointListArray(dtype, shape, name: str | None = 'pointlistarray')

	An 2D array of PointLists which share common coordinates.

	
__init__(dtype, shape, name: str | None = 'pointlistarray')

	
Creates an empty PointListArray.

	Parameters:

	
	dtype – the dtype of the numpy structured arrays which will comprise
the data of each PointList

	shape (2-tuple of ints) – the shape of the array of PointLists

	name (str) – a name for the PointListArray

	Returns:

	a PointListArray instance

	
get_pointlist(i, j, name=None)

	Returns the pointlist at i,j

	
copy(name='')

	Returns a copy of itself.

	
add_fields(new_fields, name='')

	Creates a copy of the PointListArray, but with additional fields given
by new_fields.

	Parameters:

	
	new_fields – a list of 2-tuples, (‘name’, dtype)

	name – a name for the new pointlist

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this PointListArray, tags indicating its EMD type and Python class,
and the pointlistarray’s data and metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new pointlistarray’s group

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

Probe

	
class py4DSTEM.Probe(data: ndarray, name: str | None = 'probe')

	Stores a vacuum probe.

Both a vacuum probe and a kernel for cross-correlative template matching
derived from that probe are stored and can be accessed at

>>> p.probe
>>> p.kernel

respectively, for some Probe instance p. If a kernel has not been computed
the latter expression returns None.

	
__init__(data: ndarray, name: str | None = 'probe')

	
	Accepts:
	
	data (2D or 3D np.ndarray): the vacuum probe, or
	the vacuum probe + kernel

name (str): a name

	Returns:

	(Probe)

	
classmethod from_vacuum_data(data, mask=None, threshold=0.2, expansion=12, opening=3)

	Generates and returns a vacuum probe Probe instance from either a
2D vacuum image or a 3D stack of vacuum diffraction patterns.

The probe is multiplied by mask, if it’s passed. An additional
masking step zeros values outside of a mask determined by threshold,
expansion, and opening, generated by first computing the binary image
probe < max(probe)*threshold, then applying a binary expansion and
then opening to this image. No alignment is performed - i.e. it is assumed
that the beam was stationary during acquisition of the stack. To align
the images, use the DataCube .get_vacuum_probe method.

	Parameters:

	
	data (2D or 3D array) – the vacuum diffraction data. For 3D stacks, use shape (N,Q_Nx,Q_Ny)

	mask (boolean array, optional) – mask applied to the probe

	threshold (float) – threshold determining mask which zeros values outside of probe

	expansion (int) – number of pixels by which the zeroing mask is expanded to capture
the full probe

	opening (int) – size of binary opening used to eliminate stray bright pixels

	Returns:

	probe – the vacuum probe

	Return type:

	Probe

	
classmethod generate_synthetic_probe(radius, width, Qshape)

	Makes a synthetic probe, with the functional form of a disk blurred by a
sigmoid (a logistic function).

	Parameters:

	
	radius (float) – the probe radius

	width (float) – the blurring of the probe edge. width represents the
full width of the blur, with x=-w/2 to x=+w/2 about the edge
spanning values of ~0.12 to 0.88

	Qshape (2 tuple) – the diffraction plane dimensions

	Returns:

	probe – the probe

	Return type:

	Probe

	
measure_disk(thresh_lower=0.01, thresh_upper=0.99, N=100, returncalc=True, data=None)

	Finds the center and radius of an average probe image.

A naive algorithm. Creates a series of N binary masks by thresholding
the probe image a linspace of N thresholds from thresh_lower to
thresh_upper, relative to the image max/min. For each mask, we find the
square root of the number of True valued pixels divided by pi to
estimate a radius. Because the central disk is intense relative to the
remainder of the image, the computed radii are expected to vary very
little over a wider range threshold values. A range of r values
considered trustworthy is estimated by taking the derivative
r(thresh)/dthresh identifying where it is small, and the mean of this
range is returned as the radius. A center is estimated using a binary
thresholded image in combination with the center of mass operator.

	Parameters:

	
	thresh_lower (float, 0 to 1) – the lower limit of threshold values

	thresh_upper (float, 0 to 1)) – the upper limit of threshold values

	N (int) – the number of thresholds / masks to use

	returncalc (True) – toggles returning the answer

	data (2d array, optional) – if passed, uses this 2D array in place of the probe image when
performing the computation. This also supresses storing the
results in the Probe’s calibration metadata

	Returns:

	r, x0, y0 – the radius and origin

	Return type:

	(3-tuple)

	
get_kernel(mode='flat', origin=None, data=None, returncalc=True, **kwargs)

	Creates a cross-correlation kernel from the vacuum probe.

Specific behavior and valid keyword arguments depend on the mode
specified. In each case, the center of the probe is shifted to the
origin and the kernel normalized such that it sums to 1. This is the
only processing performed if mode is ‘flat’. Otherwise, a centrosymmetric
region of negative intensity is added around the probe intended to promote
edge-filtering-like behavior during cross correlation, with the
functional form of the subtracted region defined by mode and the
relevant **kwargs. For normalization, flat probes integrate to 1, and the
remaining probes integrate to 1 before subtraction and 0 after. Required
keyword arguments are:

	‘flat’: No required arguments. This mode is recommended for bullseye
or other structured probes

	‘gaussian’: Required arg sigma (number), the width (standard
deviation) of a centered gaussian to be subtracted.

	‘sigmoid’: Required arg radii (2-tuple), the inner and outer radii
(ri,ro) of an annular region with a sine-squared sigmoidal radial
profile to be subtracted.

	‘sigmoid_log’: Required arg radii (2-tuple), the inner and outer radii
(ri,ro) of an annular region with a logistic sigmoidal radial
profile to be subtracted.

	Parameters:

	
	mode (str) – must be in ‘flat’,’gaussian’,’sigmoid’,’sigmoid_log’

	origin (2-tuple, optional) – specify the origin. If not passed, looks for a value for the probe
origin in metadata. If not found there, calls .measure_disk.

	data (2d array, optional) – if specified, uses this array instead of the probe image to compute
the kernel

	**kwargs – see descriptions above

	Returns:

	kernel

	Return type:

	2D array

	
static get_probe_kernel_flat(probe, origin=None, bilinear=False)

	Creates a cross-correlation kernel from the vacuum probe by normalizing
and shifting the center.

	Parameters:

	
	probe (2d array) – the vacuum probe

	origin (2-tuple (optional)) – the origin of diffraction space. If not specified, finds the origin
using get_probe_radius.

	bilinear (bool (optional)) – By default probe is shifted via a Fourier transform. Setting this to
True overrides it and uses bilinear shifting. Not recommended!

	Returns:

	kernel – the cross-correlation kernel corresponding to the probe, in real
space

	Return type:

	ndarray

	
static get_probe_kernel_edge_gaussian(probe, sigma, origin=None, bilinear=True)

	Creates a cross-correlation kernel from the probe, subtracting a
gaussian from the normalized probe such that the kernel integrates to
zero, then shifting the center of the probe to the array corners.

	Parameters:

	
	probe (ndarray) – the diffraction pattern corresponding to the probe over vacuum

	sigma (float) – the width of the gaussian to subtract, relative to the standard
deviation of the probe

	origin (2-tuple (optional)) – the origin of diffraction space. If not specified, finds the origin
using get_probe_radius.

	bilinear (bool) – By default probe is shifted via a Fourier transform. Setting this to
True overrides it and uses bilinear shifting. Not recommended!

	Returns:

	kernel – the cross-correlation kernel

	Return type:

	ndarray

	
static get_probe_kernel_edge_sigmoid(probe, radii, origin=None, type='sine_squared', bilinear=True)

	Creates a convolution kernel from an average probe, subtracting an annular
trench about the probe such that the kernel integrates to zero, then
shifting the center of the probe to the array corners.

	Parameters:

	
	probe (ndarray) – the diffraction pattern corresponding to the probe over vacuum

	radii (2-tuple) – the sigmoid inner and outer radii

	origin (2-tuple (optional)) – the origin of diffraction space. If not specified, finds the origin
using get_probe_radius.

	type (string) – must be ‘logistic’ or ‘sine_squared’

	bilinear (bool) – By default probe is shifted via a Fourier transform. Setting this to
True overrides it and uses bilinear shifting. Not recommended!

	Returns:

	kernel – the cross-correlation kernel

	Return type:

	2d array

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
attach(node)

	Attach node to the current object’s tree, attaching calibration and detaching
calibrations as needed.

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
dim(n)

	Return the n’th dim vector

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
get_dim(n)

	Return the n’th dim vector

	
get_dim_name(n)

	Get the n’th dim vector name

	
get_dim_units(n)

	Return the n’th dim vector units

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
set_dim(n: int, dim: list | ndarray, units: str | None = None, name: str | None = None)

	Sets the n’th dim vector, using dim as described in the Array
documentation. If units and/or name are passed, sets these
values for the n’th dim vector.

	Accepts:
	n (int): specifies which dim vector
dim (list or array): length must be either 2, or equal to the

length of the n’th axis of the data array

units (Optional, str):
name: (Optional, str):

	
set_dim_name(n: int, name: str)

	Sets the n’th dim vector name to name.

	Accepts:
	n (int): specifies which dim vector
name (str): new name

	
set_dim_units(n: int, units: str)

	Sets the n’th dim vector units to units.

	Accepts:
	n (int): specifies which dim vector
units (str): new units

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this Array, tags indicating its EMD type and Python class,
and the array’s data and metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new array’s Group

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

QPoints

	
class py4DSTEM.QPoints(data: ndarray, name: str | None = 'qpoints')

	Stores a set of diffraction space points,
with fields ‘qx’, ‘qy’ and ‘intensity’

	
__init__(data: ndarray, name: str | None = 'qpoints')

	
	Accepts:
	
	data (structured numpy ndarray): should have three fields, which
	will be renamed ‘qx’,’qy’,’intensity’

name (str): the name of the QPoints instance

	Returns:

	A new QPoints instance

	
add(data)

	Appends a numpy structured array. Its dtypes must agree with the existing data.

	
add_data_by_field(data, fields=None)

	Add a list of data arrays to the PointList, in the fields
given by fields. If fields is not specified, assumes the data
arrays are in the same order as self.fields

	Parameters:

	data (list) – arrays of data to add to each field

	
add_fields(new_fields, name='')

	Creates a copy of the PointList, but with additional fields given by new_fields.

	Parameters:

	
	new_fields – a list of 2-tuples, (‘name’, dtype)

	name – a name for the new pointlist

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
attach(node)

	Attach node to the current object’s tree, attaching calibration and detaching
calibrations as needed.

	
copy(name=None)

	Returns a copy of the PointList. If name=None, sets to {name}_copy

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
remove(mask)

	Removes points wherever mask==True

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
sort(field, order='ascending')

	Sorts the point list according to field,
which must be a field in self.dtype.
order should be ‘descending’ or ‘ascending’.

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this PointList, tags indicating its EMD type and Python class,
and the pointlist’s data and metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new pointlist’s group

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

RealSlice

	
class py4DSTEM.RealSlice(data: ndarray, name: str | None = 'realslice', units: str | None = 'intensity', slicelabels: bool | list | None = None, calibration=None)

	Stores a real-space shaped 2D data array.

	
__init__(data: ndarray, name: str | None = 'realslice', units: str | None = 'intensity', slicelabels: bool | list | None = None, calibration=None)

	
	Accepts:
	data (np.ndarray): the data
name (str): the name of the realslice
slicelabels(None or list): names for slices if this is a stack of

realslices

	Returns:

	A new RealSlice instance

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
attach(node)

	Attach node to the current object’s tree, attaching calibration and detaching
calibrations as needed.

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
dim(n)

	Return the n’th dim vector

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
get_dim(n)

	Return the n’th dim vector

	
get_dim_name(n)

	Get the n’th dim vector name

	
get_dim_units(n)

	Return the n’th dim vector units

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
set_dim(n: int, dim: list | ndarray, units: str | None = None, name: str | None = None)

	Sets the n’th dim vector, using dim as described in the Array
documentation. If units and/or name are passed, sets these
values for the n’th dim vector.

	Accepts:
	n (int): specifies which dim vector
dim (list or array): length must be either 2, or equal to the

length of the n’th axis of the data array

units (Optional, str):
name: (Optional, str):

	
set_dim_name(n: int, name: str)

	Sets the n’th dim vector name to name.

	Accepts:
	n (int): specifies which dim vector
name (str): new name

	
set_dim_units(n: int, units: str)

	Sets the n’th dim vector units to units.

	Accepts:
	n (int): specifies which dim vector
units (str): new units

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this Array, tags indicating its EMD type and Python class,
and the array’s data and metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new array’s Group

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

VirtualDiffraction

	
class py4DSTEM.VirtualDiffraction(data: ndarray, name: str | None = 'virtualdiffraction')

	Stores a diffraction-space shaped 2D image with metadata
indicating how this image was generated from a self.

	
__init__(data: ndarray, name: str | None = 'virtualdiffraction')

	
	Parameters:

	
	data (np.ndarray) – the 2D data

	name (str) – the name

	Returns:

	A new VirtualDiffraction instance

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
attach(node)

	Attach node to the current object’s tree, attaching calibration and detaching
calibrations as needed.

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
dim(n)

	Return the n’th dim vector

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
get_dim(n)

	Return the n’th dim vector

	
get_dim_name(n)

	Get the n’th dim vector name

	
get_dim_units(n)

	Return the n’th dim vector units

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
set_dim(n: int, dim: list | ndarray, units: str | None = None, name: str | None = None)

	Sets the n’th dim vector, using dim as described in the Array
documentation. If units and/or name are passed, sets these
values for the n’th dim vector.

	Accepts:
	n (int): specifies which dim vector
dim (list or array): length must be either 2, or equal to the

length of the n’th axis of the data array

units (Optional, str):
name: (Optional, str):

	
set_dim_name(n: int, name: str)

	Sets the n’th dim vector name to name.

	Accepts:
	n (int): specifies which dim vector
name (str): new name

	
set_dim_units(n: int, units: str)

	Sets the n’th dim vector units to units.

	Accepts:
	n (int): specifies which dim vector
units (str): new units

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this Array, tags indicating its EMD type and Python class,
and the array’s data and metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new array’s Group

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

VirtualImage

	
class py4DSTEM.VirtualImage(data: ndarray, name: str | None = 'virtualimage')

	A container for storing virtual image data and metadata,
including the real-space shaped 2D image and metadata
indicating how this image was generated from a datacube.

	
__init__(data: ndarray, name: str | None = 'virtualimage')

	
	Parameters:

	
	data (np.ndarray) – the 2D data

	name (str) – the name

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
attach(node)

	Attach node to the current object’s tree, attaching calibration and detaching
calibrations as needed.

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
dim(n)

	Return the n’th dim vector

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
get_dim(n)

	Return the n’th dim vector

	
get_dim_name(n)

	Get the n’th dim vector name

	
get_dim_units(n)

	Return the n’th dim vector units

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
set_dim(n: int, dim: list | ndarray, units: str | None = None, name: str | None = None)

	Sets the n’th dim vector, using dim as described in the Array
documentation. If units and/or name are passed, sets these
values for the n’th dim vector.

	Accepts:
	n (int): specifies which dim vector
dim (list or array): length must be either 2, or equal to the

length of the n’th axis of the data array

units (Optional, str):
name: (Optional, str):

	
set_dim_name(n: int, name: str)

	Sets the n’th dim vector name to name.

	Accepts:
	n (int): specifies which dim vector
name (str): new name

	
set_dim_units(n: int, units: str)

	Sets the n’th dim vector units to units.

	Accepts:
	n (int): specifies which dim vector
units (str): new units

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this Array, tags indicating its EMD type and Python class,
and the array’s data and metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new array’s Group

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

io

Table of Contents

	io

	filereaders

	google_drive_downloader

	importfile

	legacy

	parsefiletype

filereaders

	
py4DSTEM.io.filereaders.empad.read_empad(filename, mem='RAM', binfactor=1, metadata=False, **kwargs)

	Reads the EMPAD file at filename, returning a DataCube.

EMPAD files are shaped as 130x128 arrays, consisting of 128x128 arrays of data followed by
two rows of metadata. For each frame, its position in the scan is embedded in the metadata.
By extracting the scan position of the first and last frames, the function determines the scan
size. Then, the full dataset is loaded and cropped to the 128x128 valid region.

	Accepts:
	filename (str) path to the EMPAD file
EMPAD_shape (kwarg, tuple) Manually specify the shape of the data for files that do not

	contain metadata in the .raw file. This will typically be:
	(# scan pixels x, # scan pixels y, 130, 128)

	Returns:

	data (DataCube) the 4D datacube, excluding the metadata rows.

	
py4DSTEM.io.filereaders.read_K2.read_gatan_K2_bin(fp, mem='MEMMAP', binfactor=1, metadata=False, **kwargs)

	Read a K2 binary 4D-STEM file.

	Parameters:

	
	fp – str Path to the file

	mem (str, optional) – Specifies how the data should be stored; must be “RAM”
or “MEMMAP”. See docstring for py4DSTEM.file.io.read. Default is “MEMMAP”.

	binfactor – (int, optional): Bin the data, in diffraction space, as it’s loaded.
See docstring for py4DSTEM.file.io.read. Must be 1, retained only for
compatibility.

	metadata (bool, optional) – if True, returns the file metadata as a Metadata
instance.

	Returns:

	The return value depends on usage:

	if metadata==False, returns the 4D-STEM dataset as a DataCube

	if metadata==True, returns the metadata as a Metadata instance

Note that metadata is read either way - in the latter case ONLY
metadata is read and returned, in the former case a DataCube
is returned with the metadata attached at datacube.metadata

	Return type:

	(variable)

	
class py4DSTEM.io.filereaders.read_K2.K2DataArray(filepath, sync_block_IDs=True, hidden_stripe_noise_reduction=True)

	K2DataArray provides an interface to a set of Gatan K2IS binary output files.
This object behaves similar to a numpy memmap into the data, and supports 4-D indexing
and slicing. Slices into this object return np.ndarray objects.

The object is created by passing the path to any of: (i) the folder containing the
raw data, (ii) the *.gtg metadata file, or (iii) one of the raw data *.bin files.
In any case, there should be only one dataset (8 *.bin’s and a *.gtg) in the folder.

===== Filtering and Noise Reduction =====
This object is read-only—you cannot edit the data on disk, which means that some
DataCube functions like swap_RQ() will not work.

The K2IS has a “resolution” of 1920x1792, but actually saves hidden stripes in the raw data.
By setting the hidden_stripe_noise_reduction flag to True, the electronic noise in these
stripes is used to reduce the readout noise. (This is on by default.)

If you want to take a separate background to subtract, set dark_reference to specify this
background. This is then subtracted from the frames as they are called out (no matter where
the object is referenced! So, for instance, Bragg disk detection will operate on the background-
subtracted diffraction patterns!). However, mixing the auto-background and specified background
is potentially dangerous and (currently!) not allowed. To switch back from user-background to
auto-background, just delete the user background, i.e. del(dc.data4D.dark_reference)

Note

If you call dc.data4D[:,:,:,:] on a DataCube with a K2DataArray this will read the entire stack
into memory. To reduce RAM pressure, only call small slices or loop over each diffraction pattern.

	
__init__(filepath, sync_block_IDs=True, hidden_stripe_noise_reduction=True)

	

	
py4DSTEM.io.filereaders.read_mib.load_mib(file_path, mem='MEMMAP', binfactor=1, reshape=True, flip=True, scan=(256, 256), **kwargs)

	Read a MIB file and return as py4DSTEM DataCube.

The scan size is not encoded in the MIB metadata - by default it is
set to (256,256), and can be modified by passing the keyword scan.

	
py4DSTEM.io.filereaders.read_mib.manageHeader(fname)

	Get necessary information from the header of the .mib file.
:param fname: Filename for header file.
:type fname: str

	Returns:

	hdr – (DataOffset,NChips,PixelDepthInFile,sensorLayout,Timestamp,shuttertime,bitdepth)

	Return type:

	tuple

Examples

#Output for 6bit 256*256 data:
#(768, 4, ‘R64’, ‘2x2’, ‘2019-06-14 11:46:12.607836’, 0.0002, 6)
#Output for 12bit single frame nor RAW:
#(768, 4, ‘U16’, ‘2x2’, ‘2019-06-06 11:12:42.001309’, 0.001, 12)

	
py4DSTEM.io.filereaders.read_mib.parse_hdr(fp)

	Parse information from mib file header info from _manageHeader function.
:param fp: Filepath to .mib file.
:type fp: str

	Returns:

	hdr_info – Dictionary containing header info extracted from .mib file.
The entries of the dictionary are as follows:
‘width’: int

pixels, detector number of pixels in x direction,

	’height’: int
	pixels detector number of pixels in y direction,

	’Assembly Size’: str
	configuration of the detector chips, e.g. ‘2x2’ for quad,

	’offset’: int
	number of characters in the header before the first frame starts,

	’data-type’: str
	always ‘unsigned’,

	’data-length’: str
	identifying dtype,

	’Counter Depth (number)’: int
	counter bit depth,

	’raw’: str
	regular binary ‘MIB’ or raw binary ‘R64’,

	’byte-order’: str
	always ‘dont-care’,

	’record-by’: str
	’image’ or ‘vector’ - only ‘image’ encountered,

	’title’: str
	path of the mib file without extension, e.g. ‘/dls/e02/data/2020/cm26481-1/Merlin/testing/20200204 115306/test’,

	’date’: str
	date created, e.g. ‘20200204’,

	’time’: str
	time created, e.g. ‘11:53:32.295336’,

	’data offset’: int
	number of characters at the header.

	Return type:

	dict

	
py4DSTEM.io.filereaders.read_mib.get_mib_memmap(fp, mmap_mode='r')

	Reads the binary mib file into a numpy memmap object and returns as dask array object.
:param fp: MIB file name / path
:type fp: str
:param mmap_mode: memmpap read mode - default is ‘r’
:type mmap_mode: str

	Returns:

	data_da – data as a dask array object

	Return type:

	dask array

	
py4DSTEM.io.filereaders.read_mib.get_mib_depth(hdr_info, fp)

	Determine the total number of frames based on .mib file size.
:param hdr_info: Dictionary containing header info extracted from .mib file.
:type hdr_info: dict
:param fp: Path to .mib file.
:type fp: filepath

	Returns:

	depth – Number of frames in the stack

	Return type:

	int

	
py4DSTEM.io.filereaders.read_mib.get_hdr_bits(hdr_info)

	Gets the number of character bits for the header for each frame given the data type.
:param hdr_info: output of the parse_hdr function
:type hdr_info: dict

	Returns:

	hdr_bits – number of characters in the header

	Return type:

	int

google_drive_downloader

	
py4DSTEM.io.google_drive_downloader.gdrive_download(id_, destination=None, overwrite=False, filename=None, verbose=True)

	Downloads a file or collection of files from google drive.

	Parameters:

	
	id (str) – File ID for the desired file. May be either a key from the list
of files and collections of files accessible at get_sample_file_ids(),
or a complete url, or the portions of a google drive link specifying
it’s google file ID, i.e. for the address
https://drive.google.com/file/d/1bHv3u61Cr-y_GkdWHrJGh1lw2VKmt3UM/,
the id string ‘1bHv3u61Cr-y_GkdWHrJGh1lw2VKmt3UM’.

	destination (None or str) – The location files are downloaded to. If a collection of files has been
specified, creates a new directory at the specified destination and
downloads the collection there. If None, downloads to the current
working directory. Otherwise must be a string or Path pointint to
a valid location on the filesystem.

	overwrite (bool) – Turns overwrite protection on/off.

	filename (None or str) – Used only if id_ is a url or gdrive id. In these cases, specifies
the name of the output file. If left as None, saves to
‘gdrivedownload.file’. If id_ is a key from the sample file id list,
this parameter is ignored.

	verbose (bool) – Toggles verbose output

importfile

	
py4DSTEM.io.importfile.import_file(filepath: str | Path, mem: str | None = 'RAM', binfactor: int | None = 1, filetype: str | None = None, **kwargs)

	Reader for non-native file formats.
Parses the filetype, and calls the appropriate reader.
Supports Gatan DM3/4, some EMPAD file versions, Gatan K2 bin/gtg, and mib
formats.

	Parameters:

	
	filepath (str or Path) – Path to the file.

	mem (str) – Must be “RAM” or “MEMMAP”. Specifies how the data is
loaded; “RAM” transfer the data from storage to RAM, while “MEMMAP”
leaves the data in storage and creates a memory map which points to
the diffraction patterns, allowing them to be retrieved individually
from storage.

	binfactor (int) – Diffraction space binning factor for bin-on-load.

	filetype (str) – Used to override automatic filetype detection.
options include “dm”, “empad”, “gatan_K2_bin”, “mib”, “arina”, “abTEM”

	**kwargs – any additional kwargs are passed to the downstream reader -
refer to the individual filetype reader function call signatures
and docstrings for more details.

	Returns:

	(DataCube or Array) returns a DataCube if 4D data is found, otherwise
returns an Array

legacy

This is the h5py package, a Python interface to the HDF5
scientific data format.

	
py4DSTEM.io.legacy.read_legacy_12.read_legacy12(filepath, **kwargs)

	File reader for older legacy py4DSTEM (v<0.13) formated HDF5 files.

Different file versions Precise behavior is
detemined by which arguments are passed – see below.

	Parameters:

	
	filepath (str or pathlib.Path) – When passed a filepath only, this function checks
if the path points to a valid py4DSTEM file, then prints its contents to
screen.

	data_id (int/str/list, optional) – Specifies which data to load. Use integers to
specify the data index, or strings to specify data names. A list or tuple
returns a list of DataObjects. Returns the specified data.

	topgroup (str, optional) – Stricty, a py4DSTEM file is considered to be everything
inside a toplevel subdirectory within the HDF5 file, so that if desired one
can place many py4DSTEM files inside a single H5. In this case, when loading
data, the topgroup argument is passed to indicate which py4DSTEM file to
load. If an H5 containing multiple py4DSTEM files is passed without a
topgroup specified, the topgroup names are printed to screen.

	mem (str, optional) – Only used if a single DataCube is loaded. In this case,
mem specifies how the data should be stored; must be “RAM” or “MEMMAP”. See
docstring for py4DSTEM.file.io.read. Default is “RAM”.

	binfactor (int, optional) – Only used if a single DataCube is loaded. In this
case, a binfactor of > 1 causes the data to be binned by this amount as it’s
loaded.

	dtype (dtype, optional) – Used when binning data, ignored otherwise. Defaults to
whatever the type of the raw data is, to avoid enlarging data size. May be
useful to avoid ‘wraparound’ errors.

	Returns:

	The output depends on usage:

	If no input arguments with return values (i.e. data_id or metadata) are
passed, nothing is returned.

	Otherwise, a single DataObject or list of DataObjects are returned, based
on the value of the argument data_id.

	Return type:

	(variable)

	
py4DSTEM.io.legacy.read_legacy_13.read_legacy13(filepath, root: str | None = None, tree: bool | str | None = True)

	File reader for legacy py4DSTEM (v=0.13.x) formated HDF5 files.

	Parameters:

	
	filepath (str or Path) – the file path

	root (str) – the path to the data group in the HDF5 file
to read from. To examine an HDF5 file written by py4DSTEM
in order to determine this path, call
py4DSTEM.print_h5_tree(filepath). If left unspecified,
looks in the file and if it finds a single top-level
object, loads it. If it finds multiple top-level objects,
prints a warning and returns a list of root paths to the
top-level object found.

	tree (bool or str) – indicates what data should be loaded,
relative to the root group specified above. Must be in
(True or False or noroot). If set to False, the
only the data in the root group is loaded, plus any
associated calibrations. If set to True, loads the root
group, and all other data groups nested underneath it
in the file tree. If set to ‘noroot’, loads all other
data groups nested under the root group in the file tree,
but does not load the data inside the root group (allowing,
e.g., loading all the data nested under a DataCube13 without
loading the whole datacube).

	Returns:

	(the data)

	
py4DSTEM.io.legacy.read_legacy_13.print_v13h5_tree(filepath, show_metadata=False)

	Prints the contents of an h5 file from a filepath.

	
py4DSTEM.io.legacy.read_legacy_13.print_v13h5pyFile_tree(f, tablevel=0, linelevels=[], show_metadata=False)

	Prints the contents of an h5 file from an open h5py File instance.

	
py4DSTEM.io.legacy.read_utils.get_py4DSTEM_topgroups(filepath)

	Returns a list of toplevel groups in an HDF5 file which are valid py4DSTEM file trees.

	
py4DSTEM.io.legacy.read_utils.is_py4DSTEM_version13(filepath)

	Returns True for data written by a py4DSTEM v0.13.x release.

	
py4DSTEM.io.legacy.read_utils.is_py4DSTEM_file(filepath)

	Returns True iff filepath points to a py4DSTEM formatted (EMD type 2) file.

	
py4DSTEM.io.legacy.read_utils.get_py4DSTEM_version(filepath, topgroup='4DSTEM_experiment')

	Returns the version (major,minor,release) of a py4DSTEM file.

	
py4DSTEM.io.legacy.read_utils.get_UUID(filepath, topgroup='4DSTEM_experiment')

	Returns the UUID of a py4DSTEM file, or if unavailable returns -1.

	
py4DSTEM.io.legacy.read_utils.version_is_geq(current, minimum)

	Returns True iff current version (major,minor,release) is greater than or equal to minimum.”

	
py4DSTEM.io.legacy.read_utils.get_N_dataobjects(filepath, topgroup='4DSTEM_experiment')

	Returns a 7-tuple of ints with the numbers of: DataCubes, CountedDataCubes,
DiffractionSlices, RealSlices, PointLists, PointListArrays, total DataObjects.

parsefiletype

preprocess

Table of Contents

	preprocess

	darkreference

	electroncount

	preprocess

	radialbkgrd

	utils

darkreference

	
py4DSTEM.preprocess.darkreference.get_bksbtr_DP(datacube, darkref, Rx, Ry)

	Returns a background subtracted diffraction pattern.

	Parameters:

	
	datacube (DataCube) – data to background subtract

	darkref (ndarray) – dark reference. must have shape (datacube.Q_Nx, datacube.Q_Ny)

	Rx (int) – the scan position of the diffraction pattern of interest

	Ry (int) – the scan position of the diffraction pattern of interest

	Returns:

	(ndarray) the background subtracted diffraction pattern

	
py4DSTEM.preprocess.darkreference.get_darkreference(datacube, N_frames, width_x=0, width_y=0, side_x='end', side_y='end')

	Gets a dark reference image.

Select N_frames random frames (DPs) from datacube. Find streaking noise in the
horizontal and vertical directions, by finding the average values along a thin strip
of width_x/width_y pixels along the detector edges. Which edges are used is
controlled by side_x/side_y, which must be ‘start’ or ‘end’. Streaks along only one
direction can be used by setting width_x or width_y to 0, which disables correcting
streaks in this direction.

Note that the data is cast to float before computing the background, and should
similarly be cast to float before performing a subtraction. This avoids integer
clipping and wraparound errors.

	Parameters:

	
	datacube (DataCube) – data to background subtract

	N_frames (int) – number of random diffraction patterns to use

	width_x (int) – width of the ROI strip for finding streaking in x

	width_y (int) – see above

	side_x (str) – use a strip from the start or end of the array. Must be ‘start’ or
‘end’, defaults to ‘end’

	side_y (str) – see above

	Returns:

	a 2D ndarray of shape (datacube.Q_Nx, datacube.Ny) giving the
background.

	Return type:

	(ndarray)

	
py4DSTEM.preprocess.darkreference.get_background_streaks(datacube, N_frames, width, side='end', direction='x')

	Gets background streaking in either the x- or y-direction, by finding the average of
a strip of pixels along the edge of the detector over a random selection of
diffraction patterns, and returns a dark reference array.

Note that the data is cast to float before computing the background, and should
similarly be cast to float before performing a subtraction. This avoids integer
clipping and wraparound errors.

	Parameters:

	
	datacube (DataCube) – data to background subtract

	N_frames (int) – number of random frames to use

	width (int) – width of the ROI strip for background identification

	side (str, optional) – use a strip from the start or end of the array. Must be
‘start’ or ‘end’, defaults to ‘end’

	directions (str) – the direction of background streaks to find. Must be either
‘x’ or ‘y’ defaults to ‘x’

	Returns:

	a 2D ndarray of shape (datacube.Q_Nx,datacube.Q_Ny), giving the
the x- or y-direction background streaking.

	Return type:

	(ndarray)

	
py4DSTEM.preprocess.darkreference.get_background_streaks_x(datacube, width, N_frames, side='start')

	Gets background streaking, by finding the average of a strip of pixels along the
y-edge of the detector over a random selection of diffraction patterns.

See docstring for get_background_streaks() for more info.

	
py4DSTEM.preprocess.darkreference.get_background_streaks_y(datacube, N_frames, width, side='start')

	Gets background streaking, by finding the average of a strip of pixels along the
x-edge of the detector over a random selection of diffraction patterns.

See docstring for get_background_streaks_1D() for more info.

electroncount

	
py4DSTEM.preprocess.electroncount.electron_count(datacube, darkreference, Nsamples=40, thresh_bkgrnd_Nsigma=4, thresh_xray_Nsigma=10, binfactor=1, sub_pixel=True, output='pointlist')

	Performs electron counting.

The algorithm is as follows:
From a random sampling of frames, calculate an x-ray and background threshold value.
In each frame, subtract the dark reference, then apply the two thresholds. Find all
local maxima with respect to the nearest neighbor pixels. These are considered
electron strike events.

Thresholds are specified in units of standard deviations, either of a gaussian fit to
the histogram background noise (for thresh_bkgrnd) or of the histogram itself (for
thresh_xray). The background (lower) threshold is more important; we will always be
missing some real electron counts and incorrectly counting some noise as electron
strikes - this threshold controls their relative balance. The x-ray threshold may be
set fairly high.

	Parameters:

	
	datacube – a 4D numpy.ndarray pointing to the datacube. Note: the R/Q axes are
flipped with respect to py4DSTEM DataCube objects

	darkreference – a 2D numpy.ndarray with the dark reference

	Nsamples – the number of frames to use in dark reference and threshold
calculation.

	thresh_bkgrnd_Nsigma – the background threshold is
mean(guassian fit) + (this #)*std(gaussian fit)
where the gaussian fit is to the background noise.

	thresh_xray_Nsigma – the X-ray threshold is
mean(hist) +/- (this #)*std(hist)
where hist is the histogram of all pixel values in the Nsamples random frames

	binfactor – the binnning factor

	sub_pixel (bool) – controls whether subpixel refinement is performed

	output (str) – controls output format; must be ‘datacube’ or ‘pointlist’

	Returns:

	(variable) if output==’pointlist’, returns a PointListArray of all electron
counts in each frame. If output==’datacube’, returns a 4D array of bools, with
True indicating electron strikes

	
py4DSTEM.preprocess.electroncount.electron_count_GPU(datacube, darkreference, Nsamples=40, thresh_bkgrnd_Nsigma=4, thresh_xray_Nsigma=10, binfactor=1, sub_pixel=True, output='pointlist')

	Performs electron counting on the GPU.

Uses pytorch to interface between numpy and cuda. Requires cuda and pytorch.
This function expects datacube to be a np.memmap object.
See electron_count() for additional documentation.

	
py4DSTEM.preprocess.electroncount.calculate_thresholds(datacube, darkreference, Nsamples=20, thresh_bkgrnd_Nsigma=4, thresh_xray_Nsigma=10, return_params=False)

	Calculate the upper and lower thresholds for thresholding what to register as
an electron count.

Both thresholds are determined from the histogram of detector pixel values summed
over Nsamples frames. The thresholds are set to:

thresh_xray_Nsigma = mean(histogram) + thresh_upper * std(histogram)
thresh_bkgrnd_N_sigma = mean(guassian fit) + thresh_lower * std(gaussian fit)

For more info, see the electron_count docstring.

	Parameters:

	
	datacube – a 4D numpy.ndarrau pointing to the datacube

	darkreference – a 2D numpy.ndarray with the dark reference

	Nsamples – the number of frames to use in dark reference and threshold
calculation.

	thresh_bkgrnd_Nsigma – the background threshold is
mean(guassian fit) + (this #)*std(gaussian fit)
where the gaussian fit is to the background noise.

	thresh_xray_Nsigma – the X-ray threshold is
mean(hist) + (this #)*std(hist)
where hist is the histogram of all pixel values in the Nsamples random frames

	return_params – bool, if True return n,hist of the histogram and popt of the
gaussian fit

	Returns:

	A 5-tuple containing:

	thresh_bkgrnd: the background threshold

	thresh_xray: the X-ray threshold

	n: returned iff return_params==True. The histogram values

	hist: returned iff return_params==True. The histogram bin edges

	popt: returned iff return_params==True. The fit gaussian parameters,
(A, mu, sigma).

	Return type:

	(5-tuple)

	
py4DSTEM.preprocess.electroncount.torch_bin(array, device, factor=2)

	Bin data on the GPU using torch.

	Parameters:

	
	array – a 2D numpy array

	device – a torch device class instance

	factor (int) – the binning factor

	Returns:

	the binned array

	Return type:

	(array)

	
py4DSTEM.preprocess.electroncount.counted_datacube_to_pointlistarray(counted_datacube, subpixel=False)

	Converts an electron counted datacube to PointListArray.

	Parameters:

	
	counted_datacube – a 4D array of bools, with true indicating an electron strike.

	subpixel (bool) – controls if subpixel electron strike positions are expected

	Returns:

	a PointListArray of electron strike events

	Return type:

	(PointListArray)

	
py4DSTEM.preprocess.electroncount.counted_pointlistarray_to_datacube(counted_pointlistarray, shape, subpixel=False)

	Converts an electron counted PointListArray to a datacube.

	Parameters:

	
	counted_pointlistarray (PointListArray) – a PointListArray of electron strike
events

	shape (4-tuple) – a length 4 tuple of ints containing (R_Nx,R_Ny,Q_Nx,Q_Ny)

	subpixel (bool) – controls if subpixel electron strike positions are expected

	Returns:

	a 4D array of bools, with true indicating an electron strike.

	Return type:

	(4D array of bools)

preprocess

	
py4DSTEM.preprocess.preprocess.set_scan_shape(datacube, R_Nx, R_Ny)

	Reshape the data given the real space scan shape.

	
py4DSTEM.preprocess.preprocess.swap_RQ(datacube)

	Swaps real and reciprocal space coordinates, so that if

>>> datacube.data.shape
(Rx,Ry,Qx,Qy)

Then

>>> swap_RQ(datacube).data.shape
(Qx,Qy,Rx,Ry)

	
py4DSTEM.preprocess.preprocess.swap_Rxy(datacube)

	Swaps real space x and y coordinates, so that if

>>> datacube.data.shape
(Ry,Rx,Qx,Qy)

Then

>>> swap_Rxy(datacube).data.shape
(Rx,Ry,Qx,Qy)

	
py4DSTEM.preprocess.preprocess.swap_Qxy(datacube)

	Swaps reciprocal space x and y coordinates, so that if

>>> datacube.data.shape
(Rx,Ry,Qy,Qx)

Then

>>> swap_Qxy(datacube).data.shape
(Rx,Ry,Qx,Qy)

	
py4DSTEM.preprocess.preprocess.bin_data_diffraction(datacube, bin_factor, dtype=None)

	Performs diffraction space binning of data by bin_factor.

	Parameters:

	
	N (int) – The binning factor

	dtype (a datatype (optional)) – Specify the datatype for the output. If not passed, the datatype
is left unchanged

	
py4DSTEM.preprocess.preprocess.bin_data_mmap(datacube, bin_factor, dtype=<class 'numpy.float32'>)

	Performs diffraction space binning of data by bin_factor.

	
py4DSTEM.preprocess.preprocess.bin_data_real(datacube, bin_factor)

	Performs diffraction space binning of data by bin_factor.

	
py4DSTEM.preprocess.preprocess.thin_data_real(datacube, thinning_factor)

	Reduces data size by a factor of thinning_factor`^2 by skipping every `thinning_factor beam positions in both x and y.

	
py4DSTEM.preprocess.preprocess.filter_hot_pixels(datacube, thresh, ind_compare=1, return_mask=False)

	This function performs pixel filtering to remove hot / bright pixels.
A mean diffraction pattern is calculated, then a moving local ordering filter
is applied to it, finding and sorting the intensities of the 21 pixels nearest
each pixel (where 21 = (the pixel itself) + (nearest neighbors) + (next
nearest neighbors) = (1) + (8) + (12) = 21; the next nearest neighbors
exclude the corners of the NNN square of pixels). This filter then returns
a single value at each pixel given by the N’th highest value of these 21
sorted values, where N is specified by ind_compare. ind_compare=0
specifies the highest intensity, =1 is the second hightest, etc. Next, a mask
is generated which is True for all pixels which are least a value thresh
higher than the local ordering filter output. Thus for the default
ind_compare value of 1, the mask will be True wherever the mean diffraction
pattern is higher than the second brightest pixel in it’s local window by
at least a value of thresh. Finally, we loop through all diffraction
images, and any pixels defined by mask are replaced by their 3x3 local
median.

	Parameters:

	
	datacube (DataCube) – The 4D atacube

	thresh (float) – Threshold for replacing hot pixels, if pixel value minus local ordering
filter exceeds it.

	ind_compare (int) – Which median filter value to compare against. 0 = brightest pixel,
1 = next brightest, etc.

	return_mask (bool) – If True, returns the filter mask

	Returns:

	
	datacube (Datacube)

	mask (bool) – (optional) the bad pixel mask

	
py4DSTEM.preprocess.preprocess.datacube_diffraction_shift(datacube, xshifts, yshifts, periodic=True, bilinear=False)

	This function shifts each 2D diffraction image by the values defined by
(xshifts,yshifts). The shift values can be scalars (same shift for all
images) or arrays with the same dimensions as the probe positions in
datacube.

	Parameters:

	
	datacube (DataCube) – py4DSTEM DataCube

	xshifts (float) – Array or scalar value for the x dim shifts

	yshifts (float) – Array or scalar value for the y dim shifts

	periodic (bool) – Flag for periodic boundary conditions. If set to false, boundaries are assumed to be periodic.

	bilinear – Flag for bilinear image shifts. If set to False, Fourier shifting is used.

	
py4DSTEM.preprocess.preprocess.resample_data_diffraction(datacube, resampling_factor=None, output_size=None, method='bilinear')

	Performs diffraction space resampling of data by resampling_factor or to match output_size.

	
py4DSTEM.preprocess.preprocess.pad_data_diffraction(datacube, pad_factor=None, output_size=None)

	Performs diffraction space padding of data by pad_factor or to match output_size.

radialbkgrd

Functions for generating radially averaged backgrounds

	
py4DSTEM.preprocess.radialbkgrd.get_1D_polar_background(data, p_ellipse, center=None, maskUpdateIter=3, min_relative_threshold=4, smoothing=False, smoothingWindowSize=3, smoothingPolyOrder=4, smoothing_log=True, min_background_value=0.001, return_polararr=False)

	Gets the median polar background for a diffraction pattern

	Parameters:

	
	data (ndarray) – the data for which to find the polar eliptical background,
usually a diffraction pattern

	p_ellipse (5-tuple) – the ellipse parameters (qx0,qy0,a,b,theta)

	center (2-tuple or None) – if None, the center point from p_ellipse is used. Otherwise,
the center point in p_ellipse is ignored, and this argument
is used as (qx0,qy0) instead.

	maskUpdate_iter (integer) –

	min_relative_threshold (float) –

	smoothing (bool) – if true, applies a Savitzky-Golay smoothing filter

	smoothingWindowSize (integer) – size of the smoothing window, must be odd number

	smoothingPolyOrder (number) – order of the polynomial smoothing to be applied

	smoothing_log (bool) – if true log smoothing is performed

	min_background_value (float) – if log smoothing is true, a zero value will be replaced with a
small nonzero float

	return_polar_arr (bool) – if True the polar transform with the masked high intensity peaks
will be returned

	Returns:

	
	background1D: 1D polar elliptical background

	r_bins: the elliptically transformed radius associated with
background1D

	polarData (optional): the masked polar transform from which the
background is computed, returned iff return_polar_arr==True

	Return type:

	2- or 3-tuple of ndarrays

	
py4DSTEM.preprocess.radialbkgrd.get_2D_polar_background(data, background1D, r_bins, p_ellipse, center=None)

	Gets 2D polar elliptical background from linear 1D background

	Parameters:

	
	data (ndarray) – the data for which to find the polar eliptical background,
usually a diffraction pattern

	background1D (ndarray) – a vector representing the radial elliptical background

	r_bins (ndarray) – a vector of the elliptically transformed radius associated with
background1D

	p_ellipse (5-tuple) – the ellipse parameters (qx0,qy0,a,b,theta)

	center (2-tuple or None) – if None, the center point from p_ellipse is used. Otherwise,
the center point in p_ellipse is ignored, and this argument
is used as (qx0,qy0) instead.

	Returns:

	2D polar elliptical median background image

	Return type:

	ndarray

utils

	
py4DSTEM.preprocess.utils.bin2D(array, factor, dtype=<class 'numpy.float64'>)

	Bin a 2D ndarray by binfactor.

	Parameters:

	
	array (2D numpy array) –

	factor (int) – the binning factor

	dtype (numpy dtype) – datatype for binned array. default is numpy default for
np.zeros()

	Returns:

	the binned array

	
py4DSTEM.preprocess.utils.make_Fourier_coords2D(Nx, Ny, pixelSize=1)

	
	Generates Fourier coordinates for a (Nx,Ny)-shaped 2D array.
	Specifying the pixelSize argument sets a unit size.

	
py4DSTEM.preprocess.utils.get_shifted_ar(ar, xshift, yshift, periodic=True, bilinear=False, device='cpu')

	
Shifts array ar by the shift vector (xshift,yshift), using the either

the Fourier shift theorem (i.e. with sinc interpolation), or bilinear
resampling. Boundary conditions can be periodic or not.

	Parameters:

	
	ar (float) – input array

	xshift (float) – shift along axis 0 (x) in pixels

	yshift (float) – shift along axis 1 (y) in pixels

	periodic (bool) – flag for periodic boundary conditions

	bilinear (bool) – flag for bilinear image shifts

	device – calculation device will be perfomed on. Must be ‘cpu’ or ‘gpu’

	
py4DSTEM.preprocess.utils.get_maxima_2D(ar, subpixel='poly', upsample_factor=16, sigma=0, minAbsoluteIntensity=0, minRelativeIntensity=0, relativeToPeak=0, minSpacing=0, edgeBoundary=1, maxNumPeaks=1, _ar_FT=None)

	Finds the maximal points of a 2D array.

	Parameters:

	
	ar (array) –

	subpixel (str) – specifies the subpixel resolution algorithm to use.
must be in (‘pixel’,’poly’,’multicorr’), which correspond
to pixel resolution, subpixel resolution by fitting a
parabola, and subpixel resultion by Fourier upsampling.

	upsample_factor – the upsampling factor for the ‘multicorr’
algorithm

	sigma – if >0, applies a gaussian filter

	maxNumPeaks – the maximum number of maxima to return

	minAbsoluteIntensity – minSpacing, edgeBoundary, maxNumPeaks: filtering applied
after maximum detection and before subpixel refinement

	minRelativeIntensity – minSpacing, edgeBoundary, maxNumPeaks: filtering applied
after maximum detection and before subpixel refinement

	relativeToPeak – minSpacing, edgeBoundary, maxNumPeaks: filtering applied
after maximum detection and before subpixel refinement

	:paramminSpacing, edgeBoundary, maxNumPeaks: filtering applied
	after maximum detection and before subpixel refinement

	Parameters:

	_ar_FT (complex array) – None, uses this argument as the Fourier transform of ar,
instead of recomputing it

	Returns:

	a structured array with fields ‘x’,’y’,’intensity’

	
py4DSTEM.preprocess.utils.filter_2D_maxima(maxima, minAbsoluteIntensity=0, minRelativeIntensity=0, relativeToPeak=0, minSpacing=0, edgeBoundary=1, maxNumPeaks=1)

	
	Parameters:

	
	maxima – a numpy structured array with fields ‘x’, ‘y’, ‘intensity’

	minAbsoluteIntensity – delete counts with intensity below this value

	minRelativeIntensity – delete counts with intensity below this value times
the intensity of the i’th peak, where i is given by relativeToPeak

	relativeToPeak – see above

	minSpacing – if two peaks are within this euclidean distance from one
another, delete the less intense of the two

	edgeBoundary – delete peaks within this distance of the image edge

	maxNumPeaks – an integer. defaults to 1

	Returns:

	a numpy structured array with fields ‘x’, ‘y’, ‘intensity’

	
py4DSTEM.preprocess.utils.linear_interpolation_2D(ar, x, y)

	Calculates the 2D linear interpolation of array ar at position x,y using the four
nearest array elements.

process

Table of Contents

	process

	calibration

	classification

	diffraction

	diskdetection

	fit

	latticevectors

	phase

	probe

	rdf

	utils

	virtualdiffraction

	virtualimage

	wholepatternfit

calibration

Functions related to elliptical calibration, such as fitting elliptical
distortions.

The user-facing representation of ellipses is in terms of the following 5
:param x0:
:param y0 the center of the ellipse:
:param a the semimajor axis length:
:param b the semiminor axis length:
:param theta the: to the x-axis, in radians
:type theta the: positive, right handed

More details about the elliptical parameterization used can be found in
the module docstring for process/utils/elliptical_coords.py.

	
py4DSTEM.process.calibration.ellipse.fit_ellipse_1D(ar, center=None, fitradii=None, mask=None)

	For a 2d array ar, fits a 1d elliptical curve to the data inside an annulus centered
at center with inner and outer radii at fitradii. The data to fit make optionally
be additionally masked with the boolean array mask. See module docstring for more info.

	Parameters:

	
	ar (ndarray) – array containing the data to fit

	center (2-tuple of floats) – the center (x0,y0) of the annular fitting region

	fitradii (2-tuple of floats) – inner and outer radii (ri,ro) of the fit region

	mask (ar-shaped ndarray of bools) – ignore data wherever mask==True

	Returns:

	
	A 5-tuple containing the ellipse parameters:
	
	x0: the center x-position

	y0: the center y-position

	a: the semimajor axis length

	b: the semiminor axis length

	theta: the tilt of the ellipse semimajor axis with respect to the
x-axis, in radians

	Return type:

	(5-tuple of floats)

	
py4DSTEM.process.calibration.ellipse.ellipse_err(p, x, y, val)

	For a point (x,y) in a 2d cartesian space, and a function taking the value
val at point (x,y), and some 1d ellipse in this space given by

A(x-x0)^2 + B(x-x0)(y-y0) + C(y-y0)^2 = 1

this function computes the error associated with the function’s value at (x,y)
given by its deviation from the ellipse times val.

Note that this function is for internal use, and uses ellipse parameters p
given in canonical form (x0,y0,A,B,C), which is different from the ellipse
parameterization used in all the user-facing functions, for reasons of
numerical stability.

	
py4DSTEM.process.calibration.ellipse.fit_ellipse_amorphous_ring(data, center, fitradii, p0=None, mask=None)

	Fit the amorphous halo of a diffraction pattern, including any elliptical distortion.

The fit function is:

f(x,y; I0,I1,sigma0,sigma1,sigma2,c_bkgd,x0,y0,A,B,C) =
 Norm(r; I0,sigma0,0) +
 Norm(r; I1,sigma1,R)*Theta(r-R)
 Norm(r; I1,sigma2,R)*Theta(R-r) + c_bkgd

where

	(x,y) are cartesian coordinates,

	r is the radial coordinate,

	(I0,I1,sigma0,sigma1,sigma2,c_bkgd,x0,y0,R,B,C) are parameters,

	Norm(x;I,s,u) is a gaussian in the variable x with maximum amplitude I,
standard deviation s, and mean u

	Theta(x) is a Heavyside step function

	R is the radial center of the double sided gaussian, derived from (A,B,C)
and set to the mean of the semiaxis lengths

The function thus contains a pair of gaussian-shaped peaks along the radial
direction of a polar-elliptical parametrization of a 2D plane. The first gaussian is
centered at the origin. The second gaussian is centered about some finite R, and is
‘two-faced’: it’s comprised of two half-gaussians of different standard deviations,
stitched together at their mean value of R. This Janus (two-faced ;p) gaussian thus
comprises an elliptical ring with different inner and outer widths.

The parameters of the fit function are

	I0: the intensity of the first gaussian function

	I1: the intensity of the Janus gaussian

	sigma0: std of first gaussian

	sigma1: inner std of Janus gaussian

	sigma2: outer std of Janus gaussian

	c_bkgd: a constant offset

	x0,y0: the origin

	A,B,C: The ellipse parameters, in the form Ax^2 + Bxy + Cy^2 = 1

	Parameters:

	
	data (2d array) – the data

	center (2-tuple of numbers) – the center (x0,y0)

	fitradii (2-tuple of numbers) – the inner and outer radii of the fitting annulus

	p0 (11-tuple) – initial guess parameters. If p0 is None, the function will compute
a guess at all parameters. If p0 is a 11-tuple it must be populated by some
mix of numbers and None; any parameters which are set to None will be guessed
by the function. The parameters are the 11 parameters of the fit function
described above, p0 = (I0,I1,sigma0,sigma1,sigma2,c_bkgd,x0,y0,A,B,C).
Note that x0,y0 are redundant; their guess values are the x0,y0 values passed
to the main function, but if they are passed as elements of p0 these will
take precendence.

	mask (2d array of bools) – only fit to datapoints where mask is True

	Returns:

	Returns a 2-tuple.

The first element is the ellipse parameters need to elliptically parametrize
diffraction space, and is itself a 5-tuple:

	x0: x center

	y0: y center,

	a: the semimajor axis length

	b: the semiminor axis length

	theta: tilt of a-axis w.r.t x-axis, in radians

The second element is the full set of fit parameters to the double sided gaussian
function, described above, and is an 11-tuple

	Return type:

	(2-tuple comprised of a 5-tuple and an 11-tuple)

	
py4DSTEM.process.calibration.ellipse.double_sided_gaussian_fiterr(p, x, y, val)

	Returns the fit error associated with a point (x,y) with value val, given parameters p.

	
py4DSTEM.process.calibration.ellipse.double_sided_gaussian(p, x, y)

	Return the value of the double-sided gaussian function at point (x,y) given
parameters p, described in detail in the fit_ellipse_amorphous_ring docstring.

	
py4DSTEM.process.calibration.ellipse.constrain_degenerate_ellipse(data, p_ellipse, r_inner, r_outer, phi_known, fitrad=6)

	When fitting an ellipse to data containing 4 diffraction spots in a narrow annulus
about the central beam, the answer is degenerate: an infinite number of ellipses
correctly fit this data. Starting from one ellipse in the degenerate family of
ellipses, this function selects the ellipse which will yield a final angle of
phi_known between a pair of the diffraction peaks after performing elliptical
distortion correction.

Note that there are two possible angles which phi_known might refer to, because the
angle of interest is well defined up to a complementary angle. This function is
written such that phi_known should be the smaller of these two angles.

	Parameters:

	
	data (ndarray) –

	p_ellipse (5-tuple) – the ellipse parameters (x0,y0,a,b,theta)

	r_inner (float) – the fitting annulus inner radius

	r_outer (float) – the fitting annulus outer radius

	phi_known (float) – the known angle between a pair of diffraction peaks, in
radians

	fitrad (float) – the region about the fixed data point used to refine its position

	Returns:

	A 2-tuple containing:

	a_constrained: (float) the first semiaxis of the selected ellipse

	b_constrained: (float) the second semiaxis of the selected ellipse

	Return type:

	(2-tuple)

	
py4DSTEM.process.calibration.origin.fit_origin(data, mask=None, fitfunction='plane', returnfitp=False, robust=False, robust_steps=3, robust_thresh=2)

	Fits the position of the origin of diffraction space to a plane or parabola,
given some 2D arrays (qx0_meas,qy0_meas) of measured center positions,
optionally masked by the Boolean array mask. The 2D data arrays may be
passed directly as a 2-tuple to the arg data, or, if data is either a
DataCube or Calibration instance, they will be retreived automatically. If a
DataCube or Calibration are passed, fitted origin and residuals are stored
there directly.

	Parameters:

	
	data (2-tuple of 2d arrays) – the measured origin position (qx0,qy0)

	mask (2b boolean array, optional) – ignore points where mask=False

	fitfunction (str, optional) – must be ‘plane’ or ‘parabola’ or ‘bezier_two’
or ‘constant’

	returnfitp (bool, optional) – if True, returns the fit parameters

	robust (bool, optional) – If set to True, fit will be repeated with outliers
removed.

	robust_steps (int, optional) – Optional parameter. Number of robust iterations
performed after initial fit.

	robust_thresh (int, optional) – Threshold for including points, in units of
root-mean-square (standard deviations) error of the predicted values after
fitting.

	Returns:

	Return value depends on returnfitp. If returnfitp==False
(default), returns a 4-tuple containing:

	qx0_fit: (ndarray) the fit origin x-position

	qy0_fit: (ndarray) the fit origin y-position

	qx0_residuals: (ndarray) the x-position fit residuals

	qy0_residuals: (ndarray) the y-position fit residuals

If returnfitp==True, returns a 2-tuple. The first element is the 4-tuple
described above. The second element is a 4-tuple (popt_x,popt_y,pcov_x,pcov_y)
giving fit parameters and covariance matrices with respect to the chosen
fitting function.

	Return type:

	(variable)

	
py4DSTEM.process.calibration.origin.get_origin_single_dp(dp, r, rscale=1.2)

	Find the origin for a single diffraction pattern, assuming (a) there is no beam stop,
and (b) the center beam contains the highest intensity.

	Parameters:

	
	dp (ndarray) – the diffraction pattern

	r (number) – the approximate disk radius

	rscale (number) – factor by which r is scaled to generate a mask

	Returns:

	The origin

	Return type:

	(2-tuple)

	
py4DSTEM.process.calibration.origin.get_origin(datacube, r=None, rscale=1.2, dp_max=None, mask=None, fast_center=False)

	Find the origin for all diffraction patterns in a datacube, assuming (a) there is no
beam stop, and (b) the center beam contains the highest intensity. Stores the origin
positions in the Calibration associated with datacube, and optionally also returns
them.

	Parameters:

	
	datacube (DataCube) – the data

	r (number or None) – the approximate radius of the center disk. If None (default),
tries to compute r using the get_probe_size method. The data used for this
is controlled by dp_max.

	rscale (number) – expand ‘r’ by this amount to form a mask about the center disk
when taking its center of mass

	dp_max (ndarray or None) – the diffraction pattern or dp-shaped array used to
compute the center disk radius, if r is left unspecified. Behavior depends
on type:

	if dp_max==None (default), computes and uses the maximal
diffraction pattern. Note that for a large datacube, this may be a
slow operation.

	otherwise, this should be a (Q_Nx,Q_Ny) shaped array

	mask (ndarray or None) – if not None, should be an (R_Nx,R_Ny) shaped
boolean array. Origin is found only where mask==True, and masked
arrays are returned for qx0,qy0

	fast_center – (bool)
Skip the center of mass refinement step.

	Returns:

	the origin, (x,y) at each scan position

	Return type:

	(2-tuple of (R_Nx,R_Ny)-shaped ndarrays)

	
py4DSTEM.process.calibration.origin.get_origin_single_dp_beamstop(DP: ndarray, mask: ndarray, **kwargs)

	Find the origin for a single diffraction pattern, assuming there is a beam stop.

	Parameters:

	
	DP (np array) – diffraction pattern

	mask (np array) – boolean mask which is False under the beamstop and True
in the diffraction pattern. One approach to generating this mask
is to apply a suitable threshold on the average diffraction pattern
and use binary opening/closing to remove and holes

	Returns:

	qx0, qy0 (tuple) measured center position of diffraction pattern

	
py4DSTEM.process.calibration.origin.get_origin_beamstop(datacube: DataCube, mask: ndarray, **kwargs)

	Find the origin for each diffraction pattern, assuming there is a beam stop.

	Parameters:

	
	datacube (DataCube) –

	mask (np array) – boolean mask which is False under the beamstop and True
in the diffraction pattern. One approach to generating this mask
is to apply a suitable threshold on the average diffraction pattern
and use binary opening/closing to remove any holes

	Returns:

	qx0, qy0 (tuple of np arrays) measured center position of each diffraction pattern

	
py4DSTEM.process.calibration.probe.get_probe_size(DP, thresh_lower=0.01, thresh_upper=0.99, N=100)

	Gets the center and radius of the probe in the diffraction plane.

The algorithm is as follows:
First, create a series of N binary masks, by thresholding the diffraction pattern
DP with a linspace of N thresholds from thresh_lower to thresh_upper, measured
relative to the maximum intensity in DP.
Using the area of each binary mask, calculate the radius r of a circular probe.
Because the central disk is typically very intense relative to the rest of the DP, r
should change very little over a wide range of intermediate values of the threshold.
The range in which r is trustworthy is found by taking the derivative of r(thresh)
and finding identifying where it is small. The radius is taken to be the mean of
these r values. Using the threshold corresponding to this r, a mask is created and
the CoM of the DP times this mask it taken. This is taken to be the origin x0,y0.

	Parameters:

	
	DP (2D array) – the diffraction pattern in which to find the central disk.
A position averaged, or shift-corrected and averaged, DP works best.

	thresh_lower (float, 0 to 1) – the lower limit of threshold values

	thresh_upper (float, 0 to 1) – the upper limit of threshold values

	N (int) – the number of thresholds / masks to use

	Returns:

	A 3-tuple containing:

	r: (float) the central disk radius, in pixels

	x0: (float) the x position of the central disk center

	y0: (float) the y position of the central disk center

	Return type:

	(3-tuple)

	
py4DSTEM.process.calibration.qpixelsize.get_Q_pixel_size(q_meas, q_known, units='A')

	Computes the size of the Q-space pixels.

	Parameters:

	
	q_meas (number) – a measured distance in q-space in pixels

	q_known (number) – the corresponding known real space distance

	unit (str) – the units of the real space value of q_known

	Returns:

	the detector pixel size, the associated units

	Return type:

	(number,str)

	
py4DSTEM.process.calibration.qpixelsize.get_dq_from_indexed_peaks(qs, hkl, a)

	Get dq, the size of the detector pixels in the diffraction plane, in inverse length
units, using a set of measured peak distances from the optic axis, their Miller
indices, and the known unit cell size.

	Parameters:

	
	qs (array) – the measured peak positions

	hkl (list/tuple of length-3 tuples) – the Miller indices of the peak positions qs.
The length of qs and hkl must be the same. To ignore any peaks, for this
peak set (h,k,l)=(0,0,0).

	a (number) – the unit cell size

	Returns:

	A 4-tuple containing:

	dq: (number) the detector pixel size

	qs_fit: (array) the fit positions of the peaks

	hkl_fit: (list/tuple of length-3 tuples) the Miller indices of the
fit peaks

	mask: (array of bools) False wherever hkl[i]==(0,0,0)

	Return type:

	(4-tuple)

	
py4DSTEM.process.calibration.rotation.compare_QR_rotation(im_R, im_Q, QR_rotation, R_rotation=0, R_position=None, Q_position=None, R_pos_anchor='center', Q_pos_anchor='center', R_length=0.33, Q_length=0.33, R_width=0.001, Q_width=0.001, R_head_length_adjust=1, Q_head_length_adjust=1, R_head_width_adjust=1, Q_head_width_adjust=1, R_color='r', Q_color='r', figsize=(10, 5), returnfig=False)

	Visualize a rotational offset between an image in real space, e.g. a STEM
virtual image, and an image in diffraction space, e.g. a defocused CBED
shadow image of the same region, by displaying an arrow overlaid over each
of these two images with the specified QR rotation applied. The QR rotation
is defined as the counter-clockwise rotation from real space to diffraction
space, in degrees.

	Parameters:

	
	im_R (numpy array or other 2D image-like object (e.g. a VirtualImage)) – A real space image, e.g. a STEM virtual image

	im_Q (numpy array or other 2D image-like object) – A diffraction space image, e.g. a defocused CBED image

	QR_rotation (number) – The counterclockwise rotation from real space to diffraction space,
in degrees

	R_rotation (number) – The orientation of the arrow drawn in real space, in degrees

	R_position (None or 2-tuple) – The position of the anchor point for the R-space arrow. If None, defaults
to the center of the image

	Q_position (None or 2-tuple) – The position of the anchor point for the Q-space arrow. If None, defaults
to the center of the image

	R_pos_anchor ('center' or 'tail' or 'head') – The anchor point for the R-space arrow, i.e. the point being specified by
the R_position parameter

	Q_pos_anchor ('center' or 'tail' or 'head') – The anchor point for the Q-space arrow, i.e. the point being specified by
the Q_position parameter

	R_length (number or None) – The length of the R-space arrow, as a fraction of the mean size of the
image

	Q_length (number or None) – The length of the Q-space arrow, as a fraction of the mean size of the
image

	R_width (number) – The width of the R-space arrow

	Q_width (number) – The width of the R-space arrow

	R_head_length_adjust (number) – Scaling factor for the R-space arrow head length

	Q_head_length_adjust (number) – Scaling factor for the Q-space arrow head length

	R_head_width_adjust (number) – Scaling factor for the R-space arrow head width

	Q_head_width_adjust (number) – Scaling factor for the Q-space arrow head width

	R_color (color) – Color of the R-space arrow

	Q_color (color) – Color of the Q-space arrow

	figsize (2-tuple) – The figure size

	returnfig (bool) – Toggles returning the figure and axes

	
py4DSTEM.process.calibration.rotation.get_Qvector_from_Rvector(vx, vy, QR_rotation)

	For some vector (vx,vy) in real space, and some rotation QR between real and
reciprocal space, determine the corresponding orientation in diffraction space.
Returns both R and Q vectors, normalized.

	Parameters:

	
	vx (numbers) – the (x,y) components of a real space vector

	vy (numbers) – the (x,y) components of a real space vector

	QR_rotation (number) – the offset angle between real and reciprocal space.

	Specifically –

	to (the counterclockwise rotation of real space with respect) –

	degrees. (diffraction space. In) –

	Returns:

	4-tuple consisting of:

	vx_R: the x component of the normalized real space vector

	vy_R: the y component of the normalized real space vector

	vx_Q: the x component of the normalized reciprocal space vector

	vy_Q: the y component of the normalized reciprocal space vector

	Return type:

	(4-tuple)

	
py4DSTEM.process.calibration.rotation.get_Rvector_from_Qvector(vx, vy, QR_rotation)

	For some vector (vx,vy) in diffraction space, and some rotation QR between real and
reciprocal space, determine the corresponding orientation in diffraction space.
Returns both R and Q vectors, normalized.

	Parameters:

	
	vx (numbers) – the (x,y) components of a reciprocal space vector

	vy (numbers) – the (x,y) components of a reciprocal space vector

	QR_rotation (number) – the offset angle between real and reciprocal space.
Specifically, the counterclockwise rotation of real space with respect to
diffraction space. In degrees.

	Returns:

	4-tuple consisting of:

	vx_R: the x component of the normalized real space vector

	vy_R: the y component of the normalized real space vector

	vx_Q: the x component of the normalized reciprocal space vector

	vy_Q: the y component of the normalized reciprocal space vector

	Return type:

	(4-tuple)

classification

	
class py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification(braggpeaks, Qx, Qy, X_is_boolean=True, max_dist=None)

	A class for classifying 4D-STEM data based on which Bragg peaks are found at each
diffraction pattern.

A BraggVectorClassification instance enables classification using several methods; a brief
overview is provided here, with more details in each individual method’s documentation.

Initialization methods:

	__init__:
	Determine the initial classes. The approach here involves first segmenting diffraction
space, using maxima of a Bragg vector map.

get_initial_classes_by_cooccurrence:

Class refinement methods:
Each of these methods creates a new set of candidate classes, but does not yet overwrite the
old classes. This enables the new classes to be viewed and compared to the old classes before
deciding whether to accept or reject them. Thus running two of these methods in succession,
without accepting changes in between, simply discards the first set of candidate classes.

	nmf:
	Nonnegative matrix factorization (X = WH) to refine the classes. Briefly, after
constructing a matrix X which describes which Bragg peaks were observed in each
diffraction pattern, we factor X into two smaller matrices, W and H. Physically, W and H
describe a small set of classes, each of which corresponds to some subset of (or, more
strictly, weights for) the Bragg peaks and the scan positions. We additionally impose
the contraint that, on physical grounds, all the elements of X, W, and H must be
nonnegative.

	split:
	If any classes contain multiple non-contiguous segments in real space, divide these into
distinct classes.

	merge:
	If any classes contain sufficient overlap in both scan positions and BPs, merge them
into a single class.

Accepting/rejecting changes:

	accept:
	Updates classes (the W and H matrices) with the current candidate classes.

	reject:
	Discard the current candidate classes.

Class examination methods:

	get_class:
	get a single class, returning both its BP weights and scan position weights

	get_class_BPs:
	get the BP weights for a single class

	get_class_image:
	get the image, i.e. scan position weights, associated with a single class

	get_candidate_class:
	as above, for the current candidate class

	get_candidate_class_BPs:
	as above, for the current candidate class

	get_candidate_class_image:
	as above, for the current candidate class

	Parameters:

	
	braggpeaks (PointListArray) – Bragg peaks; must have coords ‘qx’ and ‘qy’

	Qx (ndarray of floats) – x-coords of the voronoi points

	Qy (ndarray of floats) – y-coords of the voronoi points

	X_is_boolean (bool) – if True, populate X with bools (BP is or is not present).
if False, populate X with floats (BP c.c. intensities)

	max_dist (None or number) – maximum distance from a given voronoi point a peak
can be and still be associated with this label

	
__init__(braggpeaks, Qx, Qy, X_is_boolean=True, max_dist=None)

	Initializes a BraggVectorClassification instance.

This method:
1. Gets integer labels for all of the detected Bragg peaks, according to which

(Qx,Qy) is closest, then generating a corresponding set of integers for each scan
position. See get_braggpeak_labels_by_scan_position() docstring for more info.

	Generates the data matrix X. See the nmf() method docstring for more info.

This method should be followed by one of the methods which populates the initial classes -
currently, either get_initial_classes_by_cooccurrence() or get_initial_classes_from_images.
These methods generate the W and H matrices – i.e. the decompositions of the X matrix in
terms of scan positions and Bragg peaks – which are necessary for any subsequent
processing.

	Parameters:

	
	braggpeaks (PointListArray) – Bragg peaks; must have coords ‘qx’ and ‘qy’

	Qx (ndarray of floats) – x-coords of the voronoi points

	Qy (ndarray of floats) – y-coords of the voronoi points

	X_is_boolean (bool) – if True, populate X with bools (BP is or is not present).
if False, populate X with floats (BP c.c. intensities)

	max_dist (None or number) – maximum distance from a given voronoi point a peak
can be and still be associated with this label

	
R_Nx

	shape of real space (x)

	
R_Ny

	shape of real space (y)

	
Qx

	x-coordinates of the voronoi points

	
Qy

	y-coordinates of the voronoi points

	
braggpeak_labels

	the sets of Bragg peaks present at each scan position

	
N_feat

	first dimension of the data matrix; the number of bragg peaks

	
N_meas

	second dimension of the data matrix; the number of scan positions

	
X

	the data matrix

	
get_initial_classes_by_cooccurrence(thresh=0.3, BP_fraction_thresh=0.1, max_iterations=200, X_is_boolean=True, n_corr_init=2)

	Populate the initial classes by finding sets of Bragg peaks that tend to co-occur
in the
same diffraction patterns.

Beginning from the sets of Bragg peaks labels for each scan position (determined
in __init__), this method gets initial classes by determining which labels are
most likely to co-occur with each other – see get_initial_classes() docstring
for more info. Then the matrices W and H are generated – see nmf() doscstring
for discussion.

	Parameters:

	
	thresh (float in [0,1]) – threshold for adding new BPs to a class

	BP_fraction_thresh (float in [0,1]) – algorithm terminates if fewer than this
fraction of the BPs have not been assigned to a class

	max_iterations (int) – algorithm terminates after this many iterations

	n_corr_init (int) – seed new classes by finding maxima of the n-point joint
probability function. Must be 2 or 3.

	
get_initial_classes_from_images(class_images)

	Populate the initial classes using a set of user-defined class images.

	Parameters:

	class_images (ndarray) – must have shape (R_Nx,R_Ny,N_c), where N_c is the
number of classes, and class_images[:,:,i] is the image of class i.

	
nmf(max_iterations=1)

	Nonnegative matrix factorization to refine the classes.

The data matrix X is factored into two smaller matrices, W and H:

X = WH

Here,

	``X``is the data matrix. It has shape (N_feat,N_meas), where N_feat is the
number of Bragg peak integer labels (i.e. len(Qx)) and N_meas is the number
of diffraction patterns (i.e. R_Nx*R_Ny). Element X[i,j] represents the
value of the i’th BP in the j’th DP. The values depend on the flag
datamatrix_is_boolean: if True, X[i,j] is 1 if this BP was present in this
DP, or 0 if not; if False, X[i,j] is the cross correlation intensity of
this BP in this DP.

	W is the class matrix. It has shape (N_feat,N_c), where N_c is the
number of classes. The i’th column vector, w_i = W[:,i], describes the
weight of each Bragg peak in the i’th class. w_i has length N_feat, and
w_i[j] describes how strongly the j’th BP is associated with the i’th
class.

	H is the coefficient matrix. It has shape (N_c,N_meas). The i’th
column vector H[:,i] describes the contribution of each class to scan
position i.

Alternatively, we can completely equivalently think of H as a class matrix,
and W as a coeffient matrix. In this picture, the i’th row vector of H,
h_i = H[i,:], describes the weight of each scan position in the i’th class.
h_i has length N_meas, and h_i[j] describes how strongly the j’th scan
position is associated with the i’th class. The row vector W[i,:] is then
a coefficient vector, which gives the contributions each of the (H) classes
to the measured values of the i’th BP. These pictures are related by a
transpose: X = WH is equivalent to X.T = (H.T)(W.T).

In nonnegative matrix factorization we impose the constrain, here on
physical grounds, that all elements of X, W, and H should be nonnegative.

The computation itself is performed using the sklearn nmf class. When this method
is called, the three relevant matrices should already be defined. This method
refines W and H, with up to max_iterations NMF steps.

	Parameters:

	max_iterations (int) – the maximum number of NMF steps to take

	
split(sigma=2, threshold_split=0.25, expand_mask=1, minimum_pixels=1)

	If any classes contain multiple non-contiguous segments in real space, divide
these regions into distinct classes.

Algorithm is as follows:
First, an image of each class is obtained from its scan position weights.
Then, the image is convolved with a gaussian of std sigma.
This is then turned into a binary mask, by thresholding with threshold_split.
Stray pixels are eliminated by performing a one pixel binary closing, then binary
opening.
The mask is then expanded by expand_mask pixels.
Finally, the contiguous regions of the resulting mask are found. These become the
new class components by scan position.

The splitting itself involves creating two classes - i.e. adding a column to W
and a row to H. The new BP classes (W columns) have exactly the same values as
the old BP class. The two new scan position classes (H rows) divide up the
non-zero entries of the old scan position class into two or more non-intersecting
subsets, each of which becomes its own new class.

	Parameters:

	
	sigma (float) – std of gaussian kernel used to smooth the class images before
thresholding and splitting.

	threshold_split (float) – used to threshold the class image to create a binary mask.

	expand_mask (int) – number of pixels by which to expand the mask before separating
into contiguous regions.

	minimum_pixels (int) – if, after splitting, a potential new class contains fewer than
this number of pixels, ignore it

	
merge(threshBPs=0.1, threshScanPosition=0.1, return_params=True)

	If any classes contain sufficient overlap in both scan positions and BPs, merge
them into a single class.

The algorithm is as follows:
First, the Pearson correlation coefficient matrix is calculated for the classes
according to both their diffraction space, Bragg peak representations (i.e. the
correlations of the columns of W) and according to their real space, scan
position representations (i.e. the correlations of the rows of H). Class pairs
whose BP correlation coefficient exceeds threshBPs and whose scan position
correlation coefficient exceed threshScanPosition are deemed ‘sufficiently
overlapped’, and are marked as merge candidates. To account for intransitivity
issues (e.g. class pairs 1/2 and 2/3 are merge candidates, but class pair 1/3 is
not), merging is then performed beginning with candidate pairs with the greatest
product of the two correlation coefficients, skipping later merge candidate pairs
if one of the two classes has already been merged.

The algorithm can be looped until no more merge candidates satisfying the
specified thresholds remain with the merge_iterative method.

The merging itself involves turning two classes into one by combining a pair of
W columns (i.e. the BP representations of the classes) and the corresponding pair
of H rows (i.e. the scan position representation of the class) into a single W
column / H row. In terms of scan positions, the new row of H is generated by
simply adding the two old H rows. In terms of Bragg peaks, the new column of W is
generated by adding the two old columns of W, while weighting each by its total
intensity in real space (i.e. the sum of its H row).

	Parameters:

	
	threshBPs (float) – the threshold for the bragg peaks correlation coefficient,
above which the two classes are considered candidates for merging

	threshScanPosition (float) – the threshold for the scan position correlation
coefficient, above which two classes are considered candidates for
merging

	return_params (bool) – if True, returns W_corr, H_corr, and merge_candidates.
Otherwise, returns nothing. Incompatible with iterative=True.

	
merge_by_class_index(i, j)

	Merge classes i and j into a single class.

Columns i and j of W pair of W (i.e. the BP representations of the classes) and
the corresponding pair of H rows (i.e. the scan position representation of the
class) are mergedinto a single W column / H row. In terms of scan positions, the
new row of H is generated by simply adding the two old H rows. In terms of Bragg
peaks, the new column of W is generated by adding the two old columns of W, while
weighting each by its total intensity in real space (i.e. the sum of its H row).

	Parameters:

	
	i (int) – index of the first class to merge

	j (int) – index of the second class to merge

	
split_by_class_index(i, sigma=2, threshold_split=0.25, expand_mask=1, minimum_pixels=1)

	If class i contains multiple non-contiguous segments in real space, divide these
regions into distinct classes.

Algorithm is as described in the docstring for self.split.

	Parameters:

	
	i (int) – index of the class to split

	sigma (float) – std of gaussian kernel used to smooth the class images before
thresholding and splitting.

	threshold_split (float) – used to threshold the class image to create a binary
mask.

	expand_mask (int) – number of pixels by which to expand the mask before
separating into contiguous regions.

	minimum_pixels (int) – if, after splitting, a potential new class contains
fewer than this number of pixels, ignore it

	
remove_class(i)

	Remove class i.

	Parameters:

	i (int) – index of the class to remove

	
merge_iterative(threshBPs=0.1, threshScanPosition=0.1)

	If any classes contain sufficient overlap in both scan positions and BPs, merge
them into a single class.

Identical to the merge method, with the addition of iterating until no new merge
pairs are found.

	Parameters:

	
	threshBPs (float) – the threshold for the bragg peaks correlation coefficient,
above which the two classes are considered candidates for merging

	threshScanPosition (float) – the threshold for the scan position correlation
coefficient, above which two classes are considered candidates for
merging

	
accept()

	Updates classes (the W and H matrices) with the current candidate classes.

	
reject()

	Discard the current candidate classes.

	
get_class(i)

	Get a single class, returning both its BP weights and scan position weights.

	Parameters:

	i (int) – the class index

	Returns:

	A 2-tuple containing:

	class_BPs: (length N_feat array of floats) the weights of the
N_feat Bragg peaks for this class

	class_image: (shape (R_Nx,R_Ny) array of floats) the weights of
each scan position in this class

	Return type:

	(2-tuple)

	
get_class_BPs(i)

	Get a single class, returning its BP weights.

	Parameters:

	i (int) – the class index

	Returns:

	the weights of the N_feat Bragg peaks for
this class

	Return type:

	(length N_feat array of floats)

	
get_class_image(i)

	Get a single class, returning its scan position weights.

	Parameters:

	i (int) – the class index

	Returns:

	the weights of each scan position in
this class

	Return type:

	(shape (R_Nx,R_Ny) array of floats)

	
get_candidate_class(i)

	Get a single candidate class, returning both its BP weights and scan position weights.

	Parameters:

	i (int) –

	Returns:

	A 2-tuple containing:

	class_BPs: (length N_feat array of floats) the weights of the
N_feat Bragg peaks for this class

	class_image: (shape (R_Nx,R_Ny) array of floats) the weights of
each scan position in this class

	Return type:

	(2-tuple)

	
get_candidate_class_BPs(i)

	Get a single candidate class, returning its BP weights.

	Accepts:
	i (int) the class index

	Returns:

	
	class_BPs (length N_feat array of floats) the weights of the N_feat Bragg peaks for
	this class

	
get_candidate_class_image(i)

	Get a single candidate class, returning its scan position weights.

	Parameters:

	i (int) – the class index

	Returns:

	the weights of each scan position in
this class

	Return type:

	(shape (R_Nx,R_Ny) array of floats)

	
py4DSTEM.process.classification.braggvectorclassification.get_braggpeak_labels_by_scan_position(braggpeaks, Qx, Qy, max_dist=None)

	For each scan position, gets a set of integers, specifying the bragg peaks at this
scan position.

From a set of positions in diffraction space (Qx,Qy), assign each detected bragg peak
in the PointListArray braggpeaks a label corresponding to the index of the closest
position; thus for a bragg peak at (qx,qy), if the closest position in (Qx,Qy) is
(Qx[i],Qy[i]), assign this peak the label i. This is equivalent to assigning each
bragg peak (qx,qy) a label according to the Voronoi region it lives in, given a
voronoi tesselation seeded from the points (Qx,Qy).

For each scan position, get the set of all indices i for all bragg peaks found at
this scan position.

	Parameters:

	
	braggpeaks (PointListArray) – Bragg peaks; must have coords ‘qx’ and ‘qy’

	Qx (ndarray of floats) – x-coords of the voronoi points

	Qy (ndarray of floats) – y-coords of the voronoi points

	max_dist (None or number) – maximum distance from a given voronoi point a peak
can be and still be associated with this label

	Returns:

	(list of lists of sets) the labels found at each scan position. Scan position
(Rx,Ry) is accessed via braggpeak_labels[Rx][Ry]

	
py4DSTEM.process.classification.braggvectorclassification.get_initial_classes(braggpeak_labels, N, thresh=0.3, BP_fraction_thresh=0.1, max_iterations=200, n_corr_init=2)

	From the sets of Bragg peaks present at each scan position, get an initial guess
classes at which Bragg peaks should be grouped together into classes.

The algorithm is as follows:
1. Calculate an n-point correlation function, i.e. the joint probability of any given
n BPs coexisting in a diffraction pattern. n is controlled by n_corr_init, and must
be 2 or 3. peaks i, j, and k are all in the same DP.
2. Find the BP triplet maximizing the 3-point function; include these three BPs in a
class.
3. Get all DPs containing the class BPs. From these, find the next most likely BP to
also be present. If its probability of coexisting with the known class BPs is
greater than thresh, add it to the class and repeat this step. Otherwise, proceed to
the next step.
4. Check: if the new class is the same as a class that has already been found, OR if
the fraction of BPs which have not yet been placed in a class is less than
BP_fraction_thresh, or more than max_iterations have been attempted, finish,
returning all classes. Otherwise, set all slices of the 3-point function containing
the BPs in the new class to zero, and begin a new iteration, starting at step 2 using
the new, altered 3-point function.

	Parameters:

	
	N (int) – the total number of indexed Bragg peaks in the 4D-STEM dataset

	braggpeak_labels (list of lists of sets) – the Bragg peak labels found at each
scan position; see get_braggpeak_labels_by_scan_position().

	thresh (float in [0,1]) – threshold for adding new BPs to a class

	BP_fraction_thresh (float in [0,1]) – algorithm terminates if fewer than this
fraction of the BPs have not been assigned to a class

	max_iterations (int) – algorithm terminates after this many iterations

	n_corr_init (int) – seed new classes by finding maxima of the n-point joint
probability function. Must be 2 or 3.

	Returns:

	the sets of Bragg peaks constituting the classes

	Return type:

	(list of sets)

	
py4DSTEM.process.classification.classutils.get_class_DP(datacube, class_image, thresh=0.01, xshifts=None, yshifts=None, darkref=None, intshifts=True)

	Get the average diffraction pattern for the class described in real space by
class_image.

	Parameters:

	
	datacube (DataCube) – a datacube

	class_image (2D array) – the weight of the class at each position in real space

	thresh (float) – only include diffraction patterns for scan positions with a value
greater than or equal to thresh in class_image

	xshifts (2D array, or None) – the x diffraction shifts at each real space pixel.
If None, no shifting is performed.

	yshifts (2D array, or None) – the y diffraction shifts at each real space pixel.
If None, no shifting is performed.

	darkref (2D array, or None) – background to remove from each diffraction pattern

	intshifts (bool) – if True, round shifts to the nearest integer to speed up
computation

	Returns:

	the average diffraction pattern for the class

	Return type:

	(2D array)

	
py4DSTEM.process.classification.classutils.get_class_DP_without_Bragg_scattering(datacube, class_image, braggpeaks, radius, x0, y0, thresh=0.01, xshifts=None, yshifts=None, darkref=None, intshifts=True)

	Get the average diffraction pattern, removing any Bragg scattering, for the class
described in real space by class_image.

Bragg scattering is eliminated by masking circles of size radius about each of the
detected peaks in braggpeaks in each diffraction pattern before adding to the average
image. Importantly, braggpeaks refers to the peak positions in the raw data - i.e.
BEFORE any shift correction is applied. Passing shifted Bragg peaks will yield
incorrect results. For speed, the Bragg peaks are removed with a binary mask, rather
than a continuous sigmoid, so selecting a radius that is slightly (~1 pix) larger
than the disk size is recommended.

	Parameters:

	
	datacube (DataCube) – a datacube

	class_image (2D array) – the weight of the class at each position in real space

	braggpeaks (PointListArray) – the detected Bragg peak positions, with respect to
the raw data (i.e. not diffraction shift or ellipse corrected)

	radius (number) – the radius to mask about each detected Bragg peak - should be
slightly larger than the disk radius

	x0 (number) – x-position of the optic axis

	y0 (number) – y-position of the optic axis

	thresh (float) – only include diffraction patterns for scan positions with a value
greater than or equal to thresh in class_image

	xshifts (2D array, or None) – the x diffraction shifts at each real space pixel.
If None, no shifting is performed.

	yshifts (2D array, or None) – the y diffraction shifts at each real space pixel.
If None, no shifting is performed.

	darkref (2D array, or None) – background to remove from each diffraction pattern

	intshifts (bool) – if True, round shifts to the nearest integer to speed up
computation

	Returns:

	class_DP (2D array) the average diffraction pattern for the class

	
class py4DSTEM.process.classification.featurization.Featurization(features, R_Nx, R_Ny, name)

	A class for feature selection, modification, and classification of 4D-STEM data based on a user defined
array of input features for each pattern. Features are stored under Featurization. Features and can be
used for a variety of unsupervised classification tasks.

	Initialization methods:
	
	__init__:
	Creates instance of featurization

	concatenate_features:
	Creates instance of featurization from a list of featurization instances

	from_braggvectors:
	Creates instance of featurization from a BraggVectors instance

	Feature Dictionary Modification Methods
	
	add_feature:
	Adds features to the features array

	remove_feature:
	Removes features to the features array

	Feature Preprocessing Methods
	
	MinMaxScaler:
	Performs sklearn MinMaxScaler operation on features stored at a key

	RobustScaler:
	Performs sklearn RobustScaler operation on features stored at a key

	mean_feature:
	Takes the rowwise average of a matrix stored at a key, such that only one column is left,
reducing a set of n features down to 1 feature per pattern.

	median_feature:
	Takes the rowwise median of a matrix stored at a key, such that only one column is left,
reducing a set of n features down to 1 feature per pattern.

	max_feature:
	Takes the rowwise max of a matrix stored at a key, such that only one column is left,
reducing a set of n features down to 1 feature per pattern.

	Classification Methods
	
	PCA:
	Principal Component Analysis to refine features.

	ICA:
	Independent Component Analysis to refine features.

	NMF:
	Performs either traditional or iterative Nonnegative Matrix Factorization (NMF) to refine features.

	GMM:
	Gaussian mixture model to predict class labels. Fits a gaussian based on covariance of features.

	Class Examination Methods
	
	get_class_DPs:
	Gets weighted class diffraction patterns (DPs) for an NMF or GMM operation

	get_class_ims:
	Gets weighted class images (ims) for an NMF or GMM operation

	
__init__(features, R_Nx, R_Ny, name)

	Initializes classification instance.

This method:
1. Generates key:value pair to access input features
2. Initializes the empty dictionaries for feature modification and classification

	Parameters:

	
	features (list) – A list of ndarrays which will each be associated with value stored at the key in the same index within the list

	R_Nx (int) – The real space x dimension of the dataset

	R_Ny (int) – The real space y dimension of the dataset

	name (str) – The name of the featurization object

	Returns:

	New Featurization instance

	Return type:

	new_instance

	
from_braggvectors(bins_x, bins_y, intensity_scale, name, mask=None)

	Initialize a featurization instance from a BraggVectors instance

	Parameters:

	
	braggvectors (BraggVectors) – BraggVectors instance containing calibrations

	bins_x (int) – Number of pixels per bin in x direction

	bins_y (int) – Number of pixels per bin in y direction

	intensity_scale (float) – Value to scale intensity of detected disks by

	name (str) – Name of featurization instance

	mask (bool) – Mask to remove disks in unwanted positions in diffraction space

	Returns:

	Featurization instance

	Return type:

	new_instance

	Details:
	Transforms the calibrated pointlistarray in BraggVectors instance into a numpy array
that can be clustered using the methods in featurization.

	
concatenate_features(name)

	Concatenates featurization instances (features) and outputs a new Featurization instance
containing the concatenated features from each featurization instance. R_Nx, R_Ny will be
inherited from the featurization instances and must be consistent across objects.

	Parameters:

	
	features (list) – A list of keys to be concatenated into one array

	name (str) – The name of the featurization instance

	Returns:

	Featurization instance

	Return type:

	new_instance

	
add_features(feature)

	Add a feature to the end of the features array

	Parameters:

	
	key (int, float, str) – A key in which a feature can be accessed from

	feature (ndarray) – The feature associated with the key

	
delete_features(index)

	Deletes feature columns from the feature array

	Parameters:

	index (int, list) – A key which will be removed

	
mean_feature(index)

	Takes columnwise mean and replaces features in ‘index’.

	Parameters:

	index (list of int) – Indices of features to take the mean of. New feature array is placed in self.features.

	
median_feature(index)

	Takes columnwise median and replaces features in ‘index’. New feature array is placed in self.features.

	Parameters:

	index (list of int) – Indices of features to take the median of.

	
max_feature(index)

	Takes columnwise max and replaces features in ‘index’. New feature array is placed in self.features.

	Parameters:

	index (list of int) – Indices of features to take the max of.

	
MinMaxScaler(return_scaled=True)

	Uses sklearn MinMaxScaler to scale a subset of the input features.
Replaces a feature with the positive shifted array.

	Parameters:

	return_scaled (bool) – returns the scaled array

	
RobustScaler(return_scaled=True)

	Uses sklearn RobustScaler to scale a subset of the input features.
Replaces a feature with the positive shifted array.

	Parameters:

	return_scaled (bool) – returns the scaled array

	
shift_positive(return_scaled=True)

	Replaces a feature with the positive shifted array.

	Parameters:

	return_scaled (bool) – returns the scaled array

	
PCA(components, return_results=False)

	Performs PCA on features

	Parameters:

	components (list) – A list of ints for each key. This will be the output number of features

	
ICA(components, return_results=True)

	Performs ICA on features

	Parameters:

	components (list) – A list of ints for each key. This will be the output number of features

	
NMF(max_components, num_models, merge_thresh=1, max_iterations=1, random_seed=None, save_all_models=True, return_results=False)

	Performs either traditional Nonnegative Matrix Factoriation (NMF) or iteratively on input features.
For Traditional NMF:

set either merge_threshold = 1, max_iterations = 1, or both. Default is to set

	Parameters:

	
	max_components (int) – Number of initial components to start the first NMF iteration

	merge_thresh (float) – Correlation threshold to merge features

	num_models (int) – Number of independent models to run (number of learners that will be combined in consensus).

	max_iterations (int) – Number of iterations. Default 1, which runs traditional NMF

	random_seed (int) – Random seed.

	save_all_models (bool) – Whether or not to return all of the models - default is to return all outputs for consensus clustering.
if False, will only return the model with the lowest NMF reconstruction error.

	return_results (bool) – Whether or not to return the final class weights

	Details:
	This method may require trial and error for proper selection of parameters. To perform traditional NMF, the
defaults should be used:

merge_thresh = 1
max_iterations = 1

Note that the max_components in this case will be equivalent to the number of classes the NMF model identifies.

Iterative NMF calculates the correlation between all of the output columns from an NMF iteration, merges the
features correlated above the merge_thresh, and performs NMF until either max_iterations is reached or until
no more columns are correlated above merge_thresh.

	
GMM(cv, components, num_models, random_seed=None, return_results=False)

	Performs gaussian mixture model on input features

	Parameters:

	
	cv (str) – Covariance type - must be ‘spherical’, ‘tied’, ‘diag’, or ‘full’

	components (int) – Number of components

	num_models (int) – Number of models to run

	random_seed (int) – Random seed

	
get_class_DPs(datacube, method, thresh)

	Returns weighted class patterns based on classification instance
datacube must be vectorized in real space (shape = (R_Nx * R_Ny, 1, Q_Nx, Q_Ny)

	Parameters:

	
	classification_method (str) – Either ‘nmf’ or ‘gmm’ - finds location of clusters

	datacube (py4DSTEM datacube) – Vectorized in real space, with shape (R_Nx * R_Ny, Q_Nx, Q_Ny)

	
get_class_ims(classification_method)

	Returns weighted class maps based on classification instance

	Parameters:

	classification_method (str) – Location to retrieve class images from - NMF, GMM, PCA, or ICA

	
spatial_separation(size, threshold=0, method=None, clean=True)

	Identify spatially distinct regions from class images and separate based on a threshold and size.

	Parameters:

	
	size (int) – Number of pixels which is the minimum to keep a class - all spatially distinct regions with
less than ‘size’ pixels will be removed

	threshold (float) – Intensity weight of a component to keep

	method (str) – (Optional) Filter method, default None. Accepts options ‘yen’ and ‘otsu’.

	clean (bool) – Whether or not to ‘clean’ cluster sets based on overlap, i.e. remove clusters that do not have
any unique components

	
consensus(threshold=0, location='spatially_separated_ims', split=0, method='mean', drop_bins=0)

	Consensus Clustering takes the outcome of a prepared set of 2D images from each cluster and averages the outcomes.

	Parameters:

	
	threshold (float) – Threshold weights, default 0

	location (str) – Where to get the consensus from - after spatial separation = ‘spatially_separated_ims’

	split_value (float) – Threshold in which to separate classes during label correspondence (Default 0). This should be
proportional to the expected class weights- the sum of the weights in the current class image
that match nonzero values in each bin are calculated and then checked for splitting.

	method (str) – Method in which to combine the consensus clusters - either mean or median.

	drop_bins (int) – Number of clusters needed in each class to keep cluster set in the consensus. Default 0, meaning

	Details:
	This method involves 2 steps: Label correspondence and consensus clustering.

Label correspondence sorts the classes found by the independent models into bins based on class overlap in real space.
Arguments related to label correspondence are the threshold and split_value. The threshold is related
to the weights of the independent classes. If the weight of the observation in the class is less than the threshold, it
will be set to 0. The split_value indicates the extent of similarity the independent classes must have before intializing
a new bin. The default is 0 - this means if the class of interest has 0 overlap with the identified bins, a new bin will
be created. The value is based on the sum of the weights in the current class image that match the nonzero values in the
current bins.

Consensus clustering combines these sorted bin into 1 class based on the selected method (either ‘mean’ which takes
the average of the bin, or ‘median’ which takes the median of the bin). Bins with less than the drop_bins value will
not be included in the final results.

diffraction

	
py4DSTEM.process.diffraction.WK_scattering_factors.compute_WK_factor(g: ndarray, Z: int, accelerating_voltage: float, thermal_sigma: float | None = None, include_core: bool = True, include_phonon: bool = True, verbose=False) → complex128

	Compute the Weickenmeier-Kohl atomic scattering factors, using the parameterization
of the elastic part and computation of the inelastic part found in EMsoftLib/others.f90.
Return value should be in Å.

This implementation always returns the absorptive, relativistically corrected factors.

Currently this is mostly a direct translation of the Fortran code, along with
the accompanying comments from the original in quotation marks. Colin Ophus
vectorized it around v0.13.17. Currently it is only vectorized over g (i.e.
Z and all other args must be a single value.)

This method uses an 8-parameter fit to the elastic form factors, and then computes the
absorptive form factors using an analytic solution based on that fitting function.

	Args: (note that these values cannot be arrays: the code is not vectorized)
	
	g (float/ndarray): Scattering vector magnitude in the crystallographic/py4DSTEM
	convention, 1/d_hkl in units of 1/Å

Z (int): Atomic number. Data are available for H thru Cf (1 thru 98)
accelerating_voltage (float): Accelerating voltage in eV.
thermal_sigma (float): RMS atomic displacement for TDS, in Å

(This is often written as 〈u〉in papers)

	include_core (bool): If True, include the core loss contribution to the absorptive
	form factors.

	include_phonon (bool): If True, include the phonon/TDS contribution to the
	absorptive form factors.

	Returns:

	The computed atomic form factor

	Return type:

	Fscatt (np.complex128)

	
py4DSTEM.process.diffraction.WK_scattering_factors.RIH2(X)

	WERTET X*EXP(-X)*EI(X) AUS FUER GROSSE X
DURCH INTERPOLATION DER TABELLE … AUS ABRAMOWITZ

	
class py4DSTEM.process.diffraction.crystal.Crystal(positions, numbers, cell)

	A class storing a single crystal structure, and associated diffraction data.

	
orientation_plan(zone_axis_range: ndarray = array([[0, 1, 1], [1, 1, 1]]), angle_step_zone_axis: float = 2.0, angle_coarse_zone_axis: float | None = None, angle_refine_range: float | None = None, angle_step_in_plane: float = 2.0, accel_voltage: float = 300000.0, corr_kernel_size: float = 0.08, radial_power: float = 1.0, intensity_power: float = 0.25, calculate_correlation_array=True, tol_peak_delete=None, tol_distance: float = 0.01, fiber_axis=None, fiber_angles=None, figsize: list | tuple | ndarray = (6, 6), CUDA: bool = False, progress_bar: bool = True)

	Calculate the rotation basis arrays for an SO(3) rotation correlogram.

	Parameters:

	
	zone_axis_range (float) – Row vectors give the range for zone axis orientations.
If user specifies 2 vectors (2x3 array), we start at [0,0,1]

to make z-x-z rotation work.

If user specifies 3 vectors (3x3 array), plan will span these vectors.
Setting to ‘full’ as a string will use a hemispherical range.
Setting to ‘half’ as a string will use a quarter sphere range.
Setting to ‘fiber’ as a string will make a spherical cap around a given vector.
Setting to ‘auto’ will use pymatgen to determine the point group symmetry

of the structure and choose an appropriate zone_axis_range

	angle_step_zone_axis (float) – Approximate angular step size for zone axis search [degrees]

	angle_coarse_zone_axis (float) – Coarse step size for zone axis search [degrees]. Setting to
None uses the same value as angle_step_zone_axis.

	angle_refine_range (float) – Range of angles to use for zone axis refinement. Setting to
None uses same value as angle_coarse_zone_axis.

	angle_step_in_plane (float) – Approximate angular step size for in-plane rotation [degrees]

	accel_voltage (float) – Accelerating voltage for electrons [Volts]

	corr_kernel_size (float) – Correlation kernel size length in Angstroms

	radial_power (float) – Power for scaling the correlation intensity as a function of the peak radius

	intensity_power (float) – Power for scaling the correlation intensity as a function of the peak intensity

	calculate_correlation_array (bool) – Set to false to skip calculating the correlation array.
This is useful when we only want the angular range / rotation matrices.

	tol_peak_delete (float) – Distance to delete peaks for multiple matches.
Default is kernel_size * 0.5

	tol_distance (float) – Distance tolerance for radial shell assignment [1/Angstroms]

	fiber_axis (float) – (3,) vector specifying the fiber axis

	fiber_angles (float) – (2,) vector specifying angle range from fiber axis, and in-plane angular range [degrees]

	cartesian_directions (bool) – When set to true, all zone axes and projection directions
are specified in Cartesian directions.

	figsize (float) – (2,) vector giving the figure size

	CUDA (bool) – Use CUDA for the Fourier operations.

	progress_bar (bool) – If false no progress bar is displayed

	
match_orientations(bragg_peaks_array: PointListArray, num_matches_return: int = 1, min_angle_between_matches_deg=None, min_number_peaks: int = 3, inversion_symmetry: bool = True, multiple_corr_reset: bool = True, return_orientation: bool = True, progress_bar: bool = True)

	
	Parameters:

	
	bragg_peaks_array (PointListArray) – PointListArray containing the Bragg peaks and intensities, with calibrations applied

	num_matches_return (int) – return these many matches as 3th dim of orient (matrix)

	min_angle_between_matches_deg (int) – Minimum angle between zone axis of multiple matches, in degrees.
Note that I haven’t thought how to handle in-plane rotations, since multiple matches are possible.

	min_number_peaks (int) – Minimum number of peaks required to perform ACOM matching

	inversion_symmetry (bool) – check for inversion symmetry in the matches

	multiple_corr_reset (bool) – keep original correlation score for multiple matches

	return_orientation (bool) – Return orientation map from function for inspection.
The map is always stored in the Crystal object.

	progress_bar (bool) – Show or hide the progress bar

	
match_single_pattern(bragg_peaks: PointList, num_matches_return: int = 1, min_angle_between_matches_deg=None, min_number_peaks=3, inversion_symmetry=True, multiple_corr_reset=True, plot_polar: bool = False, plot_corr: bool = False, returnfig: bool = False, figsize: list | tuple | ndarray = (12, 4), verbose: bool = False)

	Solve for the best fit orientation of a single diffraction pattern.

	Parameters:

	
	bragg_peaks (PointList) – numpy array containing the Bragg positions and intensities (‘qx’, ‘qy’, ‘intensity’)

	num_matches_return (int) – return these many matches as 3th dim of orient (matrix)

	min_angle_between_matches_deg (int) – Minimum angle between zone axis of multiple matches, in degrees.
Note that I haven’t thought how to handle in-plane rotations, since multiple matches are possible.

	min_number_peaks (int) – Minimum number of peaks required to perform ACOM matching

	bool (multiple_corr_reset) – check for inversion symmetry in the matches

	bool – keep original correlation score for multiple matches

	subpixel_tilt (bool) – set to false for faster matching, returning the nearest corr point

	plot_polar (bool) – set to true to plot the polar transform of the diffraction pattern

	plot_corr (bool) – set to true to plot the resulting correlogram

	returnfig (bool) – return figure handles

	figsize (list) – size of figure

	verbose (bool) – Print the fitted zone axes, correlation scores

	CUDA (bool) – Enable CUDA for the FFT steps

	Returns:

	
	orientation (Orientation) – Orientation class containing all outputs

	fig, ax (handles) – Figure handles for the plotting output

	
cluster_grains(threshold_add=1.0, threshold_grow=0.1, angle_tolerance_deg=5.0, progress_bar=True)

	Cluster grains using rotation criterion, and correlation values.

	Parameters:

	
	threshold_add (float) – Minimum signal required for a probe position to initialize a cluster.

	threshold_grow (float) – Minimum signal required for a probe position to be added to a cluster.

	angle_tolerance_deg (float) – Rotation rolerance for clustering grains.

	progress_bar (bool) – Turns on the progress bar for the polar transformation

	
cluster_orientation_map(stripe_width=(2, 2), area_min=2)

	Produce a new orientation map from the clustered grains.
Use a stripe pattern for the overlapping grains.

	Parameters:

	
	stripe_width ((int,int)) – Width of stripes for plotting maps with overlapping grains

	area_min ((int)) – Minimum size of grains to include

	Returns:

	The clustered orientation map

	Return type:

	orientation_map

	
calculate_strain(bragg_peaks_array: PointListArray, orientation_map: OrientationMap, corr_kernel_size=None, sigma_excitation_error=0.02, tol_excitation_error_mult: float = 3, tol_intensity: float = 0.0001, k_max: float | None = None, min_num_peaks=5, rotation_range=None, mask_from_corr=True, corr_range=(0, 2), corr_normalize=True, progress_bar=True)

	This function takes in both a PointListArray containing Bragg peaks, and a
corresponding OrientationMap, and uses least squares to compute the
deformation tensor which transforms the simulated diffraction pattern
into the experimental pattern, for all probe positons.

TODO: add robust fitting?

	Parameters:

	
	bragg_peaks_array (PointListArray) – All Bragg peaks

	orientation_map (OrientationMap) – Orientation map generated from ACOM

	corr_kernel_size (float) – Correlation kernel size - if user does
not specify, uses self.corr_kernel_size.

	sigma_excitation_error (float) – sigma value for envelope applied to s_g (excitation errors) in units of inverse Angstroms

	tol_excitation_error_mult (float) – tolerance in units of sigma for s_g inclusion

	tol_intensity (np float) – tolerance in intensity units for inclusion of diffraction spots

	k_max (float) – Maximum scattering vector

	min_num_peaks (int) – Minimum number of peaks required.

	rotation_range (float) – Maximum rotation range in radians (for symmetry reduction).

	progress_bar (bool) – Show progress bar

	mask_from_corr (bool) – Use ACOM correlation signal for mask

	corr_range (np.ndarray) – Range of correlation signals for mask

	corr_normalize (bool) – Normalize correlation signal before masking

	Returns:

	strain tensor

	Return type:

	strain_map (RealSlice)

	
symmetry_reduce_directions(orientation, match_ind=0, plot_output=False, figsize=(15, 6), el_shift=0.0, az_shift=-30.0)

	This function calculates the symmetry-reduced cartesian directions from
and orientation matrix stored in orientation.matrix, and outputs them
into orientation.family. It optionally plots the 3D output.

	
save_ang_file(file_name, orientation_map, ind_orientation=0, pixel_size=1.0, pixel_units='px', transpose_xy=True, flip_x=False)

	This function outputs an ascii text file in the .ang format, containing
the Euler angles of an orientation map.

	Parameters:

	
	file_name (str) – Path to save .ang file.

	orientation_map (OrientationMap) – Class containing orientation matrices,
correlation values, etc.

	ind_orientation (int) – Which orientation match to plot if num_matches > 1

	pixel_size (float) – Pixel size, if known.

	pixel_units (str) – Units of the pixel size

	transpose_xy (bool) – Transpose x and y pixel coordinates.

	flip_x (bool) – Swap x direction pixels (after transpose).

	Returns:

	nothing

	
plot_structure(orientation_matrix: ndarray | None = None, zone_axis_lattice: ndarray | None = None, proj_x_lattice: ndarray | None = None, zone_axis_cartesian: ndarray | None = None, proj_x_cartesian: ndarray | None = None, size_marker: float = 400, tol_distance: float = 0.001, plot_limit: ndarray | None = None, camera_dist: float | None = None, show_axes: bool = False, perspective_axes: bool = True, figsize: tuple | list | ndarray = (8, 8), returnfig: bool = False)

	Quick 3D plot of the untit cell /atomic structure.

	Parameters:

	
	orientation_matrix (array) – (3,3) orientation matrix, where columns represent projection directions.

	zone_axis_lattice (array) – (3,) projection direction in lattice indices

	proj_x_lattice (array) – (3,) x-axis direction in lattice indices

	zone_axis_cartesian (array) – (3,) cartesian projection direction

	proj_x_cartesian (array) – (3,) cartesian projection direction

	scale_markers (float) – Size scaling for markers

	tol_distance (float) – Tolerance for repeating atoms on edges on cell boundaries.

	plot_limit (float) – (2,3) numpy array containing x y z plot min and max in columns.
Default is 1.1* unit cell dimensions.

	camera_dist (float) – Move camera closer to the plot (relative to matplotlib default of 10)

	show_axes (bool) – Whether to plot axes or not.

	perspective_axes (bool) – Select either perspective (true) or orthogonal (false) axes

	figsize (2 element float) – Size scaling of figure axes.

	returnfig (bool) – Return figure and axes handles.

	Returns:

	fig, ax (optional) figure and axes handles

	
plot_structure_factors(orientation_matrix: ndarray | None = None, zone_axis_lattice: ndarray | None = None, proj_x_lattice: ndarray | None = None, zone_axis_cartesian: ndarray | None = None, proj_x_cartesian: ndarray | None = None, scale_markers: float = 1000.0, plot_limit: list | tuple | ndarray | None = None, camera_dist: float | None = None, show_axes: bool = True, perspective_axes: bool = True, figsize: list | tuple | ndarray = (8, 8), returnfig: bool = False)

	3D scatter plot of the structure factors using magnitude^2, i.e. intensity.

	Parameters:

	
	orientation_matrix (array) – (3,3) orientation matrix, where columns represent projection directions.

	zone_axis_lattice (array) – (3,) projection direction in lattice indices

	proj_x_lattice (array) – (3,) x-axis direction in lattice indices

	zone_axis_cartesian (array) – (3,) cartesian projection direction

	proj_x_cartesian (array) – (3,) cartesian projection direction

	scale_markers (float) – size scaling for markers

	plot_limit (float) – x y z plot limits, default is [-1 1]*self.k_max

	camera_dist (float) – Move camera closer to the plot (relative to matplotlib default of 10)

	show_axes (bool) – Whether to plot axes or not.

	perspective_axes (bool) – Select either perspective (true) or orthogonal (false) axes

	figsize (2 element float) – size scaling of figure axes

	returnfig (bool) – set to True to return figure and axes handles

	Returns:

	fig, ax (optional) figure and axes handles

	
plot_scattering_intensity(k_min=0.0, k_max=None, k_step=0.001, k_broadening=0.0, k_power_scale=0.0, int_power_scale=0.5, int_scale=1.0, remove_origin=True, bragg_peaks=None, bragg_k_power=0.0, bragg_intensity_power=1.0, bragg_k_broadening=0.005, figsize: list | tuple | ndarray = (10, 4), returnfig: bool = False)

	1D plot of the structure factors

	Parameters:

	
	k_min (float) – min k value for profile range.

	k_max (float) – max k value for profile range.

	k_step (float) – Step size of k in profile range.

	k_broadening (float) – Broadening of simulated pattern.

	k_power_scale (float) – Scale SF intensities by k**k_power_scale.

	int_power_scale (float) – Scale SF intensities**int_power_scale.

	int_scale (float) – Scale output profile by this value.

	remove_origin (bool) – Remove origin from plot.

	bragg_peaks (BraggVectors) – Passed in bragg_peaks for comparison with simulated pattern.

	bragg_k_power (float) – bragg_peaks scaled by k**bragg_k_power.

	bragg_intensity_power (float) – bragg_peaks scaled by intensities**bragg_intensity_power.

	bragg_k_broadening (float) – Broadening applied to bragg_peaks.

	figsize (list, tuple, np.ndarray) – Figure size for plot.

	(bool) (returnfig) – Return figure and axes handles if this is True.

	Returns:

	figure and axes handles

	Return type:

	fig, ax (optional)

	
plot_orientation_zones(azim_elev: list | tuple | ndarray | None = None, proj_dir_lattice: list | tuple | ndarray | None = None, proj_dir_cartesian: list | tuple | ndarray | None = None, tol_den=10, marker_size: float = 20, plot_limit: list | tuple | ndarray = array([-1.1, 1.1]), figsize: list | tuple | ndarray = (8, 8), returnfig: bool = False)

	3D scatter plot of the structure factors using magnitude^2, i.e. intensity.

	Parameters:

	
	azim_elev (array) – az and el angles for plot

	proj_dir_lattice (array) – (3,) projection direction in lattice

	proj_dir_cartesian – (array): (3,) projection direction in cartesian

	tol_den (int) – tolerance for rational index denominator

	dir_proj (float) – projection direction, either [elev azim] or normal vector
Default is mean vector of self.orientation_zone_axis_range rows

	marker_size (float) – size of markers

	plot_limit (float) – x y z plot limits, default is [0, 1.05]

	figsize (2 element float) – size scaling of figure axes

	returnfig (bool) – set to True to return figure and axes handles

	Returns:

	fig, ax (optional) figure and axes handles

	
plot_orientation_plan(index_plot: int = 0, zone_axis_lattice: ndarray | None = None, zone_axis_cartesian: ndarray | None = None, figsize: list | tuple | ndarray = (14, 6), returnfig: bool = False)

	3D scatter plot of the structure factors using magnitude^2,
i.e. intensity.

	Parameters:

	
	index_plot (int) – which index slice to plot

	zone_axis_plot (3 element float) – which zone axis slice to plot

	figsize (2 element float) – size scaling of figure axes

	returnfig (bool) – set to True to return figure and axes handles

	Returns:

	fig, ax (optional) figure and axes handles

	
plot_orientation_maps(orientation_map=None, orientation_ind: int = 0, dir_in_plane_degrees: float = 0.0, corr_range: ndarray = array([0, 5]), corr_normalize: bool = True, scale_legend: bool | None = None, figsize: list | tuple | ndarray = (16, 5), figbound: list | tuple | ndarray = (0.01, 0.005), show_axes: bool = True, camera_dist=None, plot_limit=None, plot_layout=0, swap_axes_xy_limits=False, returnfig: bool = False, progress_bar=False)

	Plot the orientation maps.

	Parameters:

	
	orientation_map (OrientationMap) – Class containing orientation matrices, correlation values, etc.
Optional - can reference internally stored OrientationMap.

	orientation_ind (int) – Which orientation match to plot if num_matches > 1

	dir_in_plane_degrees (float) – In-plane angle to plot in degrees. Default is 0 / x-axis / vertical down.

	corr_range (np.ndarray) – Correlation intensity range for the plot

	corr_normalize (bool) – If true, set mean correlation to 1.

	scale_legend (float) – 2 elements, x and y scaling of legend panel

	figsize (array) – 2 elements defining figure size

	figbound (array) – 2 elements defining figure boundary

	show_axes (bool) – Flag setting whether orienation map axes are visible.

	camera_dist (float) – distance of camera from legend

	plot_limit (array) – 2x3 array defining plot boundaries of legend

	plot_layout (int) – subplot layout: 0 - 1 row, 3 col
1 - 3 row, 1 col

	swap_axes_xy_limits (bool) – swap x and y boundaries for legend (not sure why we need this in some cases)

	returnfig (bool) – set to True to return figure and axes handles

	progress_bar (bool) – Enable progressbar when calculating orientation images.

	Returns:

	RGB images
fig, axs (handles): Figure and axes handes for the

	Return type:

	images_orientation (int)

Note

Currently, no symmetry reduction. Therefore the x and y orientations
are going to be correct only for [001][011][111] orientation triangle.

	
plot_fiber_orientation_maps(orientation_map, orientation_ind: int = 0, symmetry_order: int | None = None, symmetry_mirror: bool = False, dir_in_plane_degrees: float = 0.0, corr_range: ndarray = array([0, 2]), corr_normalize: bool = True, show_axes: bool = True, medfilt_size: int | None = None, cmap_out_of_plane: str = 'plasma', leg_size: int = 200, figsize: list | tuple | ndarray = (12, 8), figbound: list | tuple | ndarray = (0.005, 0.04), returnfig: bool = False)

	Generate and plot the orientation maps from fiber texture plots.

	Parameters:

	
	orientation_map (OrientationMap) – Class containing orientation matrices, correlation values, etc.

	orientation_ind (int) – Which orientation match to plot if num_matches > 1

	dir_in_plane_degrees (float) – Reference in-plane angle (degrees). Default is 0 / x-axis / vertical down.

	corr_range (np.ndarray) – Correlation intensity range for the plot

	corr_normalize (bool) – If true, set mean correlation to 1.

	show_axes (bool) – Flag setting whether orienation map axes are visible.

	figsize (array) – 2 elements defining figure size

	figbound (array) – 2 elements defining figure boundary

	returnfig (bool) – set to True to return figure and axes handles

	Returns:

	RGB images
fig, axs (handles): Figure and axes handes for the

	Return type:

	images_orientation (int)

Note

Currently, no symmetry reduction. Therefore the x and y orientations
are going to be correct only for [001][011][111] orientation triangle.

	
plot_clusters(area_min=2, outline_grains=True, outline_thickness=1, fill_grains=0.25, smooth_grains=1.0, cmap='viridis', figsize=(8, 8), returnfig=False)

	Plot the clusters as an image.

	Parameters:

	
	area_min (int (optional)) – Min cluster size to include, in units of probe positions.

	outline_grains (bool (optional)) – Set to True to draw grains with outlines

	outline_thickness (int (optional)) – Thickenss of the grain outline

	fill_grains (float (optional)) – Outlined grains are filled with this value in pixels.

	smooth_grains (float (optional)) – Grain boundaries are smoothed by this value in pixels.

	figsize (tuple) – Size of the figure panel

	returnfig (bool) – Setting this to true returns the figure and axis handles

	Returns:

	Figure and axes handles

	Return type:

	fig, ax (optional)

	
plot_cluster_size(area_min=None, area_max=None, area_step=1, weight_intensity=False, pixel_area=1.0, pixel_area_units='px^2', figsize=(8, 6), returnfig=False)

	Plot the cluster sizes

	Parameters:

	
	area_min (int (optional)) – Min area to include in pixels^2

	area_max (int (optional)) – Max area bin in pixels^2

	area_step (int (optional)) – Step size of the histogram bin in pixels^2

	weight_intensity (bool) – Weight histogram by the peak intensity.

	pixel_area (float) – Size of pixel area unit square

	pixel_area_units (string) – Units of the pixel area

	figsize (tuple) – Size of the figure panel

	returnfig (bool) – Setting this to true returns the figure and axis handles

	Returns:

	Figure and axes handles

	Return type:

	fig, ax (optional)

	
calibrate_pixel_size(bragg_peaks, scale_pixel_size=1.0, bragg_k_power=1.0, bragg_intensity_power=1.0, k_min=0.0, k_max=None, k_step=0.002, k_broadening=0.002, fit_all_intensities=True, set_calibration_in_place=False, verbose=True, plot_result=False, figsize: list | tuple | ndarray = (12, 6), returnfig=False)

	Use the calculated structure factor scattering lengths to compute 1D
diffraction patterns, and solve the best-fit relative scaling between them.
Returns the fit pixel size in Å^-1.

	Parameters:

	
	bragg_peaks (BraggVectors) – Input Bragg vectors.

	scale_pixel_size (float) – Initial guess for scaling of the existing
pixel size If the pixel size is currently uncalibrated, this is a
guess of the pixel size in Å^-1. If the pixel size is already
(approximately) calibrated, this is the scaling factor to
correct that existing calibration.

	bragg_k_power (float) – Input Bragg peak intensities are multiplied by
k**bragg_k_power to change the weighting of longer scattering vectors

	bragg_intensity_power (float) – Input Bragg peak intensities are raised
power **bragg_intensity_power.

	k_min (float) – min k value for fitting range (Å^-1)

	k_max (float) – max k value for fitting range (Å^-1)

	k_step (float) step size of k in fitting range (Å^-1) –

	k_broadening (float) – Initial guess for Gaussian broadening of simulated
pattern (Å^-1)

	fit_all_intensities (bool) – Set to true to allow all peak intensities to
change independently False forces a single intensity scaling.

	set_calibration (bool) – if True, set the fit pixel size to the calibration
metadata, and calibrate bragg_peaks

	verbose (bool) – Output the calibrated pixel size.

	plot_result (bool) – Plot the resulting fit.

	figsize (list, tuple, np.ndarray) – Figure size of the plot.

	returnfig (bool) – Return handles figure and axis

	Returns:

	fig, ax – Figure and axis handles, if returnfig=True.

	Return type:

	handles, optional

	
calibrate_unit_cell(bragg_peaks, coef_index=None, coef_update=None, bragg_k_power=1.0, bragg_intensity_power=1.0, k_min=0.0, k_max=None, k_step=0.005, k_broadening=0.02, fit_all_intensities=True, verbose=True, plot_result=False, figsize: list | tuple | ndarray = (12, 6), returnfig=False)

	Solve for the best fit scaling between the computed structure factors and bragg_peaks.

	Parameters:

	
	bragg_peaks (BraggVectors) – Input Bragg vectors.

	coef_index (list of ints) – List of ints that act as pointers to unit cell parameters and angles to update.

	coef_update (list of bool) – List of booleans to indicate whether or not to update the cell at
that position

	bragg_k_power (float) – Input Bragg peak intensities are multiplied by k**bragg_k_power
to change the weighting of longer scattering vectors

	bragg_intensity_power (float) – Input Bragg peak intensities are raised power **bragg_intensity_power.

	k_min (float) – min k value for fitting range (Å^-1)

	k_max (float) – max k value for fitting range (Å^-1)

	k_step (float) – step size of k in fitting range (Å^-1)

	k_broadening (float) – Initial guess for Gaussian broadening of simulated pattern (Å^-1)

	fit_all_intensities (bool) – Set to true to allow all peak intensities to change independently
False forces a single intensity scaling.

	verbose (bool) – Output the calibrated pixel size.

	plot_result (bool) – Plot the resulting fit.

	figsize (list, tuple, np.ndarray) –

	returnfig (bool) – Return handles figure and axis

	Returns:

	Optional figure and axis handles, if returnfig=True.

	Return type:

	fig, ax (handles)

Details:
User has the option to define what is allowed to update in the unit cell using the arguments
coef_index and coef_update. Each has 6 entries, corresponding to the a, b, c, alpha, beta, gamma
parameters of the unit cell, in this order. The coef_update argument is a list of bools specifying
whether or not the unit cell value will be allowed to change (True) or must maintain the original
value (False) upon fitting. The coef_index argument provides a pointer to the index in which the
code will update to.

For example, to update a, b, c, alpha, beta, gamma all independently of eachother, the following
arguments should be used:

coef_index = [0, 1, 2, 3, 4, 5]
coef_update = [True, True, True, True, True, True,]

The default is set to automatically define what can update in a unit cell based on the
point group constraints. When either ‘coef_index’ or ‘coef_update’ are None, these constraints
will be automatically pulled from the pointgroup.

	For example, the default for cubic unit cells is:
	coef_index = [0, 0, 0, 3, 3, 3]
coef_update = [True, True, True, False, False, False]

Which allows a, b, and c to update (True in first 3 indices of coef_update)
but b and c update based on the value of a (0 in the 1 and 2 list entries in coef_index) such
that a = b = c. While coef_update is False for alpha, beta, and gamma (entries 3, 4, 5), no
updates will be made to the angles.

The user has the option to predefine coef_index or coef_update to override defaults. In the
coef_update list, there must be 6 entries and each are boolean. In the coef_index list, there
must be 6 entries, with the first 3 entries being between 0 - 2 and the last 3 entries between
3 - 5. These act as pointers to pull the updated parameter from.

	
generate_dynamical_diffraction_pattern(beams: PointList, thickness: float | list | tuple | ndarray, zone_axis_lattice: ndarray | None = None, zone_axis_cartesian: ndarray | None = None, foil_normal_lattice: ndarray | None = None, foil_normal_cartesian: ndarray | None = None, verbose: bool = False, always_return_list: bool = False, dynamical_matrix_cache: DynamicalMatrixCache | None = None, return_complex: bool = False, return_eigenvectors: bool = False, return_Smatrix: bool = False) → PointList | List[PointList]

	Generate a dynamical diffraction pattern (or thickness series of patterns)
using the Bloch wave method.

The beams to be included in the Bloch calculation must be pre-calculated
and passed as a PointList containing at least (qx, qy, h, k, l) fields.

If thickness is a single value, one new PointList will be returned.
If thickness is a sequence of values, a list of PointLists will be returned,

corresponding to each thickness value in the input.

	Frequent reference will be made to “Introduction to conventional transmission electron microscopy”
	by DeGraef, whose overall approach we follow here.

	Parameters:

	
	beams (PointList) – PointList from the kinematical diffraction generator
which will define the beams included in the Bloch calculation

	thickness (float or list/array) – The main Bloch calculation can be reused for multiple thicknesses
without much overhead.

	direction. (zone_axis & foil_normal Incident beam orientation and foil normal) – Each can be specified in the Cartesian or crystallographic basis,
using e.g. zone_axis_lattice or zone_axis_cartesian. These are
internally parsed by Crystal.parse_orientation

	Less commonly used args:
	
	always_return_list (bool): When True, the return is always a list of PointLists,
	even for a single thickness

	dynamical_matrix_cache: (DyanmicalMatrixCache) Dataclass used for caching of the
	dynamical matrix. If the cached matrix does not exist, it is
computed and stored. Subsequent calls will use the cached matrix
for the off-diagonal components of the A matrix and overwrite
the diagonal elements. This is used for CBED calculations.

return_complex (bool): When True, returns both the complex amplitude and intensity. Defaults to (False)

	Returns:

	
	Bragg peaks with fields [qx, qy, intensity, h, k, l]
	or

	[bragg_peaks,…] (PointList): If thickness is a list/array, or always_return_list is True,
	a list of PointLists is returned.

	if return_complex = True:
	
	bragg_peaks (PointList): Bragg peaks with fields [qx, qy, intensity, amplitude, h, k, l]
	or

	[bragg_peaks,…] (PointList): If thickness is a list/array, or always_return_list is True,
	a list of PointLists is returned.

	if return_Smatrix = True:
	
	[S_matrix, …], psi_0: Returns a list of S-matrices for each thickness (this is always a list),
	and the vector representing the incident plane wave. The beams of the
S-matrix have the same order as in the input beams.

	Return type:

	bragg_peaks (PointList)

	
generate_CBED(beams: ~emdfile.classes.pointlist.PointList, thickness: float | list | tuple | ~numpy.ndarray, alpha_mrad: float, pixel_size_inv_A: float, DP_size_inv_A: float | None = None, zone_axis_lattice: ~numpy.ndarray | None = None, zone_axis_cartesian: ~numpy.ndarray | None = None, foil_normal_lattice: ~numpy.ndarray | None = None, foil_normal_cartesian: ~numpy.ndarray | None = None, LACBED: bool = False, dtype: ~numpy.dtype = <class 'numpy.float32'>, verbose: bool = False, progress_bar: bool = True, return_mask: bool = False, two_beam_zone_axis_lattice: ~numpy.ndarray | None = None, return_probe: bool = False) → ndarray | List[ndarray] | Dict[Tuple[int], ndarray]

	Generate a dynamical CBED pattern using the Bloch wave method.

	Parameters:

	
	beams (PointList) – PointList from the kinematical diffraction generator
which will define the beams included in the Bloch calculation

	thickness (float or list/array) – The main Bloch calculation can be reused for multiple thicknesses
without much overhead.

	alpha_mrad (float) – Convergence angle for CBED pattern. Note that if disks in the calculation
overlap, they will be added incoherently, and the resulting CBED will
thus represent the average over the unit cell (i.e. a PACBED pattern,
as described in LeBeau et al., Ultramicroscopy 110(2): 2010.)

	pixel_size_inv_A (float) – CBED pixel size in 1/Å.

	DP_size_inv_A (optional float) – If specified, defines the extents of the diffraction pattern.
If left unspecified, the DP will be automatically scaled to
fit all of the beams present in the input plus some small buffer.

	zone_axis (np float vector) – 3 element projection direction for sim pattern
Can also be a 3x3 orientation matrix (zone axis 3rd column)

	foil_normal – 3 element foil normal - set to None to use zone_axis

	LACBED (bool) – keyed by tuples of (h,k,l).

	proj_x_axis (np float vector) – 3 element vector defining image x axis (vertical)

	PointList (two_beam_zone_axis_lattice When only two beams are present in the "beams") – the computation of the projected crystallographic directions
becomes ambiguous. In this case, you must specify the indices of
the zone axis used to generate the beams.

	:paramthe computation of the projected crystallographic directions
	becomes ambiguous. In this case, you must specify the indices of
the zone axis used to generate the beams.

	Parameters:

	return_probe (bool) – If True, the probe (np.ndarray) will be returned in additon to the CBED

	Returns:

	CBED pattern as np.ndarray
If thickness is a sequence: CBED patterns for each thickness value as a list of np.ndarrays
If LACBED is True and thickness is scalar: Dictionary with tuples of ints (h,k,l) as keys, mapping to np.ndarray.
If LACBED is True and thickness is a sequence: List of dictionaries, structured as above.
If return_probe is True: will return a tuple (<CBED/LACBED object>, Probe)

	Return type:

	If thickness is a scalar

	
calculate_dynamical_structure_factors(accelerating_voltage: float, method: str = 'WK-CP', k_max: float = 2.0, thermal_sigma: float | dict | None = None, tol_structure_factor: float = 0.0, recompute_kinematic_structure_factors=True, g_vec_precision=None, verbose=True)

	Calculate and store the relativistic corrected structure factors used for Bloch computations
in a dictionary for faster lookup.

	Parameters:

	
	accelerating_voltage (float) – accelerating voltage in eV

	method (str) – Choose which parameterization of the structure factors to use:
“Lobato”: Uses the kinematic structure factors from crystal.py, using the parameterization from

Lobato & Van Dyck, Acta Cryst A 70:6 (2014)

	”Lobato-absorptive”: Lobato factors plus an imaginary part
	equal to 0.1•f, as a simple but inaccurate way to include absorption, per
Hashimoto, Howie, & Whelan, Proc R Soc Lond A 269:80-103 (1962)

	”WK”: Uses the Weickenmeier-Kohl parameterization for
	the elastic form factors, including Debye-Waller factor,
with no absorption, as described in
Weickenmeier & Kohl, Acta Cryst A 47:5 (1991)

	”WK-C”: WK form factors plus the “core” contribution to absorption
	following H. Rose, Optik 45:2 (1976)

”WK-P”: WK form factors plus the phonon/TDS absorptive contribution
“WK-CP”: WK form factors plus core and phonon absorption (default)

	k_max (float) – max scattering length to compute structure factors to.
Setting this to 2x the k_max used in generating the beamsn
included in a simulation will retain all possible couplings

	thermal_sigma (float or dict{int->float}) – RMS atomic diplacement for attenuating form factors to account for thermal
broadening of the potential, only used when a “WK” method is
selected. Required when WK-P or WK-CP are selected.
Units are Å. (This is often written as 〈u〉in papers)
To specify different 〈u〉 for each element, pass a dictionary
with Z as the key, mapping to the appropriate float value

	tol_structure_factor (float) – tolerance for removing low-valued structure factors. Reflections
with structure factor below the tolerance will have zero coupling
in the dynamical calculations (i.e. they are the ignored weak beams)

	recompute_kinematic_structure_factors (bool) – When True, recomputes the kinematic structure
factors using the same tol_structure_factor, and with k_max
set to half the k_max for the dynamical factors. The factor
of half ensures that every beam in a simulation can couple to
every other beam (no high-angle couplings in the Bloch matrix
are set to zero.)

	g_vec_precision (optional int) – If specified, rounds |g| to this many decimal places so that
automatic caching of the atomic form factors is not slowed
down due to floating point errors. Setting this to 3 can give
substantial speedup at the cost of some reduced accuracy

	factors. (See WK_scattering_factors.py for details on the Weickenmeier-Kohl form) –

	
__init__(positions, numbers, cell)

	
	Parameters:

	
	positions (np.array) – fractional coordinates of each atom in the cell

	numbers (np.array) – Z number for each atom in the cell, if one number passed it is used for all atom positions

	cell (np.array) – specify the unit cell, using a variable number of parameters
1 number: the lattice parameter for a cubic cell
3 numbers: the three lattice parameters for an orthorhombic cell
6 numbers: the a,b,c lattice parameters and ɑ,β,ɣ angles for any cell
3x3 array: row vectors containing the (u,v,w) lattice vectors.

	
positions

	fractional atomic coordinates

	
get_strained_crystal(exx=0.0, eyy=0.0, ezz=0.0, exy=0.0, exz=0.0, eyz=0.0, deformation_matrix=None, return_deformation_matrix=False)

	This method returns new Crystal class with strain applied. The directions of (x,y,z)
are with respect to the default Crystal orientation, which can be checked with
print(Crystal.lat_real) applied to the original Crystal.

Strains are given in fractional values, so exx = 0.01 is 1% strain along the x direction.
Deformation matrix should be of the form:

	deformation_matrix = np.array([
	[1.0+exx, 1.0*exy, 1.0*exz],
[1.0*exy, 1.0+eyy, 1.0*eyz],
[1.0*exz, 1.0*eyz, 1.0+ezz],

])

	Parameters:

	
	(float) (eyz) – fractional strain along the xx direction

	(float) – fractional strain along the yy direction

	(float) – fractional strain along the zz direction

	(float) – fractional strain along the xy direction

	(float) – fractional strain along the xz direction

	(float) – fractional strain along the yz direction

	(np.ndarray) (deformation_matrix) – 3x3 array describing deformation matrix

	(bool) (return_deformation_matrix) – boolean switch to return deformation matrix

	Returns:

	
	return_deformation_matrix == False – strained_crystal (py4DSTEM.Crystal)

	return_deformation_matrix == True – (strained_crystal, deformation_matrix)

	
from_CIF(conventional_standard_structure=True)

	Create a Crystal object from a CIF file, using pymatgen to import the CIF

Note that pymatgen typically prefers to return primitive unit cells,
which can be overridden by setting conventional_standard_structure=True.

	Parameters:

	
	CIF – (str or Path) path to the CIF File

	conventional_standard_structure – (bool) if True, conventional standard unit cell will be returned
instead of the primitive unit cell pymatgen typically returns

	
from_pymatgen_structure(formula=None, space_grp=None, MP_key=None, conventional_standard_structure=True)

	Create a Crystal object from a pymatgen Structure object.
If a Materials Project API key is installed, you may pass
the Materials Project ID of a structure, which will be
fetched through the MP API. For setup information see:
https://pymatgen.org/usage.html#setting-the-pmg-mapi-key-in-the-config-file.
Alternatively, Materials Porject API key can be pass as an argument through
the function (MP_key). To get your API key, please visit Materials Project website
and login/sign up using your email id. Once logged in, go to the dashboard
to generate your own API key (https://materialsproject.org/dashboard).

Note that pymatgen typically prefers to return primitive unit cells,
which can be overridden by setting conventional_standard_structure=True.

	Parameters:

	
	structure – (pymatgen Structure or str), if specified as a string, it will be considered
as a Materials Project ID of a structure, otherwise it will accept only
pymatgen Structure object. if None, MP database will be queried using the
specified formula and/or space groups for the available structure

	formula – (str), pretty formula to search in the MP database, (note that the forumlas in MP
database are not always formatted in the conventional order. Please
visit Materials Project website for information (https://materialsproject.org/)
if None, structure argument must not be None

	space_grp – (int) space group number of the forumula provided to query MP database. If None, MP will search
for all the available space groups for the formula provided and will consider the
one with lowest unit cell volume, only specify when using formula to search MP
database

	MP_key – (str) Materials Project API key

	conventional_standard_structure – (bool) if True, conventional standard unit cell will be returned
instead of the primitive unit cell pymatgen returns

	
from_unitcell_parameters(elements, positions, space_group=None, lattice_type='cubic', from_cartesian=False, conventional_standard_structure=True)

	Create a Crystal using pymatgen to generate unit cell manually from user inputs

	Parameters:

	
	latt_params – (list of floats) list of lattice parameters. For example, for cubic: latt_params = [a],
for hexagonal: latt_params = [a, c], for monoclinic: latt_params = [a,b,c,beta],
and in general: latt_params = [a,b,c,alpha,beta,gamma]

	elements – (list of strings) list of elements, for example for SnS: elements = [“Sn”, “S”]

	positions – (list) list of (x,y,z) positions for each element present in the elements, default: fractional coord

	space_group – (optional) (string or int) space group of the crystal system, if specified, unit cell will be created using
pymatgen Structure.from_spacegroup function

	lattice_type – (string) type of crystal family: cubic, hexagonal, triclinic etc; default: ‘cubic’

	from_cartesian – (bool) if True, positions will be considered as cartesian, default: False

	conventional_standard_structure – (bool) if True, conventional standard unit cell will be returned
instead of the primitive unit cell pymatgen returns

	Returns:

	Crystal object

	
setup_diffraction(accelerating_voltage: float)

	Set up attributes used for diffraction calculations without going
through the full ACOM pipeline.

	
calculate_structure_factors(k_max: float = 2.0, tol_structure_factor: float = 0.0001, return_intensities: bool = False)

	Calculate structure factors for all hkl indices up to max scattering vector k_max

	Parameters:

	
	k_max (float) – max scattering vector to include (1/Angstroms)

	tol_structure_factor (float) – tolerance for removing low-valued structure factors

	return_intensities (bool) – return the intensities and positions of all structure factor peaks.

	Returns:

	Tuple of the q vectors and intensities of each structure factor.

	Return type:

	(q_SF, I_SF)

	
generate_diffraction_pattern(orientation: Orientation | None = None, ind_orientation: int | None = 0, orientation_matrix: ndarray | None = None, zone_axis_lattice: ndarray | None = None, proj_x_lattice: ndarray | None = None, foil_normal_lattice: list | tuple | ndarray | None = None, zone_axis_cartesian: ndarray | None = None, proj_x_cartesian: ndarray | None = None, foil_normal_cartesian: list | tuple | ndarray | None = None, sigma_excitation_error: float = 0.02, tol_excitation_error_mult: float = 3, tol_intensity: float = 0.0001, k_max: float | None = None, keep_qz=False, return_orientation_matrix=False)

	Generate a single diffraction pattern, return all peaks as a pointlist.

	Parameters:

	
	orientation (Orientation) – an Orientation class object

	orientations (ind_orientation If input is an Orientation class object with multiple) – this input can be used to select a specific orientation.

:param : this input can be used to select a specific orientation.
:param orientation_matrix: (3,3) orientation matrix, where columns represent projection directions.
:type orientation_matrix: array
:param zone_axis_lattice: (3,) projection direction in lattice indices
:type zone_axis_lattice: array
:param proj_x_lattice: (3,) x-axis direction in lattice indices
:type proj_x_lattice: array
:param zone_axis_cartesian: (3,) cartesian projection direction
:type zone_axis_cartesian: array
:param proj_x_cartesian: (3,) cartesian projection direction
:type proj_x_cartesian: array
:param foil_normal: 3 element foil normal - set to None to use zone_axis
:param proj_x_axis: 3 element vector defining image x axis (vertical)
:type proj_x_axis: np float vector
:param accel_voltage: Accelerating voltage in Volts. If not specified,

we check to see if crystal already has voltage specified.

	Parameters:

	
	sigma_excitation_error (float) – sigma value for envelope applied to s_g (excitation errors) in units of inverse Angstroms

	tol_excitation_error_mult (float) – tolerance in units of sigma for s_g inclusion

	tol_intensity (np float) – tolerance in intensity units for inclusion of diffraction spots

	k_max (float) – Maximum scattering vector

	keep_qz (bool) – Flag to return out-of-plane diffraction vectors

	return_orientation_matrix (bool) – Return the orientation matrix

	Returns:

	list of all Bragg peaks with fields [qx, qy, intensity, h, k, l]
orientation_matrix (array): 3x3 orientation matrix (optional)

	Return type:

	bragg_peaks (PointList)

	
generate_ring_pattern(k_max=2.0, use_bloch=False, thickness=None, bloch_params=None, orientation_plan_params=None, sigma_excitation_error=0.02, tol_intensity=0.001, plot_rings=True, plot_params={}, return_calc=True)

	Calculate polycrystalline diffraction pattern from structure

	Parameters:

	
	k_max (float) – Maximum scattering vector

	use_bloch (bool) – if true, use dynamic instead of kinematic approach

	thickness (float) – thickness in Ångström to evaluate diffraction patterns,
only needed for dynamical calculations

	bloch_params (dict) – optional, parameters to calculate dynamical structure factor,
see calculate_dynamical_structure_factors doc strings

	orientation_plan_params (dict) – optional, parameters to calculate orientation plan,
see orientation_plan doc strings

	sigma_excitation_error (float) – sigma value for envelope applied to s_g (excitation errors)
in units of inverse Angstroms

	tol_intensity (np float) – tolerance in intensity units for inclusion of diffraction spots

	plot_rings (bool) – if true, plot diffraction rings with plot_ring_pattern

	return_calc (bool) – return radii and intensities

	Returns:

	radii of ring pattern in units of scattering vector k
intensity_unique (np array): intensity of rings weighted by frequency of diffraciton spots

	Return type:

	radii_unique (np array)

	
excitation_errors(g, foil_normal=None)

	Calculate the excitation errors, assuming k0 = [0, 0, -1/lambda].
If foil normal is not specified, we assume it is [0,0,-1].

	
calculate_bragg_peak_histogram(bragg_peaks, bragg_k_power=1.0, bragg_intensity_power=1.0, k_min=0.0, k_max=None, k_step=0.005)

	Prepare experimental bragg peaks for lattice parameter or unit cell fitting.

	Parameters:

	
	bragg_peaks (BraggVectors) – Input Bragg vectors.

	bragg_k_power (float) – Input Bragg peak intensities are multiplied by k**bragg_k_power
to change the weighting of longer scattering vectors

	bragg_intensity_power (float) – Input Bragg peak intensities are raised power **bragg_intensity_power.

	k_min (float) – min k value for fitting range (Å^-1)

	k_max (float) – max k value for fitting range (Å^-1)

	k_step (float) – step size of k in fitting range (Å^-1)

	Returns:

	Bragg vectors after calibration
fig, ax (handles): Optional figure and axis handles, if returnfig=True.

	Return type:

	bragg_peaks_cali (BraggVectors)

	
py4DSTEM.process.diffraction.crystal.generate_moire_diffraction_pattern(bragg_peaks_0, bragg_peaks_1, thresh_0=0.0002, thresh_1=0.0002, exx_1=0.0, eyy_1=0.0, exy_1=0.0, phi_1=0.0, power=2.0)

	Calculate a Moire lattice from 2 parent diffraction patterns. The second lattice can be rotated
and strained with respect to the original lattice. Note that this strain is applied in real space,
and so the inverse of the calculated infinitestimal strain tensor is applied.

	Parameters:

	
	bragg_peaks_0 (BraggVector) – Bragg vectors for parent lattice 0.

	bragg_peaks_1 (BraggVector) – Bragg vectors for parent lattice 1.

	thresh_0 (float) – Intensity threshold for structure factors from lattice 0.

	thresh_1 (float) – Intensity threshold for structure factors from lattice 1.

	exx_1 (float) – Strain of lattice 1 in x direction (vertical) in real space.

	eyy_1 (float) – Strain of lattice 1 in y direction (horizontal) in real space.

	exy_1 (float) – Shear strain of lattice 1 in (x,y) direction (diagonal) in real space.

	phi_1 (float) – Rotation of lattice 1 in real space.

	power (float) – Plotting power law (default is amplitude**2.0, i.e. intensity).

	Returns:

	parent_peaks_0, parent_peaks_1, moire_peaks – Bragg vectors for the rotated & strained parent lattices
and the moire lattice

	Return type:

	BraggVectors

	
py4DSTEM.process.diffraction.crystal.plot_moire_diffraction_pattern(bragg_parent_0, bragg_parent_1, bragg_moire, int_range=(0, 0.005), k_max=1.0, plot_subpixel=True, labels=None, marker_size_parent=16, marker_size_moire=4, text_size_parent=10, text_size_moire=6, add_labels_parent=False, add_labels_moire=False, dist_labels=0.03, dist_check=0.06, sep_labels=0.03, figsize=(8, 6), returnfig=False)

	Plot Moire lattice and parent lattices.

	Parameters:

	
	bragg_peaks_0 (BraggVector) – Bragg vectors for parent lattice 0.

	bragg_peaks_1 (BraggVector) – Bragg vectors for parent lattice 1.

	bragg_moire (BraggVector) – Bragg vectors for moire lattice.

	int_range ((float, float)) – Plotting intensity range for the Moire peaks.

	k_max (float) – Max k value of the plotted Moire lattice.

	plot_subpixel (bool) – Apply subpixel corrections to the Bragg spot positions.
Matplotlib default scatter plot rounds to the nearest pixel.

	labels (list) – List of text labels for parent lattices

	marker_size_parent (float) – Size of plot markers for the two parent lattices.

	marker_size_moire (float) – Size of plot markers for the Moire lattice.

	text_size_parent (float) – Label text size for parent lattice.

	text_size_moire (float) – Label text size for Moire lattice.

	add_labels_parent (bool) – Plot the parent lattice index labels.

	add_labels_moire (bool) – Plot the parent lattice index labels for the Moire spots.

	dist_labels (float) – Distance to move the labels off the spots.

	dist_check (float) – Set to some distance to “push” the labels away from each other if they are within this distance.

	sep_labels (float) – Separation distance for labels which are “pushed” apart.

	figsize ((float,float)) – Size of output figure.

	returnfig (bool) – Return the (fix,ax) handles of the plot.

	Returns:

	fig, ax – Figure and axes handles for the moire plot.

	Return type:

	matplotlib handles (optional)

	
py4DSTEM.process.diffraction.crystal_ACOM.orientation_plan(self, zone_axis_range: ndarray = array([[0, 1, 1], [1, 1, 1]]), angle_step_zone_axis: float = 2.0, angle_coarse_zone_axis: float | None = None, angle_refine_range: float | None = None, angle_step_in_plane: float = 2.0, accel_voltage: float = 300000.0, corr_kernel_size: float = 0.08, radial_power: float = 1.0, intensity_power: float = 0.25, calculate_correlation_array=True, tol_peak_delete=None, tol_distance: float = 0.01, fiber_axis=None, fiber_angles=None, figsize: list | tuple | ndarray = (6, 6), CUDA: bool = False, progress_bar: bool = True)

	Calculate the rotation basis arrays for an SO(3) rotation correlogram.

	Parameters:

	
	zone_axis_range (float) – Row vectors give the range for zone axis orientations.
If user specifies 2 vectors (2x3 array), we start at [0,0,1]

to make z-x-z rotation work.

If user specifies 3 vectors (3x3 array), plan will span these vectors.
Setting to ‘full’ as a string will use a hemispherical range.
Setting to ‘half’ as a string will use a quarter sphere range.
Setting to ‘fiber’ as a string will make a spherical cap around a given vector.
Setting to ‘auto’ will use pymatgen to determine the point group symmetry

of the structure and choose an appropriate zone_axis_range

	angle_step_zone_axis (float) – Approximate angular step size for zone axis search [degrees]

	angle_coarse_zone_axis (float) – Coarse step size for zone axis search [degrees]. Setting to
None uses the same value as angle_step_zone_axis.

	angle_refine_range (float) – Range of angles to use for zone axis refinement. Setting to
None uses same value as angle_coarse_zone_axis.

	angle_step_in_plane (float) – Approximate angular step size for in-plane rotation [degrees]

	accel_voltage (float) – Accelerating voltage for electrons [Volts]

	corr_kernel_size (float) – Correlation kernel size length in Angstroms

	radial_power (float) – Power for scaling the correlation intensity as a function of the peak radius

	intensity_power (float) – Power for scaling the correlation intensity as a function of the peak intensity

	calculate_correlation_array (bool) – Set to false to skip calculating the correlation array.
This is useful when we only want the angular range / rotation matrices.

	tol_peak_delete (float) – Distance to delete peaks for multiple matches.
Default is kernel_size * 0.5

	tol_distance (float) – Distance tolerance for radial shell assignment [1/Angstroms]

	fiber_axis (float) – (3,) vector specifying the fiber axis

	fiber_angles (float) – (2,) vector specifying angle range from fiber axis, and in-plane angular range [degrees]

	cartesian_directions (bool) – When set to true, all zone axes and projection directions
are specified in Cartesian directions.

	figsize (float) – (2,) vector giving the figure size

	CUDA (bool) – Use CUDA for the Fourier operations.

	progress_bar (bool) – If false no progress bar is displayed

	
py4DSTEM.process.diffraction.crystal_ACOM.match_orientations(self, bragg_peaks_array: PointListArray, num_matches_return: int = 1, min_angle_between_matches_deg=None, min_number_peaks: int = 3, inversion_symmetry: bool = True, multiple_corr_reset: bool = True, return_orientation: bool = True, progress_bar: bool = True)

	
	Parameters:

	
	bragg_peaks_array (PointListArray) – PointListArray containing the Bragg peaks and intensities, with calibrations applied

	num_matches_return (int) – return these many matches as 3th dim of orient (matrix)

	min_angle_between_matches_deg (int) – Minimum angle between zone axis of multiple matches, in degrees.
Note that I haven’t thought how to handle in-plane rotations, since multiple matches are possible.

	min_number_peaks (int) – Minimum number of peaks required to perform ACOM matching

	inversion_symmetry (bool) – check for inversion symmetry in the matches

	multiple_corr_reset (bool) – keep original correlation score for multiple matches

	return_orientation (bool) – Return orientation map from function for inspection.
The map is always stored in the Crystal object.

	progress_bar (bool) – Show or hide the progress bar

	
py4DSTEM.process.diffraction.crystal_ACOM.match_single_pattern(self, bragg_peaks: PointList, num_matches_return: int = 1, min_angle_between_matches_deg=None, min_number_peaks=3, inversion_symmetry=True, multiple_corr_reset=True, plot_polar: bool = False, plot_corr: bool = False, returnfig: bool = False, figsize: list | tuple | ndarray = (12, 4), verbose: bool = False)

	Solve for the best fit orientation of a single diffraction pattern.

	Parameters:

	
	bragg_peaks (PointList) – numpy array containing the Bragg positions and intensities (‘qx’, ‘qy’, ‘intensity’)

	num_matches_return (int) – return these many matches as 3th dim of orient (matrix)

	min_angle_between_matches_deg (int) – Minimum angle between zone axis of multiple matches, in degrees.
Note that I haven’t thought how to handle in-plane rotations, since multiple matches are possible.

	min_number_peaks (int) – Minimum number of peaks required to perform ACOM matching

	bool (multiple_corr_reset) – check for inversion symmetry in the matches

	bool – keep original correlation score for multiple matches

	subpixel_tilt (bool) – set to false for faster matching, returning the nearest corr point

	plot_polar (bool) – set to true to plot the polar transform of the diffraction pattern

	plot_corr (bool) – set to true to plot the resulting correlogram

	returnfig (bool) – return figure handles

	figsize (list) – size of figure

	verbose (bool) – Print the fitted zone axes, correlation scores

	CUDA (bool) – Enable CUDA for the FFT steps

	Returns:

	
	orientation (Orientation) – Orientation class containing all outputs

	fig, ax (handles) – Figure handles for the plotting output

	
py4DSTEM.process.diffraction.crystal_ACOM.cluster_grains(self, threshold_add=1.0, threshold_grow=0.1, angle_tolerance_deg=5.0, progress_bar=True)

	Cluster grains using rotation criterion, and correlation values.

	Parameters:

	
	threshold_add (float) – Minimum signal required for a probe position to initialize a cluster.

	threshold_grow (float) – Minimum signal required for a probe position to be added to a cluster.

	angle_tolerance_deg (float) – Rotation rolerance for clustering grains.

	progress_bar (bool) – Turns on the progress bar for the polar transformation

	
py4DSTEM.process.diffraction.crystal_ACOM.cluster_orientation_map(self, stripe_width=(2, 2), area_min=2)

	Produce a new orientation map from the clustered grains.
Use a stripe pattern for the overlapping grains.

	Parameters:

	
	stripe_width ((int,int)) – Width of stripes for plotting maps with overlapping grains

	area_min ((int)) – Minimum size of grains to include

	Returns:

	The clustered orientation map

	Return type:

	orientation_map

	
py4DSTEM.process.diffraction.crystal_ACOM.calculate_strain(self, bragg_peaks_array: PointListArray, orientation_map: OrientationMap, corr_kernel_size=None, sigma_excitation_error=0.02, tol_excitation_error_mult: float = 3, tol_intensity: float = 0.0001, k_max: float | None = None, min_num_peaks=5, rotation_range=None, mask_from_corr=True, corr_range=(0, 2), corr_normalize=True, progress_bar=True)

	This function takes in both a PointListArray containing Bragg peaks, and a
corresponding OrientationMap, and uses least squares to compute the
deformation tensor which transforms the simulated diffraction pattern
into the experimental pattern, for all probe positons.

TODO: add robust fitting?

	Parameters:

	
	bragg_peaks_array (PointListArray) – All Bragg peaks

	orientation_map (OrientationMap) – Orientation map generated from ACOM

	corr_kernel_size (float) – Correlation kernel size - if user does
not specify, uses self.corr_kernel_size.

	sigma_excitation_error (float) – sigma value for envelope applied to s_g (excitation errors) in units of inverse Angstroms

	tol_excitation_error_mult (float) – tolerance in units of sigma for s_g inclusion

	tol_intensity (np float) – tolerance in intensity units for inclusion of diffraction spots

	k_max (float) – Maximum scattering vector

	min_num_peaks (int) – Minimum number of peaks required.

	rotation_range (float) – Maximum rotation range in radians (for symmetry reduction).

	progress_bar (bool) – Show progress bar

	mask_from_corr (bool) – Use ACOM correlation signal for mask

	corr_range (np.ndarray) – Range of correlation signals for mask

	corr_normalize (bool) – Normalize correlation signal before masking

	Returns:

	strain tensor

	Return type:

	strain_map (RealSlice)

	
py4DSTEM.process.diffraction.crystal_ACOM.save_ang_file(self, file_name, orientation_map, ind_orientation=0, pixel_size=1.0, pixel_units='px', transpose_xy=True, flip_x=False)

	This function outputs an ascii text file in the .ang format, containing
the Euler angles of an orientation map.

	Parameters:

	
	file_name (str) – Path to save .ang file.

	orientation_map (OrientationMap) – Class containing orientation matrices,
correlation values, etc.

	ind_orientation (int) – Which orientation match to plot if num_matches > 1

	pixel_size (float) – Pixel size, if known.

	pixel_units (str) – Units of the pixel size

	transpose_xy (bool) – Transpose x and y pixel coordinates.

	flip_x (bool) – Swap x direction pixels (after transpose).

	Returns:

	nothing

	
py4DSTEM.process.diffraction.crystal_ACOM.symmetry_reduce_directions(self, orientation, match_ind=0, plot_output=False, figsize=(15, 6), el_shift=0.0, az_shift=-30.0)

	This function calculates the symmetry-reduced cartesian directions from
and orientation matrix stored in orientation.matrix, and outputs them
into orientation.family. It optionally plots the 3D output.

	
class py4DSTEM.process.diffraction.crystal_bloch.DynamicalMatrixCache(has_valid_cache: bool = False, cached_U_gmh: <built-in function array> = None)

	
	
__init__(has_valid_cache: bool = False, cached_U_gmh: array | None = None) → None

	

	
py4DSTEM.process.diffraction.crystal_bloch.calculate_dynamical_structure_factors(self, accelerating_voltage: float, method: str = 'WK-CP', k_max: float = 2.0, thermal_sigma: float | dict | None = None, tol_structure_factor: float = 0.0, recompute_kinematic_structure_factors=True, g_vec_precision=None, verbose=True)

	Calculate and store the relativistic corrected structure factors used for Bloch computations
in a dictionary for faster lookup.

	Parameters:

	
	accelerating_voltage (float) – accelerating voltage in eV

	method (str) – Choose which parameterization of the structure factors to use:
“Lobato”: Uses the kinematic structure factors from crystal.py, using the parameterization from

Lobato & Van Dyck, Acta Cryst A 70:6 (2014)

	”Lobato-absorptive”: Lobato factors plus an imaginary part
	equal to 0.1•f, as a simple but inaccurate way to include absorption, per
Hashimoto, Howie, & Whelan, Proc R Soc Lond A 269:80-103 (1962)

	”WK”: Uses the Weickenmeier-Kohl parameterization for
	the elastic form factors, including Debye-Waller factor,
with no absorption, as described in
Weickenmeier & Kohl, Acta Cryst A 47:5 (1991)

	”WK-C”: WK form factors plus the “core” contribution to absorption
	following H. Rose, Optik 45:2 (1976)

”WK-P”: WK form factors plus the phonon/TDS absorptive contribution
“WK-CP”: WK form factors plus core and phonon absorption (default)

	k_max (float) – max scattering length to compute structure factors to.
Setting this to 2x the k_max used in generating the beamsn
included in a simulation will retain all possible couplings

	thermal_sigma (float or dict{int->float}) – RMS atomic diplacement for attenuating form factors to account for thermal
broadening of the potential, only used when a “WK” method is
selected. Required when WK-P or WK-CP are selected.
Units are Å. (This is often written as 〈u〉in papers)
To specify different 〈u〉 for each element, pass a dictionary
with Z as the key, mapping to the appropriate float value

	tol_structure_factor (float) – tolerance for removing low-valued structure factors. Reflections
with structure factor below the tolerance will have zero coupling
in the dynamical calculations (i.e. they are the ignored weak beams)

	recompute_kinematic_structure_factors (bool) – When True, recomputes the kinematic structure
factors using the same tol_structure_factor, and with k_max
set to half the k_max for the dynamical factors. The factor
of half ensures that every beam in a simulation can couple to
every other beam (no high-angle couplings in the Bloch matrix
are set to zero.)

	g_vec_precision (optional int) – If specified, rounds |g| to this many decimal places so that
automatic caching of the atomic form factors is not slowed
down due to floating point errors. Setting this to 3 can give
substantial speedup at the cost of some reduced accuracy

	factors. (See WK_scattering_factors.py for details on the Weickenmeier-Kohl form) –

	
py4DSTEM.process.diffraction.crystal_bloch.generate_dynamical_diffraction_pattern(self, beams: PointList, thickness: float | list | tuple | ndarray, zone_axis_lattice: ndarray | None = None, zone_axis_cartesian: ndarray | None = None, foil_normal_lattice: ndarray | None = None, foil_normal_cartesian: ndarray | None = None, verbose: bool = False, always_return_list: bool = False, dynamical_matrix_cache: DynamicalMatrixCache | None = None, return_complex: bool = False, return_eigenvectors: bool = False, return_Smatrix: bool = False) → PointList | List[PointList]

	Generate a dynamical diffraction pattern (or thickness series of patterns)
using the Bloch wave method.

The beams to be included in the Bloch calculation must be pre-calculated
and passed as a PointList containing at least (qx, qy, h, k, l) fields.

If thickness is a single value, one new PointList will be returned.
If thickness is a sequence of values, a list of PointLists will be returned,

corresponding to each thickness value in the input.

	Frequent reference will be made to “Introduction to conventional transmission electron microscopy”
	by DeGraef, whose overall approach we follow here.

	Parameters:

	
	beams (PointList) – PointList from the kinematical diffraction generator
which will define the beams included in the Bloch calculation

	thickness (float or list/array) – The main Bloch calculation can be reused for multiple thicknesses
without much overhead.

	direction. (zone_axis & foil_normal Incident beam orientation and foil normal) – Each can be specified in the Cartesian or crystallographic basis,
using e.g. zone_axis_lattice or zone_axis_cartesian. These are
internally parsed by Crystal.parse_orientation

	Less commonly used args:
	
	always_return_list (bool): When True, the return is always a list of PointLists,
	even for a single thickness

	dynamical_matrix_cache: (DyanmicalMatrixCache) Dataclass used for caching of the
	dynamical matrix. If the cached matrix does not exist, it is
computed and stored. Subsequent calls will use the cached matrix
for the off-diagonal components of the A matrix and overwrite
the diagonal elements. This is used for CBED calculations.

return_complex (bool): When True, returns both the complex amplitude and intensity. Defaults to (False)

	Returns:

	
	Bragg peaks with fields [qx, qy, intensity, h, k, l]
	or

	[bragg_peaks,…] (PointList): If thickness is a list/array, or always_return_list is True,
	a list of PointLists is returned.

	if return_complex = True:
	
	bragg_peaks (PointList): Bragg peaks with fields [qx, qy, intensity, amplitude, h, k, l]
	or

	[bragg_peaks,…] (PointList): If thickness is a list/array, or always_return_list is True,
	a list of PointLists is returned.

	if return_Smatrix = True:
	
	[S_matrix, …], psi_0: Returns a list of S-matrices for each thickness (this is always a list),
	and the vector representing the incident plane wave. The beams of the
S-matrix have the same order as in the input beams.

	Return type:

	bragg_peaks (PointList)

	
py4DSTEM.process.diffraction.crystal_bloch.generate_CBED(self, beams: ~emdfile.classes.pointlist.PointList, thickness: float | list | tuple | ~numpy.ndarray, alpha_mrad: float, pixel_size_inv_A: float, DP_size_inv_A: float | None = None, zone_axis_lattice: ~numpy.ndarray | None = None, zone_axis_cartesian: ~numpy.ndarray | None = None, foil_normal_lattice: ~numpy.ndarray | None = None, foil_normal_cartesian: ~numpy.ndarray | None = None, LACBED: bool = False, dtype: ~numpy.dtype = <class 'numpy.float32'>, verbose: bool = False, progress_bar: bool = True, return_mask: bool = False, two_beam_zone_axis_lattice: ~numpy.ndarray | None = None, return_probe: bool = False) → ndarray | List[ndarray] | Dict[Tuple[int], ndarray]

	Generate a dynamical CBED pattern using the Bloch wave method.

	Parameters:

	
	beams (PointList) – PointList from the kinematical diffraction generator
which will define the beams included in the Bloch calculation

	thickness (float or list/array) – The main Bloch calculation can be reused for multiple thicknesses
without much overhead.

	alpha_mrad (float) – Convergence angle for CBED pattern. Note that if disks in the calculation
overlap, they will be added incoherently, and the resulting CBED will
thus represent the average over the unit cell (i.e. a PACBED pattern,
as described in LeBeau et al., Ultramicroscopy 110(2): 2010.)

	pixel_size_inv_A (float) – CBED pixel size in 1/Å.

	DP_size_inv_A (optional float) – If specified, defines the extents of the diffraction pattern.
If left unspecified, the DP will be automatically scaled to
fit all of the beams present in the input plus some small buffer.

	zone_axis (np float vector) – 3 element projection direction for sim pattern
Can also be a 3x3 orientation matrix (zone axis 3rd column)

	foil_normal – 3 element foil normal - set to None to use zone_axis

	LACBED (bool) – keyed by tuples of (h,k,l).

	proj_x_axis (np float vector) – 3 element vector defining image x axis (vertical)

	PointList (two_beam_zone_axis_lattice When only two beams are present in the "beams") – the computation of the projected crystallographic directions
becomes ambiguous. In this case, you must specify the indices of
the zone axis used to generate the beams.

	:paramthe computation of the projected crystallographic directions
	becomes ambiguous. In this case, you must specify the indices of
the zone axis used to generate the beams.

	Parameters:

	return_probe (bool) – If True, the probe (np.ndarray) will be returned in additon to the CBED

	Returns:

	CBED pattern as np.ndarray
If thickness is a sequence: CBED patterns for each thickness value as a list of np.ndarrays
If LACBED is True and thickness is scalar: Dictionary with tuples of ints (h,k,l) as keys, mapping to np.ndarray.
If LACBED is True and thickness is a sequence: List of dictionaries, structured as above.
If return_probe is True: will return a tuple (<CBED/LACBED object>, Probe)

	Return type:

	If thickness is a scalar

	
py4DSTEM.process.diffraction.crystal_calibrate.calibrate_pixel_size(self, bragg_peaks, scale_pixel_size=1.0, bragg_k_power=1.0, bragg_intensity_power=1.0, k_min=0.0, k_max=None, k_step=0.002, k_broadening=0.002, fit_all_intensities=True, set_calibration_in_place=False, verbose=True, plot_result=False, figsize: list | tuple | ndarray = (12, 6), returnfig=False)

	Use the calculated structure factor scattering lengths to compute 1D
diffraction patterns, and solve the best-fit relative scaling between them.
Returns the fit pixel size in Å^-1.

	Parameters:

	
	bragg_peaks (BraggVectors) – Input Bragg vectors.

	scale_pixel_size (float) – Initial guess for scaling of the existing
pixel size If the pixel size is currently uncalibrated, this is a
guess of the pixel size in Å^-1. If the pixel size is already
(approximately) calibrated, this is the scaling factor to
correct that existing calibration.

	bragg_k_power (float) – Input Bragg peak intensities are multiplied by
k**bragg_k_power to change the weighting of longer scattering vectors

	bragg_intensity_power (float) – Input Bragg peak intensities are raised
power **bragg_intensity_power.

	k_min (float) – min k value for fitting range (Å^-1)

	k_max (float) – max k value for fitting range (Å^-1)

	k_step (float) step size of k in fitting range (Å^-1) –

	k_broadening (float) – Initial guess for Gaussian broadening of simulated
pattern (Å^-1)

	fit_all_intensities (bool) – Set to true to allow all peak intensities to
change independently False forces a single intensity scaling.

	set_calibration (bool) – if True, set the fit pixel size to the calibration
metadata, and calibrate bragg_peaks

	verbose (bool) – Output the calibrated pixel size.

	plot_result (bool) – Plot the resulting fit.

	figsize (list, tuple, np.ndarray) – Figure size of the plot.

	returnfig (bool) – Return handles figure and axis

	Returns:

	fig, ax – Figure and axis handles, if returnfig=True.

	Return type:

	handles, optional

	
py4DSTEM.process.diffraction.crystal_calibrate.calibrate_unit_cell(self, bragg_peaks, coef_index=None, coef_update=None, bragg_k_power=1.0, bragg_intensity_power=1.0, k_min=0.0, k_max=None, k_step=0.005, k_broadening=0.02, fit_all_intensities=True, verbose=True, plot_result=False, figsize: list | tuple | ndarray = (12, 6), returnfig=False)

	Solve for the best fit scaling between the computed structure factors and bragg_peaks.

	Parameters:

	
	bragg_peaks (BraggVectors) – Input Bragg vectors.

	coef_index (list of ints) – List of ints that act as pointers to unit cell parameters and angles to update.

	coef_update (list of bool) – List of booleans to indicate whether or not to update the cell at
that position

	bragg_k_power (float) – Input Bragg peak intensities are multiplied by k**bragg_k_power
to change the weighting of longer scattering vectors

	bragg_intensity_power (float) – Input Bragg peak intensities are raised power **bragg_intensity_power.

	k_min (float) – min k value for fitting range (Å^-1)

	k_max (float) – max k value for fitting range (Å^-1)

	k_step (float) – step size of k in fitting range (Å^-1)

	k_broadening (float) – Initial guess for Gaussian broadening of simulated pattern (Å^-1)

	fit_all_intensities (bool) – Set to true to allow all peak intensities to change independently
False forces a single intensity scaling.

	verbose (bool) – Output the calibrated pixel size.

	plot_result (bool) – Plot the resulting fit.

	figsize (list, tuple, np.ndarray) –

	returnfig (bool) – Return handles figure and axis

	Returns:

	Optional figure and axis handles, if returnfig=True.

	Return type:

	fig, ax (handles)

Details:
User has the option to define what is allowed to update in the unit cell using the arguments
coef_index and coef_update. Each has 6 entries, corresponding to the a, b, c, alpha, beta, gamma
parameters of the unit cell, in this order. The coef_update argument is a list of bools specifying
whether or not the unit cell value will be allowed to change (True) or must maintain the original
value (False) upon fitting. The coef_index argument provides a pointer to the index in which the
code will update to.

For example, to update a, b, c, alpha, beta, gamma all independently of eachother, the following
arguments should be used:

coef_index = [0, 1, 2, 3, 4, 5]
coef_update = [True, True, True, True, True, True,]

The default is set to automatically define what can update in a unit cell based on the
point group constraints. When either ‘coef_index’ or ‘coef_update’ are None, these constraints
will be automatically pulled from the pointgroup.

	For example, the default for cubic unit cells is:
	coef_index = [0, 0, 0, 3, 3, 3]
coef_update = [True, True, True, False, False, False]

Which allows a, b, and c to update (True in first 3 indices of coef_update)
but b and c update based on the value of a (0 in the 1 and 2 list entries in coef_index) such
that a = b = c. While coef_update is False for alpha, beta, and gamma (entries 3, 4, 5), no
updates will be made to the angles.

The user has the option to predefine coef_index or coef_update to override defaults. In the
coef_update list, there must be 6 entries and each are boolean. In the coef_index list, there
must be 6 entries, with the first 3 entries being between 0 - 2 and the last 3 entries between
3 - 5. These act as pointers to pull the updated parameter from.

	
class py4DSTEM.process.diffraction.crystal_phase.Crystal_Phase(crystals, orientation_maps, name)

	A class storing multiple crystal structures, and associated diffraction data.
Must be initialized after matching orientations to a pointlistarray???

	
__init__(crystals, orientation_maps, name)

	
	Parameters:

	
	crystals (list) – List of crystal instances

	orientation_maps (list) – List of orientation maps

	name (str) – Name of Crystal_Phase instance

	
plot_all_phase_maps(map_scale_values=None, index=0)

	Visualize phase maps of dataset.

	Parameters:

	map_scale_values (float) – Value to scale correlations by

	
quantify_phase(pointlistarray, tolerance_distance=0.08, method='nnls', intensity_power=0, mask_peaks=None)

	Quantification of the phase of a crystal based on the crystal instances and the pointlistarray.

	Parameters:

	
	pointlisarray (pointlistarray) – Pointlistarray to quantify phase of

	tolerance_distance (float) – Distance allowed between a peak and match

	method (str) – Numerical method used to quantify phase

	intensity_power (float) – …

	mask_peaks (list, optional) – A pointer of which positions to mask peaks from

Details:

	
quantify_phase_pointlist(pointlistarray, position, method='nnls', tolerance_distance=0.08, intensity_power=0, mask_peaks=None)

	
	Parameters:

	
	pointlisarray (pointlistarray) – Pointlistarray to quantify phase of

	position (tuple/list) – Position of pointlist in pointlistarray

	tolerance_distance (float) – Distance allowed between a peak and match

	method (str) – Numerical method used to quantify phase

	intensity_power (float) – …

	mask_peaks (list, optional) – A pointer of which positions to mask peaks from

	Returns:

	Peak matches in the rows of array and the crystals in the columns
phase_weights (np.ndarray): Weights of each phase
phase_residuals (np.ndarray): Residuals
crystal_identity (list): List of lists, where the each entry represents the position in the

crystal and orientation match that is associated with the phase
weights. for example, if the output was [[0,0], [0,1], [1,0], [0,1]],
the first entry [0,0] in phase weights is associated with the first crystal
the first match within that crystal. [0,1] is the first crystal and the
second match within that crystal.

	Return type:

	pointlist_peak_intensity_matches (np.ndarray)

	
py4DSTEM.process.diffraction.crystal_viz.plot_structure(self, orientation_matrix: ndarray | None = None, zone_axis_lattice: ndarray | None = None, proj_x_lattice: ndarray | None = None, zone_axis_cartesian: ndarray | None = None, proj_x_cartesian: ndarray | None = None, size_marker: float = 400, tol_distance: float = 0.001, plot_limit: ndarray | None = None, camera_dist: float | None = None, show_axes: bool = False, perspective_axes: bool = True, figsize: tuple | list | ndarray = (8, 8), returnfig: bool = False)

	Quick 3D plot of the untit cell /atomic structure.

	Parameters:

	
	orientation_matrix (array) – (3,3) orientation matrix, where columns represent projection directions.

	zone_axis_lattice (array) – (3,) projection direction in lattice indices

	proj_x_lattice (array) – (3,) x-axis direction in lattice indices

	zone_axis_cartesian (array) – (3,) cartesian projection direction

	proj_x_cartesian (array) – (3,) cartesian projection direction

	scale_markers (float) – Size scaling for markers

	tol_distance (float) – Tolerance for repeating atoms on edges on cell boundaries.

	plot_limit (float) – (2,3) numpy array containing x y z plot min and max in columns.
Default is 1.1* unit cell dimensions.

	camera_dist (float) – Move camera closer to the plot (relative to matplotlib default of 10)

	show_axes (bool) – Whether to plot axes or not.

	perspective_axes (bool) – Select either perspective (true) or orthogonal (false) axes

	figsize (2 element float) – Size scaling of figure axes.

	returnfig (bool) – Return figure and axes handles.

	Returns:

	fig, ax (optional) figure and axes handles

	
py4DSTEM.process.diffraction.crystal_viz.plot_structure_factors(self, orientation_matrix: ndarray | None = None, zone_axis_lattice: ndarray | None = None, proj_x_lattice: ndarray | None = None, zone_axis_cartesian: ndarray | None = None, proj_x_cartesian: ndarray | None = None, scale_markers: float = 1000.0, plot_limit: list | tuple | ndarray | None = None, camera_dist: float | None = None, show_axes: bool = True, perspective_axes: bool = True, figsize: list | tuple | ndarray = (8, 8), returnfig: bool = False)

	3D scatter plot of the structure factors using magnitude^2, i.e. intensity.

	Parameters:

	
	orientation_matrix (array) – (3,3) orientation matrix, where columns represent projection directions.

	zone_axis_lattice (array) – (3,) projection direction in lattice indices

	proj_x_lattice (array) – (3,) x-axis direction in lattice indices

	zone_axis_cartesian (array) – (3,) cartesian projection direction

	proj_x_cartesian (array) – (3,) cartesian projection direction

	scale_markers (float) – size scaling for markers

	plot_limit (float) – x y z plot limits, default is [-1 1]*self.k_max

	camera_dist (float) – Move camera closer to the plot (relative to matplotlib default of 10)

	show_axes (bool) – Whether to plot axes or not.

	perspective_axes (bool) – Select either perspective (true) or orthogonal (false) axes

	figsize (2 element float) – size scaling of figure axes

	returnfig (bool) – set to True to return figure and axes handles

	Returns:

	fig, ax (optional) figure and axes handles

	
py4DSTEM.process.diffraction.crystal_viz.plot_scattering_intensity(self, k_min=0.0, k_max=None, k_step=0.001, k_broadening=0.0, k_power_scale=0.0, int_power_scale=0.5, int_scale=1.0, remove_origin=True, bragg_peaks=None, bragg_k_power=0.0, bragg_intensity_power=1.0, bragg_k_broadening=0.005, figsize: list | tuple | ndarray = (10, 4), returnfig: bool = False)

	1D plot of the structure factors

	Parameters:

	
	k_min (float) – min k value for profile range.

	k_max (float) – max k value for profile range.

	k_step (float) – Step size of k in profile range.

	k_broadening (float) – Broadening of simulated pattern.

	k_power_scale (float) – Scale SF intensities by k**k_power_scale.

	int_power_scale (float) – Scale SF intensities**int_power_scale.

	int_scale (float) – Scale output profile by this value.

	remove_origin (bool) – Remove origin from plot.

	bragg_peaks (BraggVectors) – Passed in bragg_peaks for comparison with simulated pattern.

	bragg_k_power (float) – bragg_peaks scaled by k**bragg_k_power.

	bragg_intensity_power (float) – bragg_peaks scaled by intensities**bragg_intensity_power.

	bragg_k_broadening (float) – Broadening applied to bragg_peaks.

	figsize (list, tuple, np.ndarray) – Figure size for plot.

	(bool) (returnfig) – Return figure and axes handles if this is True.

	Returns:

	figure and axes handles

	Return type:

	fig, ax (optional)

	
py4DSTEM.process.diffraction.crystal_viz.plot_orientation_zones(self, azim_elev: list | tuple | ndarray | None = None, proj_dir_lattice: list | tuple | ndarray | None = None, proj_dir_cartesian: list | tuple | ndarray | None = None, tol_den=10, marker_size: float = 20, plot_limit: list | tuple | ndarray = array([-1.1, 1.1]), figsize: list | tuple | ndarray = (8, 8), returnfig: bool = False)

	3D scatter plot of the structure factors using magnitude^2, i.e. intensity.

	Parameters:

	
	azim_elev (array) – az and el angles for plot

	proj_dir_lattice (array) – (3,) projection direction in lattice

	proj_dir_cartesian – (array): (3,) projection direction in cartesian

	tol_den (int) – tolerance for rational index denominator

	dir_proj (float) – projection direction, either [elev azim] or normal vector
Default is mean vector of self.orientation_zone_axis_range rows

	marker_size (float) – size of markers

	plot_limit (float) – x y z plot limits, default is [0, 1.05]

	figsize (2 element float) – size scaling of figure axes

	returnfig (bool) – set to True to return figure and axes handles

	Returns:

	fig, ax (optional) figure and axes handles

	
py4DSTEM.process.diffraction.crystal_viz.plot_orientation_plan(self, index_plot: int = 0, zone_axis_lattice: ndarray | None = None, zone_axis_cartesian: ndarray | None = None, figsize: list | tuple | ndarray = (14, 6), returnfig: bool = False)

	3D scatter plot of the structure factors using magnitude^2,
i.e. intensity.

	Parameters:

	
	index_plot (int) – which index slice to plot

	zone_axis_plot (3 element float) – which zone axis slice to plot

	figsize (2 element float) – size scaling of figure axes

	returnfig (bool) – set to True to return figure and axes handles

	Returns:

	fig, ax (optional) figure and axes handles

	
py4DSTEM.process.diffraction.crystal_viz.plot_diffraction_pattern(bragg_peaks: PointList, bragg_peaks_compare: PointList | None = None, scale_markers: float = 500, scale_markers_compare: float | None = None, power_markers: float = 1, plot_range_kx_ky: list | tuple | ndarray | None = None, add_labels: bool = True, shift_labels: float = 0.08, shift_marker: float = 0.005, min_marker_size: float = 1e-06, max_marker_size: float = 1000, figsize: list | tuple | ndarray = (12, 6), returnfig: bool = False, input_fig_handle=None)

	2D scatter plot of the Bragg peaks

	Parameters:

	
	bragg_peaks (PointList) – numpy array containing (‘qx’, ‘qy’, ‘intensity’, ‘h’, ‘k’, ‘l’)

	bragg_peaks_compare (PointList) – numpy array containing (‘qx’, ‘qy’, ‘intensity’)

	scale_markers (float) – size scaling for markers

	scale_markers_compare (float) – size scaling for markers of comparison

	power_markers (float) – power law scaling for marks (default is 1, i.e. amplitude)

	plot_range_kx_ky (float) – 2 element numpy vector giving the plot range

	add_labels (bool) – flag to add hkl labels to peaks

	min_marker_size (float) – minimum marker size for the comparison peaks

	max_marker_size (float) – maximum marker size for the comparison peaks

	figsize (2 element float) – size scaling of figure axes

	returnfig (bool) – set to True to return figure and axes handles

	input_fig_handle (fig,ax) –

	
py4DSTEM.process.diffraction.crystal_viz.plot_orientation_maps(self, orientation_map=None, orientation_ind: int = 0, dir_in_plane_degrees: float = 0.0, corr_range: ndarray = array([0, 5]), corr_normalize: bool = True, scale_legend: bool | None = None, figsize: list | tuple | ndarray = (16, 5), figbound: list | tuple | ndarray = (0.01, 0.005), show_axes: bool = True, camera_dist=None, plot_limit=None, plot_layout=0, swap_axes_xy_limits=False, returnfig: bool = False, progress_bar=False)

	Plot the orientation maps.

	Parameters:

	
	orientation_map (OrientationMap) – Class containing orientation matrices, correlation values, etc.
Optional - can reference internally stored OrientationMap.

	orientation_ind (int) – Which orientation match to plot if num_matches > 1

	dir_in_plane_degrees (float) – In-plane angle to plot in degrees. Default is 0 / x-axis / vertical down.

	corr_range (np.ndarray) – Correlation intensity range for the plot

	corr_normalize (bool) – If true, set mean correlation to 1.

	scale_legend (float) – 2 elements, x and y scaling of legend panel

	figsize (array) – 2 elements defining figure size

	figbound (array) – 2 elements defining figure boundary

	show_axes (bool) – Flag setting whether orienation map axes are visible.

	camera_dist (float) – distance of camera from legend

	plot_limit (array) – 2x3 array defining plot boundaries of legend

	plot_layout (int) – subplot layout: 0 - 1 row, 3 col
1 - 3 row, 1 col

	swap_axes_xy_limits (bool) – swap x and y boundaries for legend (not sure why we need this in some cases)

	returnfig (bool) – set to True to return figure and axes handles

	progress_bar (bool) – Enable progressbar when calculating orientation images.

	Returns:

	RGB images
fig, axs (handles): Figure and axes handes for the

	Return type:

	images_orientation (int)

Note

Currently, no symmetry reduction. Therefore the x and y orientations
are going to be correct only for [001][011][111] orientation triangle.

	
py4DSTEM.process.diffraction.crystal_viz.plot_fiber_orientation_maps(self, orientation_map, orientation_ind: int = 0, symmetry_order: int | None = None, symmetry_mirror: bool = False, dir_in_plane_degrees: float = 0.0, corr_range: ndarray = array([0, 2]), corr_normalize: bool = True, show_axes: bool = True, medfilt_size: int | None = None, cmap_out_of_plane: str = 'plasma', leg_size: int = 200, figsize: list | tuple | ndarray = (12, 8), figbound: list | tuple | ndarray = (0.005, 0.04), returnfig: bool = False)

	Generate and plot the orientation maps from fiber texture plots.

	Parameters:

	
	orientation_map (OrientationMap) – Class containing orientation matrices, correlation values, etc.

	orientation_ind (int) – Which orientation match to plot if num_matches > 1

	dir_in_plane_degrees (float) – Reference in-plane angle (degrees). Default is 0 / x-axis / vertical down.

	corr_range (np.ndarray) – Correlation intensity range for the plot

	corr_normalize (bool) – If true, set mean correlation to 1.

	show_axes (bool) – Flag setting whether orienation map axes are visible.

	figsize (array) – 2 elements defining figure size

	figbound (array) – 2 elements defining figure boundary

	returnfig (bool) – set to True to return figure and axes handles

	Returns:

	RGB images
fig, axs (handles): Figure and axes handes for the

	Return type:

	images_orientation (int)

Note

Currently, no symmetry reduction. Therefore the x and y orientations
are going to be correct only for [001][011][111] orientation triangle.

	
py4DSTEM.process.diffraction.crystal_viz.plot_clusters(self, area_min=2, outline_grains=True, outline_thickness=1, fill_grains=0.25, smooth_grains=1.0, cmap='viridis', figsize=(8, 8), returnfig=False)

	Plot the clusters as an image.

	Parameters:

	
	area_min (int (optional)) – Min cluster size to include, in units of probe positions.

	outline_grains (bool (optional)) – Set to True to draw grains with outlines

	outline_thickness (int (optional)) – Thickenss of the grain outline

	fill_grains (float (optional)) – Outlined grains are filled with this value in pixels.

	smooth_grains (float (optional)) – Grain boundaries are smoothed by this value in pixels.

	figsize (tuple) – Size of the figure panel

	returnfig (bool) – Setting this to true returns the figure and axis handles

	Returns:

	Figure and axes handles

	Return type:

	fig, ax (optional)

	
py4DSTEM.process.diffraction.crystal_viz.plot_cluster_size(self, area_min=None, area_max=None, area_step=1, weight_intensity=False, pixel_area=1.0, pixel_area_units='px^2', figsize=(8, 6), returnfig=False)

	Plot the cluster sizes

	Parameters:

	
	area_min (int (optional)) – Min area to include in pixels^2

	area_max (int (optional)) – Max area bin in pixels^2

	area_step (int (optional)) – Step size of the histogram bin in pixels^2

	weight_intensity (bool) – Weight histogram by the peak intensity.

	pixel_area (float) – Size of pixel area unit square

	pixel_area_units (string) – Units of the pixel area

	figsize (tuple) – Size of the figure panel

	returnfig (bool) – Setting this to true returns the figure and axis handles

	Returns:

	Figure and axes handles

	Return type:

	fig, ax (optional)

	
py4DSTEM.process.diffraction.crystal_viz.atomic_colors(Z, scheme='jmol')

	Return atomic colors for Z.

Modes are “colin” and “jmol”.
“colin” uses the handmade but incomplete scheme of Colin Ophus
“jmol” uses the JMOL scheme, from http://jmol.sourceforge.net/jscolors

which includes all elements up to 109

	
py4DSTEM.process.diffraction.crystal_viz.plot_ring_pattern(radii, intensity, theta=[-3.141592653589793, 3.141592653589793, 200], intensity_scale=1, intensity_constant=False, color='k', figsize=(10, 10), returnfig=False, input_fig_handle=None, **kwargs)

	2D plot of diffraction rings

	Parameters:

	
	radii (PointList) – 1D numpy array containing radii for diffraction rings

	intensity (PointList) – 1D numpy array containing intensities for diffraciton rings

	theta (3-tuple) – first two values specify angle range, and the last specifies the number of points used for plotting

	intensity_scale (float) – size scaling for ring thickness

	intensity_constant (bool) – if true, all rings are plotted with same line width

	color (matplotlib color) – color of ring, any format recognized by matplotlib

	figsize (2 element float) – size scaling of figure axes

	returnfig (bool) – set to True to return figure and axes handles

	input_fig_handle (fig,ax) –

	
py4DSTEM.process.diffraction.flowlines.make_orientation_histogram(bragg_peaks: PointListArray | None = None, radial_ranges: ndarray | None = None, orientation_map=None, orientation_ind: int = 0, orientation_growth_angles: array = 0.0, orientation_separate_bins: bool = False, orientation_flip_sign: bool = False, upsample_factor=4.0, theta_step_deg=1.0, sigma_x=1.0, sigma_y=1.0, sigma_theta=3.0, normalize_intensity_image: bool = False, normalize_intensity_stack: bool = True, progress_bar: bool = True)

	Create an 3D or 4D orientation histogram from a braggpeaks PointListArray
from user-specified radial ranges, or from the Euler angles from a fiber
texture OrientationMap generated by the ACOM module of py4DSTEM.

	Parameters:

	
	bragg_peaks (PointListArray) – 2D of pointlists containing centered peak locations.

	radial_ranges (np array) – Size (N x 2) array for N radial bins, or (2,) for a single bin.

	orientation_map (OrientationMap) – Class containing the Euler angles to generate a flowline map.

	orientation_ind (int) – Index of the orientation map (default 0)

	orientation_growth_angles (array) – Angles to place into histogram, relative to orientation.

	orientation_separate_bins (bool) – whether to place multiple angles into multiple radial bins.

	upsample_factor (float) – Upsample factor

	theta_step_deg (float) – Step size along annular direction in degrees

	sigma_x (float) – Smoothing in x direction before upsample

	sigma_y (float) – Smoothing in x direction before upsample

	sigma_theta (float) – Smoothing in annular direction (units of bins, periodic)

	normalize_intensity_image (bool) – Normalize to max peak intensity = 1, per image

	normalize_intensity_stack (bool) – Normalize to max peak intensity = 1, all images

	progress_bar (bool) – Enable progress bar

	Returns:

	
	4D array containing Bragg peak intensity histogram
	[radial_bin x_probe y_probe theta]

	Return type:

	orient_hist (array)

	
py4DSTEM.process.diffraction.flowlines.make_flowline_map(orient_hist, thresh_seed=0.2, thresh_grow=0.05, thresh_collision=0.001, sep_seeds=None, sep_xy=6.0, sep_theta=5.0, sort_seeds='intensity', linewidth=2.0, step_size=0.5, min_steps=4, max_steps=1000, sigma_x=1.0, sigma_y=1.0, sigma_theta=2.0, progress_bar: bool = True)

	Create an 3D or 4D orientation flowline map - essentially a pixelated “stream map” which represents diffraction data.

	Parameters:

	
	orient_hist (array) – Histogram of all orientations with coordinates
[radial_bin x_probe y_probe theta]
We assume theta bin ranges from 0 to 180 degrees and is periodic.

	thresh_seed (float) – Threshold for seed generation in histogram.

	thresh_grow (float) – Threshold for flowline growth in histogram.

	thresh_collision (float) – Threshold for termination of flowline growth in histogram.

	sep_seeds (float) – Initial seed separation in bins - set to None to use default value,
which is equal to 0.5*sep_xy.

	sep_xy (float) – Search radius for flowline direction in x and y.

	= (sep_theta) – Search radius for flowline direction in theta.

	sort_seeds (str) – How to sort the initial seeds for growth:
None - no sorting
‘intensity’ - sort by histogram intensity
‘random’ - random order

	linewidth (float) – Thickness of the flowlines in pixels.

	step_size (float) – Step size for flowline growth in pixels.

	min_steps (int) – Minimum number of steps for a flowline to be drawn.

	max_steps (int) – Maximum number of steps for a flowline to be drawn.

	sigma_x (float) – Weighted sigma in x direction for direction update.

	sigma_y (float) – Weighted sigma in y direction for direction update.

	sigma_theta (float) – Weighted sigma in theta for direction update.

	progress_bar (bool) – Enable progress bar

	Returns:

	
	4D array containing flowlines
	[radial_bin x_probe y_probe theta]

	Return type:

	orient_flowlines (array)

	
py4DSTEM.process.diffraction.flowlines.make_flowline_rainbow_image(orient_flowlines, int_range=[0, 0.2], sym_rotation_order=2, theta_offset=0.0, greyscale=False, greyscale_max=True, white_background=False, power_scaling=1.0, sum_radial_bins=False, plot_images=True, figsize=None)

	Generate RGB output images from the flowline arrays.

	Parameters:

	
	orient_flowline (array) – Histogram of all orientations with coordinates [x y radial_bin theta]
We assume theta bin ranges from 0 to 180 degrees and is periodic.

	int_range (float) –

	sym_rotation_order (int) – rotational symmety for colouring

	theta_offset (float) – Offset the anglular coloring by this value in radians.

	greyscale (bool) – Set to False for color output, True for greyscale output.

	greyscale_max (bool) – If output is greyscale, use max instead of mean for overlapping flowlines.

	white_background (bool) – For either color or greyscale output, switch to white background (from black).

	power_scaling (float) – Power law scaling for flowline intensity output.

	sum_radial_bins (bool) – Sum all radial bins (alternative is to output separate images).

	plot_images (bool) – Plot the outputs for quick visualization.

	figsize (2-tuple) – Size of output figure.

	Returns:

	3D or 4D array containing flowline images

	Return type:

	im_flowline (array)

	
py4DSTEM.process.diffraction.flowlines.make_flowline_rainbow_legend(im_size=array([256, 256]), sym_rotation_order=2, theta_offset=0.0, white_background=False, return_image=False, radial_range=array([0.45, 0.9]), plot_legend=True, figsize=(4, 4))

	This function generates a legend for a the rainbow colored flowline maps, and returns it as an RGB image.

	Parameters:

	
	im_size (np.array) – Size of legend image in pixels.

	sym_rotation_order (int) – rotational symmety for colouring

	theta_offset (float) – Offset the anglular coloring by this value in radians.

	white_background (bool) – For either color or greyscale output, switch to white background (from black).

	return_image (bool) – Return the image array.

	radial_range (np.array) – Inner and outer radius for the legend ring.

	plot_legend (bool) – Plot the generated legend.

	figsize (tuple or list) – Size of the plotted legend.

	Returns:

	Image array for the legend.

	Return type:

	im_legend (array)

	
py4DSTEM.process.diffraction.flowlines.make_flowline_combined_image(orient_flowlines, int_range=[0, 0.2], cvals=array([[0., 0.7, 0.], [1., 0., 0.], [0., 0.7, 1.]]), white_background=False, power_scaling=1.0, sum_radial_bins=True, plot_images=True, figsize=None)

	Generate RGB output images from the flowline arrays.

	Parameters:

	
	orient_flowline (array) – Histogram of all orientations with coordinates [x y radial_bin theta]
We assume theta bin ranges from 0 to 180 degrees and is periodic.

	int_range (float) –

	cvals (array) – Nx3 size array containing RGB colors for different radial ibns.

	white_background (bool) – For either color or greyscale output, switch to white background (from black).

	power_scaling (float) – Power law scaling for flowline intensities.

	sum_radial_bins (bool) – Sum outputs over radial bins.

	plot_images (bool) – Plot the output images for quick visualization.

	figsize (2-tuple) – Size of output figure.

	Returns:

	flowline images

	Return type:

	im_flowline (array)

	
py4DSTEM.process.diffraction.flowlines.orientation_correlation(orient_hist, radius_max=None)

	Take in the 4D orientation histogram, and compute the distance-angle (auto)correlations

	Parameters:

	
	orient_hist (array) – 3D or 4D histogram of all orientations with coordinates [x y radial_bin theta]

	radius_max (float) – Maximum radial distance for correlogram calculation. If set to None, the maximum
radius will be set to min(orient_hist.shape[0],orient_hist.shape[1])/2.

	Returns:

	3D or 4D array containing correlation images as function of (dr,dtheta)

	Return type:

	orient_corr (array)

	
py4DSTEM.process.diffraction.flowlines.plot_orientation_correlation(orient_corr, prob_range=[0.1, 10.0], inds_plot=None, pixel_size=None, pixel_units=None, size_fig=[8, 6], return_fig=False)

	Plot the distance-angle (auto)correlations in orient_corr.

	Parameters:

	
	orient_corr (array) – 3D or 4D array containing correlation images as function of (dr,dtheta)
1st index represents each pair of rings.

	prob_range (array) – Plotting range in units of “multiples of random distribution”.

	inds_plot (float) – Which indices to plot for orient_corr. Set to “None” to plot all pairs.

	pixel_size (float) – Pixel size for x axis.

	pixel_units (str) – units of pixels.

	size_fig (array) – Size of the figure panels.

	return_fig (bool) – Whether to return figure axes.

	Returns:

	fig, ax Figure and axes handles (optional).

This module provides access to some objects used or maintained by the
interpreter and to functions that interact strongly with the interpreter.

Dynamic objects:

argv – command line arguments; argv[0] is the script pathname if known
path – module search path; path[0] is the script directory, else ‘’
modules – dictionary of loaded modules

displayhook – called to show results in an interactive session
excepthook – called to handle any uncaught exception other than SystemExit

To customize printing in an interactive session or to install a custom
top-level exception handler, assign other functions to replace these.

stdin – standard input file object; used by input()
stdout – standard output file object; used by print()
stderr – standard error object; used for error messages

By assigning other file objects (or objects that behave like files)
to these, it is possible to redirect all of the interpreter’s I/O.

last_type – type of last uncaught exception
last_value – value of last uncaught exception
last_traceback – traceback of last uncaught exception

These three are only available in an interactive session after a
traceback has been printed.

Static objects:

builtin_module_names – tuple of module names built into this interpreter
copyright – copyright notice pertaining to this interpreter
exec_prefix – prefix used to find the machine-specific Python library
executable – absolute path of the executable binary of the Python interpreter
float_info – a named tuple with information about the float implementation.
float_repr_style – string indicating the style of repr() output for floats
hash_info – a named tuple with information about the hash algorithm.
hexversion – version information encoded as a single integer
implementation – Python implementation information.
int_info – a named tuple with information about the int implementation.
maxsize – the largest supported length of containers.
maxunicode – the value of the largest Unicode code point
platform – platform identifier
prefix – prefix used to find the Python library
thread_info – a named tuple with information about the thread implementation.
version – the version of this interpreter as a string
version_info – version information as a named tuple
__stdin__ – the original stdin; don’t touch!
__stdout__ – the original stdout; don’t touch!
__stderr__ – the original stderr; don’t touch!
__displayhook__ – the original displayhook; don’t touch!
__excepthook__ – the original excepthook; don’t touch!

Functions:

displayhook() – print an object to the screen, and save it in builtins._
excepthook() – print an exception and its traceback to sys.stderr
exc_info() – return thread-safe information about the current exception
exit() – exit the interpreter by raising SystemExit
getdlopenflags() – returns flags to be used for dlopen() calls
getprofile() – get the global profiling function
getrefcount() – return the reference count for an object (plus one :-)
getrecursionlimit() – return the max recursion depth for the interpreter
getsizeof() – return the size of an object in bytes
gettrace() – get the global debug tracing function
setdlopenflags() – set the flags to be used for dlopen() calls
setprofile() – set the global profiling function
setrecursionlimit() – set the max recursion depth for the interpreter
settrace() – set the global debug tracing function

	
class py4DSTEM.process.diffraction.utils.Orientation(num_matches: int)

	A class for storing output orientations, generated by fitting a Crystal
class orientation plan or Bloch wave pattern matching to a PointList.

	
__init__(num_matches: int) → None

	

	
class py4DSTEM.process.diffraction.utils.OrientationMap(num_x: int, num_y: int, num_matches: int)

	A class for storing output orientations, generated by fitting a Crystal class orientation plan or
Bloch wave pattern matching to a PointListArray.

	
__init__(num_x: int, num_y: int, num_matches: int) → None

	

	
py4DSTEM.process.diffraction.utils.sort_orientation_maps(orientation_map, sort='intensity', cluster_thresh=0.1)

	Sort the orientation maps along the ind_match direction, either by intensity
or by clustering similar angles (greedily, in order of intensity).

	Parameters:

	
	OrientationMap (orientation_map Initial) –

	sort (string) – “intensity” or “cluster” for sorting method.

	cluster_thresh (float) – similarity threshold for clustering method

	Returns:

	orientation_sort Sorted OrientationMap

	
py4DSTEM.process.diffraction.utils.calc_1D_profile(k, g_coords, g_int, remove_origin=True, k_broadening=0.0, int_scale=None, normalize_intensity=True)

	Utility function to calculate a 1D histogram from the diffraction vector lengths
stored in a Crystal class.

	Parameters:

	
	k (np.array) – k coordinates.

	g_coords (np.array) – Scattering vector lengths g.

	bragg_intensity_power (np.array) – Scattering vector intensities.

	remove_origin (bool) – Remove the origin peak from the profile.

	k_broadening (float) – Broadening applied to full profile.

	int_scale (np.array) – Either a scalar value mulitiplied into all peak intensities,
or a vector with 1 value per peak to scale peaks individually.

	normalize_intensity – Normalize maximum output value to 1.

diskdetection

fit

	
py4DSTEM.process.fit.fit.fit_1D_gaussian(xdata, ydata, xmin, xmax)

	Fits a 1D gaussian to the subset of the 1D curve f(xdata)=ydata within the window
(xmin,xmax). Returns A,mu,sigma. Retrieve the full curve with

>>> fit_gaussian = py4DSTEM.process.fit.gaussian(xdata,A,mu,sigma)

	
py4DSTEM.process.fit.fit.fit_2D(function, data, data_mask=None, popt=None, robust=False, robust_steps=3, robust_thresh=2)

	Performs a 2D fit.

TODO: make returning the mask optional

	Parameters:

	
	function (callable) – Some function(xy, **p) where xy is a length 2 vector (1D np array)
specifying the pixel position (x,y), and p is the function parameters

	data (ndarray) – Some 2D array of any shape (n,m)

	data_mask (None or boolean array of shape (n,m), optional) – If specified, fits only the pixels in data where this array is True

	popt (dict) – Initial guess at the parameters p of function. Note that positions
in pixels (i.e. the xy positions) are linearly scaled to the space [0,1]

	robust (bool) – Toggles robust fitting, which iteratively rejects outlier data points
which have a root-mean-square error beyond robust_thresh

	robust_steps (int) – The number of robust fitting iterations to perform

	robust_thresh (int) – The robust fitting cutoff

	Returns –

	(popt (4-tuple) – The optimal fit parameters, the fitting covariance matrix, the
the fit array with the returned popt params, and the mask

	pcov (4-tuple) – The optimal fit parameters, the fitting covariance matrix, the
the fit array with the returned popt params, and the mask

	fit_at (4-tuple) – The optimal fit parameters, the fitting covariance matrix, the
the fit array with the returned popt params, and the mask

	mask) (4-tuple) – The optimal fit parameters, the fitting covariance matrix, the
the fit array with the returned popt params, and the mask

	
py4DSTEM.process.fit.fit.fit_2D_polar_gaussian(data, mask=None, p0=None, robust=False, robust_steps=3, robust_thresh=2, constant_background=False)

	NOTE - this cannot work without using pixel coordinates - something is wrong in the workflow.

Fits a 2D gaussian to the pixels in data which are set to True in mask.

The gaussian is anisotropic and oriented along (t,q), centered at
(mu_t,mu_q), has standard deviations (sigma_t,sigma_q), maximum of I0,
and an optional constant offset of C, and is periodic in t.

f(x,y) = I0 * exp(- (x-mu_x)^2/(2sig_x^2) + (y-mu_y)^2/(2sig_y^2))
or
f(x,y) = I0 * exp(- (x-mu_x)^2/(2sig_x^2) + (y-mu_y)^2/(2sig_y^2)) + C

	Parameters:

	
	data (2d array) – the data to fit

	p0 (6-tuple) – initial guess at fit parameters, (I0,mu_x,mu_y,sigma_x_sigma_y,C)

	mask (2d boolean array) – ignore pixels where mask is False

	robust (bool) – toggle robust fitting

	robust_steps (int) – number of robust fit iterations

	robust_thresh (number) – the robust fitting threshold

	constant_background (bool) – whether or not to include constant background

	Returns:

	(popt,pcov,fit_ar) – the optimal fit parameters, the covariance matrix, and the fit array

	Return type:

	3-tuple

latticevectors

phase

Module for reconstructing phase objects from 4DSTEM datasets using iterative methods.

	
class py4DSTEM.process.phase.iterative_base_class.PhaseReconstruction(name='custom')

	Base phase reconstruction class.
Defines various common functions and properties for subclasses to inherit.

	
attach_datacube(datacube: DataCube)

	Attaches a datacube to a class initialized without one.

	Parameters:

	datacube (Datacube) – Input 4D diffraction pattern intensities

	Returns:

	self – Self to enable chaining

	Return type:

	PhaseReconstruction

	
reinitialize_parameters(device: str | None = None, verbose: bool | None = None)

	Reinitializes common parameters. This is useful when loading a previously-saved
reconstruction (which set device=’cpu’ and verbose=True for compatibility) ,
using different initialization parameters.

	Parameters:

	
	device (str, optional) – If not None, imports and assigns appropriate device modules

	verbose (bool, optional) – If not None, sets the verbosity to verbose

	Returns:

	self – Self to enable chaining

	Return type:

	PhaseReconstruction

	
set_save_defaults(save_datacube: bool = False, save_exit_waves: bool = False, save_iterations: bool = True, save_iterations_frequency: int = 1)

	Sets the class defaults for saving reconstructions to file.

	Parameters:

	
	save_datacube (bool, optional) – If True, self._datacube saved to file

	save_exit_waves (bool, optional) – If True, self._exit_waves saved to file

	save_iterations (int, optional) – If True, self.probe_iterations and self.object_iterations saved to file

	save_iterations – If save_iterations is True, controls the frequency of saved iterations

	Returns:

	self – Self to enable chaining

	Return type:

	PhaseReconstruction

	
show_complex_CoM(com=None, cbar=True, scalebar=True, pixelsize=None, pixelunits=None, **kwargs)

	Plot complex-valued CoM image

	Parameters:

	
	(CoM_x (com =) – If None is specified, uses (self.com_x, self.com_y) instead

	tuple (CoM_y)) – If None is specified, uses (self.com_x, self.com_y) instead

	cbar (bool, optional) – if True, adds colorbar

	scalebar (bool, optional) – if True, adds scalebar to probe

	pixelunits (str, optional) – units for scalebar, default is A

	pixelsize (float, optional) – default is scan sampling

	
class py4DSTEM.process.phase.iterative_base_class.PtychographicReconstruction(name='custom')

	Base ptychographic reconstruction class.
Inherits from PhaseReconstruction and PtychographicConstraints.
Defines various common functions and properties for subclasses to inherit.

	
to_h5(group)

	Wraps datasets and metadata to write in emdfile classes,
notably: the object and probe arrays.

	
tune_angle_and_defocus(angle_guess=None, defocus_guess=None, transpose=None, angle_step_size=1, defocus_step_size=20, num_angle_values=5, num_defocus_values=5, max_iter=5, plot_reconstructions=True, plot_convergence=True, return_values=False, **kwargs)

	Run reconstructions over a parameters space of angles and
defocus values. Should be run after preprocess step.

	Parameters:

	
	angle_guess (float (degrees), optional) – initial starting guess for rotation angle between real and reciprocal space
if None, uses current initialized values

	defocus_guess (float (A), optional) – initial starting guess for defocus
if None, uses current initialized values

	angle_step_size (float (degrees), optional) – size of change of rotation angle between real and reciprocal space for
each step in parameter space

	defocus_step_size (float (A), optional) – size of change of defocus for each step in parameter space

	num_angle_values (int, optional) – number of values of angle to test, must be >= 1.

	num_defocus_values (int,optional) – number of values of defocus to test, must be >= 1

	max_iter (int, optional) – number of iterations to run in ptychographic reconstruction

	plot_reconstructions (bool, optional) – if True, plot phase of reconstructed objects

	plot_convergence (bool, optional) – if True, plots error for each iteration for each reconstruction.

	return_values (bool, optional) – if True, returns objects, convergence

	Returns:

	
	objects (list) – reconstructed objects

	convergence (np.ndarray) – array of convergence values from reconstructions

	
plot_position_correction(scale_arrows=1, plot_arrow_freq=1, verbose=True, **kwargs)

	Function to plot changes to probe positions during ptychography reconstruciton

	Parameters:

	
	scale_arrows (float, optional) – scaling factor to be applied on vectors prior to plt.quiver call

	verbose (bool, optional) – if True, prints AffineTransformation if positions have been updated

	
show_uncertainty_visualization(errors=None, max_batch_size=None, projected_cropped_potential=None, kde_sigma=None, plot_histogram=True, plot_contours=False, **kwargs)

	Plot uncertainty visualization using self-consistency errors

	
show_fourier_probe(probe=None, cbar=True, scalebar=True, pixelsize=None, pixelunits=None, **kwargs)

	Plot probe in fourier space

	Parameters:

	
	probe (complex array, optional) – if None is specified, uses the probe_fourier property

	cbar (bool, optional) – if True, adds colorbar

	scalebar (bool, optional) – if True, adds scalebar to probe

	pixelunits (str, optional) – units for scalebar, default is A^-1

	pixelsize (float, optional) – default is probe reciprocal sampling

	
show_object_fft(obj=None, **kwargs)

	Plot FFT of reconstructed object

	Parameters:

	obj (complex array, optional) – if None is specified, uses the object_fft property

	
property probe_fourier

	Current probe estimate in Fourier space

	
property probe_centered

	Current probe estimate shifted to the center

	
property object_fft

	Fourier transform of current object estimate

	
property angular_sampling

	Angular sampling [mrad]

	
property sampling

	Sampling [Å]

	
property positions

	Probe positions [A]

	
property object_cropped

	Cropped and rotated object

Module for reconstructing phase objects from 4DSTEM datasets using iterative methods,
namely DPC.

	
class py4DSTEM.process.phase.iterative_dpc.DPCReconstruction(datacube: DataCube | None = None, initial_object_guess: ndarray | None = None, energy: float | None = None, verbose: bool = True, device: str = 'cpu', name: str = 'dpc_reconstruction')

	Iterative Differential Phase Constrast Reconstruction Class.

Diffraction intensities dimensions : (Rx,Ry,Qx,Qy)
Reconstructed phase object dimensions : (Rx,Ry)

	Parameters:

	
	datacube (DataCube) – Input 4D diffraction pattern intensities

	initial_object_guess (np.ndarray, optional) – Cropped initial guess of dpc phase

	energy (float, optional) – The electron energy of the wave functions in eV

	verbose (bool, optional) – If True, class methods will inherit this and print additional information

	device (str, optional) – Calculation device will be perfomed on. Must be ‘cpu’ or ‘gpu’

	name (str, optional) – Class name

	
__init__(datacube: DataCube | None = None, initial_object_guess: ndarray | None = None, energy: float | None = None, verbose: bool = True, device: str = 'cpu', name: str = 'dpc_reconstruction')

	

	
to_h5(group)

	Wraps datasets and metadata to write in emdfile classes,
notably: the object phase array.

	
preprocess(dp_mask: ndarray | None = None, padding_factor: float = 2, rotation_angles_deg: ndarray = array([-89., -88., -87., -86., -85., -84., -83., -82., -81., -80., -79., -78., -77., -76., -75., -74., -73., -72., -71., -70., -69., -68., -67., -66., -65., -64., -63., -62., -61., -60., -59., -58., -57., -56., -55., -54., -53., -52., -51., -50., -49., -48., -47., -46., -45., -44., -43., -42., -41., -40., -39., -38., -37., -36., -35., -34., -33., -32., -31., -30., -29., -28., -27., -26., -25., -24., -23., -22., -21., -20., -19., -18., -17., -16., -15., -14., -13., -12., -11., -10., -9., -8., -7., -6., -5., -4., -3., -2., -1., 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89.]), maximize_divergence: bool = False, fit_function: str = 'plane', force_com_rotation: float | None = None, force_com_transpose: bool | None = None, force_com_shifts: Sequence[ndarray] | Sequence[float] | None = None, force_com_measured: Sequence[ndarray] | None = None, plot_center_of_mass: str = 'default', plot_rotation: bool = True, **kwargs)

	DPC preprocessing step.
Calls the base class methods:

_extract_intensities_and_calibrations_from_datacube(),
_calculate_intensities_center_of_mass(), and
_solve_for_center_of_mass_relative_rotation()

	Parameters:

	
	dp_mask (ndarray, optional) – Mask for datacube intensities (Qx,Qy)

	padding_factor (float, optional) – Factor to pad object by to reduce periodic artifacts

	rotation_angles_deg (np.darray, optional) – Array of angles in degrees to perform curl minimization over

	maximize_divergence (bool, optional) – If True, the divergence of the CoM gradient vector field is maximized

	fit_function (str, optional) – 2D fitting function for CoM fitting. One of ‘plane’,’parabola’,’bezier_two’

	com_rotation (force) – Force relative rotation angle between real and reciprocal space

	force_com_transpose (bool (optional)) – Force whether diffraction intensities need to be transposed.

	force_com_shifts (tuple of ndarrays (CoMx, CoMy)) – Force CoM fitted shifts

	force_com_measured (tuple of ndarrays (CoMx measured, CoMy measured)) – Force CoM measured shifts

	plot_center_of_mass (str, optional) – If ‘default’, the corrected CoM arrays will be displayed
If ‘all’, the computed and fitted CoM arrays will be displayed

	plot_rotation (bool, optional) – If True, the CoM curl minimization search result will be displayed

	Returns:

	self – Self to accommodate chaining

	Return type:

	DPCReconstruction

	
reconstruct(reset: bool | None = None, max_iter: int = 64, step_size: float | None = None, stopping_criterion: float = 1e-06, backtrack: bool = True, progress_bar: bool = True, gaussian_filter_sigma: float | None = None, gaussian_filter_iter: int = inf, butterworth_filter_iter: int = inf, q_lowpass: float | None = None, q_highpass: float | None = None, butterworth_order: float = 2, anti_gridding: float = True, store_iterations: bool = False)

	Performs Iterative DPC Reconstruction:

	Parameters:

	
	reset (bool, optional) – If True, previous reconstructions are ignored

	max_iter (int, optional) – Maximum number of iterations

	step_size (float, optional) – Reconstruction update step size

	stopping_criterion (float, optional) – step_size below which reconstruction exits

	backtrack (bool, optional) – If True, steps that increase the error metric are rejected
and iteration continues with a reduced step size from the
previous iteration

	progress_bar (bool, optional) – If True, reconstruction progress bar will be printed

	gaussian_filter_sigma (float, optional) – Standard deviation of gaussian kernel in A

	gaussian_filter_iter (int, optional) – Number of iterations to run using object smoothness constraint

	butterworth_filter_iter (int, optional) – Number of iterations to run using high-pass butteworth filter

	q_lowpass (float) – Cut-off frequency in A^-1 for low-pass butterworth filter

	q_highpass (float) – Cut-off frequency in A^-1 for high-pass butterworth filter

	butterworth_order (float) – Butterworth filter order. Smaller gives a smoother filter

	anti_gridding (bool) – If true, zero outer pixels of object fft to remove
gridding artifacts

	store_iterations (bool, optional) – If True, all reconstruction iterations will be stored

	Returns:

	self – Self to accommodate chaining

	Return type:

	DPCReconstruction

	
visualize(fig=None, iterations_grid: Tuple[int, int] | None = None, plot_convergence: bool = True, cbar: bool = True, **kwargs)

	Displays reconstructed phase object.

	Parameters:

	
	fig – Matplotlib figure to draw Gridspec on

	optional – Matplotlib figure to draw Gridspec on

	plot_convergence (bool, optional) – If true, the NMSE error plot is displayed

	iterations_grid (Tuple[int,int]) – Grid dimensions to plot reconstruction iterations

	cbar (bool, optional) – If true, displays a colorbar

	Returns:

	self – Self to accommodate chaining

	Return type:

	DPCReconstruction

	
property sampling

	Sampling [Å]

Module for reconstructing phase objects from 4DSTEM datasets using iterative methods,
namely mixed-state ptychography.

	
class py4DSTEM.process.phase.iterative_mixedstate_ptychography.MixedstatePtychographicReconstruction(energy: float, datacube: DataCube | None = None, num_probes: int | None = None, semiangle_cutoff: float | None = None, semiangle_cutoff_pixels: float | None = None, rolloff: float = 2.0, vacuum_probe_intensity: ndarray | None = None, polar_parameters: Mapping[str, float] | None = None, object_padding_px: Tuple[int, int] | None = None, initial_object_guess: ndarray | None = None, initial_probe_guess: ndarray | None = None, initial_scan_positions: ndarray | None = None, object_type: str = 'complex', positions_mask: ndarray | None = None, verbose: bool = True, device: str = 'cpu', name: str = 'mixed-state_ptychographic_reconstruction', **kwargs)

	Mixed-State Ptychographic Reconstruction Class.

Diffraction intensities dimensions : (Rx,Ry,Qx,Qy)
Reconstructed probe dimensions : (N,Sx,Sy)
Reconstructed object dimensions : (Px,Py)

such that (Sx,Sy) is the region-of-interest (ROI) size of our N probes
and (Px,Py) is the padded-object size we position our ROI around in.

	Parameters:

	
	energy (float) – The electron energy of the wave functions in eV

	datacube (DataCube) – Input 4D diffraction pattern intensities

	num_probes (int, optional) – Number of mixed-state probes

	semiangle_cutoff (float, optional) – Semiangle cutoff for the initial probe guess in mrad

	semiangle_cutoff_pixels (float, optional) – Semiangle cutoff for the initial probe guess in pixels

	rolloff (float, optional) – Semiangle rolloff for the initial probe guess

	vacuum_probe_intensity (np.ndarray, optional) – Vacuum probe to use as intensity aperture for initial probe guess

	polar_parameters (dict, optional) – Mapping from aberration symbols to their corresponding values. All aberration
magnitudes should be given in Å and angles should be given in radians.

	object_padding_px (Tuple[int,int], optional) – Pixel dimensions to pad object with
If None, the padding is set to half the probe ROI dimensions

	initial_object_guess (np.ndarray, optional) – Initial guess for complex-valued object of dimensions (Px,Py)
If None, initialized to 1.0j

	initial_probe_guess (np.ndarray, optional) – Initial guess for complex-valued probe of dimensions (Sx,Sy). If None,
initialized to ComplexProbe with semiangle_cutoff, energy, and aberrations

	initial_scan_positions (np.ndarray, optional) – Probe positions in Å for each diffraction intensity
If None, initialized to a grid scan

	positions_mask (np.ndarray, optional) – Boolean real space mask to select positions in datacube to skip for reconstruction

	verbose (bool, optional) – If True, class methods will inherit this and print additional information

	device (str, optional) – Calculation device will be perfomed on. Must be ‘cpu’ or ‘gpu’

	name (str, optional) – Class name

	kwargs – Provide the aberration coefficients as keyword arguments.

	
__init__(energy: float, datacube: DataCube | None = None, num_probes: int | None = None, semiangle_cutoff: float | None = None, semiangle_cutoff_pixels: float | None = None, rolloff: float = 2.0, vacuum_probe_intensity: ndarray | None = None, polar_parameters: Mapping[str, float] | None = None, object_padding_px: Tuple[int, int] | None = None, initial_object_guess: ndarray | None = None, initial_probe_guess: ndarray | None = None, initial_scan_positions: ndarray | None = None, object_type: str = 'complex', positions_mask: ndarray | None = None, verbose: bool = True, device: str = 'cpu', name: str = 'mixed-state_ptychographic_reconstruction', **kwargs)

	

	
preprocess(diffraction_intensities_shape: Tuple[int, int] | None = None, reshaping_method: str = 'fourier', probe_roi_shape: Tuple[int, int] | None = None, dp_mask: ndarray | None = None, fit_function: str = 'plane', plot_center_of_mass: str = 'default', plot_rotation: bool = True, maximize_divergence: bool = False, rotation_angles_deg: ndarray = array([-89., -88., -87., -86., -85., -84., -83., -82., -81., -80., -79., -78., -77., -76., -75., -74., -73., -72., -71., -70., -69., -68., -67., -66., -65., -64., -63., -62., -61., -60., -59., -58., -57., -56., -55., -54., -53., -52., -51., -50., -49., -48., -47., -46., -45., -44., -43., -42., -41., -40., -39., -38., -37., -36., -35., -34., -33., -32., -31., -30., -29., -28., -27., -26., -25., -24., -23., -22., -21., -20., -19., -18., -17., -16., -15., -14., -13., -12., -11., -10., -9., -8., -7., -6., -5., -4., -3., -2., -1., 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89.]), plot_probe_overlaps: bool = True, force_com_rotation: float | None = None, force_com_transpose: float | None = None, force_com_shifts: float | None = None, force_scan_sampling: float | None = None, force_angular_sampling: float | None = None, force_reciprocal_sampling: float | None = None, object_fov_mask: ndarray | None = None, crop_patterns: bool = False, **kwargs)

	Ptychographic preprocessing step.
Calls the base class methods:

_extract_intensities_and_calibrations_from_datacube,
_compute_center_of_mass(),
_solve_CoM_rotation(),
_normalize_diffraction_intensities()
_calculate_scan_positions_in_px()

Additionally, it initializes an (Px,Py) array of 1.0j
and a complex probe using the specified polar parameters.

	Parameters:

	
	diffraction_intensities_shape (Tuple[int,int], optional) – Pixel dimensions (Qx’,Qy’) of the resampled diffraction intensities
If None, no resampling of diffraction intenstities is performed

	reshaping_method (str, optional) – Method to use for reshaping, either ‘bin, ‘bilinear’, or ‘fourier’ (default)

	probe_roi_shape – Padded diffraction intensities shape.
If None, no padding is performed

	(int – Padded diffraction intensities shape.
If None, no padding is performed

	int) – Padded diffraction intensities shape.
If None, no padding is performed

	optional – Padded diffraction intensities shape.
If None, no padding is performed

	dp_mask (ndarray, optional) – Mask for datacube intensities (Qx,Qy)

	fit_function (str, optional) – 2D fitting function for CoM fitting. One of ‘plane’,’parabola’,’bezier_two’

	plot_center_of_mass (str, optional) – If ‘default’, the corrected CoM arrays will be displayed
If ‘all’, the computed and fitted CoM arrays will be displayed

	plot_rotation (bool, optional) – If True, the CoM curl minimization search result will be displayed

	maximize_divergence (bool, optional) – If True, the divergence of the CoM gradient vector field is maximized

	rotation_angles_deg (np.darray, optional) – Array of angles in degrees to perform curl minimization over

	plot_probe_overlaps (bool, optional) – If True, initial probe overlaps scanned over the object will be displayed

	force_com_rotation (float (degrees), optional) – Force relative rotation angle between real and reciprocal space

	force_com_transpose (bool, optional) – Force whether diffraction intensities need to be transposed.

	force_com_shifts (tuple of ndarrays (CoMx, CoMy)) – Amplitudes come from diffraction patterns shifted with
the CoM in the upper left corner for each probe unless
shift is overwritten.

	force_scan_sampling (float, optional) – Override DataCube real space scan pixel size calibrations, in Angstrom

	force_angular_sampling (float, optional) – Override DataCube reciprocal pixel size calibration, in mrad

	force_reciprocal_sampling (float, optional) – Override DataCube reciprocal pixel size calibration, in A^-1

	object_fov_mask (np.ndarray (boolean)) – Boolean mask of FOV. Used to calculate additional shrinkage of object
If None, probe_overlap intensity is thresholded

	crop_patterns (bool) – if True, crop patterns to avoid wrap around of patterns when centering

	Returns:

	self – Self to accommodate chaining

	Return type:

	PtychographicReconstruction

	
reconstruct(max_iter: int = 64, reconstruction_method: str = 'gradient-descent', reconstruction_parameter: float = 1.0, reconstruction_parameter_a: float | None = None, reconstruction_parameter_b: float | None = None, reconstruction_parameter_c: float | None = None, max_batch_size: int | None = None, seed_random: int | None = None, step_size: float = 0.5, normalization_min: float = 1, positions_step_size: float = 0.9, pure_phase_object_iter: int = 0, fix_com: bool = True, orthogonalize_probe: bool = True, fix_probe_iter: int = 0, fix_probe_aperture_iter: int = 0, constrain_probe_amplitude_iter: int = 0, constrain_probe_amplitude_relative_radius: float = 0.5, constrain_probe_amplitude_relative_width: float = 0.05, constrain_probe_fourier_amplitude_iter: int = 0, constrain_probe_fourier_amplitude_max_width_pixels: float = 3.0, constrain_probe_fourier_amplitude_constant_intensity: bool = False, fix_positions_iter: int = inf, global_affine_transformation: bool = True, constrain_position_distance: float | None = None, gaussian_filter_sigma: float | None = None, gaussian_filter_iter: int = inf, fit_probe_aberrations_iter: int = 0, fit_probe_aberrations_max_angular_order: int = 4, fit_probe_aberrations_max_radial_order: int = 4, butterworth_filter_iter: int = inf, q_lowpass: float | None = None, q_highpass: float | None = None, butterworth_order: float = 2, tv_denoise_iter: int = inf, tv_denoise_weight: float | None = None, tv_denoise_inner_iter: float = 40, object_positivity: bool = True, shrinkage_rad: float = 0.0, fix_potential_baseline: bool = True, switch_object_iter: int = inf, store_iterations: bool = False, progress_bar: bool = True, reset: bool | None = None)

	Ptychographic reconstruction main method.

	Parameters:

	
	max_iter (int, optional) – Maximum number of iterations to run

	reconstruction_method (str, optional) – Specifies which reconstruction algorithm to use, one of:
“generalized-projections”,
“DM_AP” (or “difference-map_alternating-projections”),
“RAAR” (or “relaxed-averaged-alternating-reflections”),
“RRR” (or “relax-reflect-reflect”),
“SUPERFLIP” (or “charge-flipping”), or
“GD” (or “gradient_descent”)

	reconstruction_parameter (float, optional) – Reconstruction parameter for various reconstruction methods above.

	reconstruction_parameter_a (float, optional) – Reconstruction parameter a for reconstruction_method=’generalized-projections’.

	reconstruction_parameter_b (float, optional) – Reconstruction parameter b for reconstruction_method=’generalized-projections’.

	reconstruction_parameter_c (float, optional) – Reconstruction parameter c for reconstruction_method=’generalized-projections’.

	max_batch_size (int, optional) – Max number of probes to update at once

	seed_random (int, optional) – Seeds the random number generator, only applicable when max_batch_size is not None

	step_size (float, optional) – Update step size

	normalization_min (float, optional) – Probe normalization minimum as a fraction of the maximum overlap intensity

	positions_step_size (float, optional) – Positions update step size

	pure_phase_object_iter (int, optional) – Number of iterations where object amplitude is set to unity

	fix_com (bool, optional) – If True, fixes center of mass of probe

	fix_probe_iter (int, optional) – Number of iterations to run with a fixed probe before updating probe estimate

	fix_probe_aperture_iter (int, optional) – Number of iterations to run with a fixed probe fourier amplitude before updating probe estimate

	constrain_probe_amplitude_iter (int, optional) – Number of iterations to run while constraining the real-space probe with a top-hat support.

	constrain_probe_amplitude_relative_radius (float) – Relative location of top-hat inflection point, between 0 and 0.5

	constrain_probe_amplitude_relative_width (float) – Relative width of top-hat sigmoid, between 0 and 0.5

	constrain_probe_fourier_amplitude_iter (int, optional) – Number of iterations to run while constraining the Fourier-space probe by fitting a sigmoid for each angular frequency.

	constrain_probe_fourier_amplitude_max_width_pixels (float) – Maximum pixel width of fitted sigmoid functions.

	constrain_probe_fourier_amplitude_constant_intensity (bool) – If True, the probe aperture is additionally constrained to a constant intensity.

	fix_positions_iter (int, optional) – Number of iterations to run with fixed positions before updating positions estimate

	constrain_position_distance (float) – Distance to constrain position correction within original field of view in A

	global_affine_transformation (bool, optional) – If True, positions are assumed to be a global affine transform from initial scan

	gaussian_filter_sigma (float, optional) – Standard deviation of gaussian kernel in A

	gaussian_filter_iter (int, optional) – Number of iterations to run using object smoothness constraint

	fit_probe_aberrations_iter (int, optional) – Number of iterations to run while fitting the probe aberrations to a low-order expansion

	fit_probe_aberrations_max_angular_order (bool) – Max angular order of probe aberrations basis functions

	fit_probe_aberrations_max_radial_order (bool) – Max radial order of probe aberrations basis functions

	butterworth_filter_iter (int, optional) – Number of iterations to run using high-pass butteworth filter

	q_lowpass (float) – Cut-off frequency in A^-1 for low-pass butterworth filter

	q_highpass (float) – Cut-off frequency in A^-1 for high-pass butterworth filter

	butterworth_order (float) – Butterworth filter order. Smaller gives a smoother filter

	tv_denoise_iter (int, optional) – Number of iterations to run using tv denoise filter on object

	tv_denoise_weight (float) – Denoising weight. The greater weight, the more denoising.

	tv_denoise_inner_iter (float) – Number of iterations to run in inner loop of TV denoising

	object_positivity (bool, optional) – If True, forces object to be positive

	shrinkage_rad (float) – Phase shift in radians to be subtracted from the potential at each iteration

	fix_potential_baseline (bool) – If true, the potential mean outside the FOV is forced to zero at each iteration

	switch_object_iter (int, optional) – Iteration to switch object type between ‘complex’ and ‘potential’ or between
‘potential’ and ‘complex’

	store_iterations (bool, optional) – If True, reconstructed objects and probes are stored at each iteration

	progress_bar (bool, optional) – If True, reconstruction progress is displayed

	reset (bool, optional) – If True, previous reconstructions are ignored

	Returns:

	self – Self to accommodate chaining

	Return type:

	PtychographicReconstruction

	
visualize(fig=None, iterations_grid: Tuple[int, int] | None = None, plot_convergence: bool = True, plot_probe: bool = True, plot_fourier_probe: bool = False, cbar: bool = True, padding: int = 0, **kwargs)

	Displays reconstructed object and probe.

	Parameters:

	
	fig (Figure) – Matplotlib figure to place Gridspec in

	plot_convergence (bool, optional) – If true, the normalized mean squared error (NMSE) plot is displayed

	iterations_grid (Tuple[int,int]) – Grid dimensions to plot reconstruction iterations

	cbar (bool, optional) – If true, displays a colorbar

	plot_probe (bool, optional) – If true, the reconstructed complex probe is displayed

	plot_fourier_probe (bool, optional) – If true, the reconstructed complex Fourier probe is displayed

	padding (int, optional) – Pixels to pad by post rotating-cropping object

	Returns:

	self – Self to accommodate chaining

	Return type:

	PtychographicReconstruction

	
show_fourier_probe(probe=None, scalebar=True, pixelsize=None, pixelunits=None, **kwargs)

	Plot probe in fourier space

	Parameters:

	
	probe (complex array, optional) – if None is specified, uses the probe_fourier property

	scalebar (bool, optional) – if True, adds scalebar to probe

	pixelunits (str, optional) – units for scalebar, default is A^-1

	pixelsize (float, optional) – default is probe reciprocal sampling

Module for reconstructing phase objects from 4DSTEM datasets using iterative methods,
namely multislice ptychography.

	
class py4DSTEM.process.phase.iterative_multislice_ptychography.MultislicePtychographicReconstruction(energy: float, num_slices: int, slice_thicknesses: float | Sequence[float], datacube: DataCube | None = None, semiangle_cutoff: float | None = None, semiangle_cutoff_pixels: float | None = None, rolloff: float = 2.0, vacuum_probe_intensity: ndarray | None = None, polar_parameters: Mapping[str, float] | None = None, object_padding_px: Tuple[int, int] | None = None, initial_object_guess: ndarray | None = None, initial_probe_guess: ndarray | None = None, initial_scan_positions: ndarray | None = None, theta_x: float = 0, theta_y: float = 0, middle_focus: bool = False, object_type: str = 'complex', positions_mask: ndarray | None = None, verbose: bool = True, device: str = 'cpu', name: str = 'multi-slice_ptychographic_reconstruction', **kwargs)

	Multislice Ptychographic Reconstruction Class.

Diffraction intensities dimensions : (Rx,Ry,Qx,Qy)
Reconstructed probe dimensions : (Sx,Sy)
Reconstructed object dimensions : (T,Px,Py)

such that (Sx,Sy) is the region-of-interest (ROI) size of our probe
and (Px,Py) is the padded-object size we position our ROI around in
each of the T slices.

	Parameters:

	
	energy (float) – The electron energy of the wave functions in eV

	num_slices (int) – Number of slices to use in the forward model

	slice_thicknesses (float or Sequence[float]) – Slice thicknesses in angstroms. If float, all slices are assigned the same thickness

	datacube (DataCube, optional) – Input 4D diffraction pattern intensities

	semiangle_cutoff (float, optional) – Semiangle cutoff for the initial probe guess in mrad

	semiangle_cutoff_pixels (float, optional) – Semiangle cutoff for the initial probe guess in pixels

	rolloff (float, optional) – Semiangle rolloff for the initial probe guess

	vacuum_probe_intensity (np.ndarray, optional) – Vacuum probe to use as intensity aperture for initial probe guess

	polar_parameters (dict, optional) – Mapping from aberration symbols to their corresponding values. All aberration
magnitudes should be given in Å and angles should be given in radians.

	object_padding_px (Tuple[int,int], optional) – Pixel dimensions to pad object with
If None, the padding is set to half the probe ROI dimensions

	initial_object_guess (np.ndarray, optional) – Initial guess for complex-valued object of dimensions (Px,Py)
If None, initialized to 1.0j

	initial_probe_guess (np.ndarray, optional) – Initial guess for complex-valued probe of dimensions (Sx,Sy). If None,
initialized to ComplexProbe with semiangle_cutoff, energy, and aberrations

	initial_scan_positions (np.ndarray, optional) – Probe positions in Å for each diffraction intensity
If None, initialized to a grid scan

	theta_x (float) – x tilt of propagator (in degrees)

	theta_y (float) – y tilt of propagator (in degrees)

	middle_focus (bool) – if True, adds half the sample thickness to the defocus

	object_type (str, optional) – The object can be reconstructed as a real potential (‘potential’) or a complex
object (‘complex’)

	positions_mask (np.ndarray, optional) – Boolean real space mask to select positions in datacube to skip for reconstruction

	verbose (bool, optional) – If True, class methods will inherit this and print additional information

	device (str, optional) – Calculation device will be perfomed on. Must be ‘cpu’ or ‘gpu’

	name (str, optional) – Class name

	kwargs – Provide the aberration coefficients as keyword arguments.

	
__init__(energy: float, num_slices: int, slice_thicknesses: float | Sequence[float], datacube: DataCube | None = None, semiangle_cutoff: float | None = None, semiangle_cutoff_pixels: float | None = None, rolloff: float = 2.0, vacuum_probe_intensity: ndarray | None = None, polar_parameters: Mapping[str, float] | None = None, object_padding_px: Tuple[int, int] | None = None, initial_object_guess: ndarray | None = None, initial_probe_guess: ndarray | None = None, initial_scan_positions: ndarray | None = None, theta_x: float = 0, theta_y: float = 0, middle_focus: bool = False, object_type: str = 'complex', positions_mask: ndarray | None = None, verbose: bool = True, device: str = 'cpu', name: str = 'multi-slice_ptychographic_reconstruction', **kwargs)

	

	
preprocess(diffraction_intensities_shape: Tuple[int, int] | None = None, reshaping_method: str = 'fourier', probe_roi_shape: Tuple[int, int] | None = None, dp_mask: ndarray | None = None, fit_function: str = 'plane', plot_center_of_mass: str = 'default', plot_rotation: bool = True, maximize_divergence: bool = False, rotation_angles_deg: ndarray = array([-89., -88., -87., -86., -85., -84., -83., -82., -81., -80., -79., -78., -77., -76., -75., -74., -73., -72., -71., -70., -69., -68., -67., -66., -65., -64., -63., -62., -61., -60., -59., -58., -57., -56., -55., -54., -53., -52., -51., -50., -49., -48., -47., -46., -45., -44., -43., -42., -41., -40., -39., -38., -37., -36., -35., -34., -33., -32., -31., -30., -29., -28., -27., -26., -25., -24., -23., -22., -21., -20., -19., -18., -17., -16., -15., -14., -13., -12., -11., -10., -9., -8., -7., -6., -5., -4., -3., -2., -1., 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89.]), plot_probe_overlaps: bool = True, force_com_rotation: float | None = None, force_com_transpose: float | None = None, force_com_shifts: float | None = None, force_scan_sampling: float | None = None, force_angular_sampling: float | None = None, force_reciprocal_sampling: float | None = None, object_fov_mask: ndarray | None = None, crop_patterns: bool = False, **kwargs)

	Ptychographic preprocessing step.
Calls the base class methods:

_extract_intensities_and_calibrations_from_datacube,
_compute_center_of_mass(),
_solve_CoM_rotation(),
_normalize_diffraction_intensities()
_calculate_scan_positions_in_px()

Additionally, it initializes an (T,Px,Py) array of 1.0j
and a complex probe using the specified polar parameters.

	Parameters:

	
	diffraction_intensities_shape (Tuple[int,int], optional) – Pixel dimensions (Qx’,Qy’) of the resampled diffraction intensities
If None, no resampling of diffraction intenstities is performed

	reshaping_method (str, optional) – Method to use for reshaping, either ‘bin, ‘bilinear’, or ‘fourier’ (default)

	probe_roi_shape – Padded diffraction intensities shape.
If None, no padding is performed

	(int – Padded diffraction intensities shape.
If None, no padding is performed

	int) – Padded diffraction intensities shape.
If None, no padding is performed

	optional – Padded diffraction intensities shape.
If None, no padding is performed

	dp_mask (ndarray, optional) – Mask for datacube intensities (Qx,Qy)

	fit_function (str, optional) – 2D fitting function for CoM fitting. One of ‘plane’,’parabola’,’bezier_two’

	plot_center_of_mass (str, optional) – If ‘default’, the corrected CoM arrays will be displayed
If ‘all’, the computed and fitted CoM arrays will be displayed

	plot_rotation (bool, optional) – If True, the CoM curl minimization search result will be displayed

	maximize_divergence (bool, optional) – If True, the divergence of the CoM gradient vector field is maximized

	rotation_angles_deg (np.darray, optional) – Array of angles in degrees to perform curl minimization over

	plot_probe_overlaps (bool, optional) – If True, initial probe overlaps scanned over the object will be displayed

	force_com_rotation (float (degrees), optional) – Force relative rotation angle between real and reciprocal space

	force_com_transpose (bool, optional) – Force whether diffraction intensities need to be transposed.

	force_com_shifts (tuple of ndarrays (CoMx, CoMy)) – Amplitudes come from diffraction patterns shifted with
the CoM in the upper left corner for each probe unless
shift is overwritten.

	force_scan_sampling (float, optional) – Override DataCube real space scan pixel size calibrations, in Angstrom

	force_angular_sampling (float, optional) – Override DataCube reciprocal pixel size calibration, in mrad

	force_reciprocal_sampling (float, optional) – Override DataCube reciprocal pixel size calibration, in A^-1

	object_fov_mask (np.ndarray (boolean)) – Boolean mask of FOV. Used to calculate additional shrinkage of object
If None, probe_overlap intensity is thresholded

	crop_patterns (bool) – if True, crop patterns to avoid wrap around of patterns when centering

	Returns:

	self – Self to accommodate chaining

	Return type:

	MultislicePtychographicReconstruction

	
reconstruct(max_iter: int = 64, reconstruction_method: str = 'gradient-descent', reconstruction_parameter: float = 1.0, reconstruction_parameter_a: float | None = None, reconstruction_parameter_b: float | None = None, reconstruction_parameter_c: float | None = None, max_batch_size: int | None = None, seed_random: int | None = None, step_size: float = 0.5, normalization_min: float = 1, positions_step_size: float = 0.9, fix_com: bool = True, fix_probe_iter: int = 0, fix_probe_aperture_iter: int = 0, constrain_probe_amplitude_iter: int = 0, constrain_probe_amplitude_relative_radius: float = 0.5, constrain_probe_amplitude_relative_width: float = 0.05, constrain_probe_fourier_amplitude_iter: int = 0, constrain_probe_fourier_amplitude_max_width_pixels: float = 3.0, constrain_probe_fourier_amplitude_constant_intensity: bool = False, fix_positions_iter: int = inf, constrain_position_distance: float | None = None, global_affine_transformation: bool = True, gaussian_filter_sigma: float | None = None, gaussian_filter_iter: int = inf, fit_probe_aberrations_iter: int = 0, fit_probe_aberrations_max_angular_order: int = 4, fit_probe_aberrations_max_radial_order: int = 4, butterworth_filter_iter: int = inf, q_lowpass: float | None = None, q_highpass: float | None = None, butterworth_order: float = 2, kz_regularization_filter_iter: int = inf, kz_regularization_gamma: float | ndarray | None = None, identical_slices_iter: int = 0, object_positivity: bool = True, shrinkage_rad: float = 0.0, fix_potential_baseline: bool = True, pure_phase_object_iter: int = 0, tv_denoise_iter_chambolle=inf, tv_denoise_weight_chambolle=None, tv_denoise_pad_chambolle=True, tv_denoise_iter=inf, tv_denoise_weights=None, tv_denoise_inner_iter=40, switch_object_iter: int = inf, store_iterations: bool = False, progress_bar: bool = True, reset: bool | None = None)

	Ptychographic reconstruction main method.

	Parameters:

	
	max_iter (int, optional) – Maximum number of iterations to run

	reconstruction_method (str, optional) – Specifies which reconstruction algorithm to use, one of:
“generalized-projections”,
“DM_AP” (or “difference-map_alternating-projections”),
“RAAR” (or “relaxed-averaged-alternating-reflections”),
“RRR” (or “relax-reflect-reflect”),
“SUPERFLIP” (or “charge-flipping”), or
“GD” (or “gradient_descent”)

	reconstruction_parameter (float, optional) – Reconstruction parameter for various reconstruction methods above.

	reconstruction_parameter_a (float, optional) – Reconstruction parameter a for reconstruction_method=’generalized-projections’.

	reconstruction_parameter_b (float, optional) – Reconstruction parameter b for reconstruction_method=’generalized-projections’.

	reconstruction_parameter_c (float, optional) – Reconstruction parameter c for reconstruction_method=’generalized-projections’.

	max_batch_size (int, optional) – Max number of probes to update at once

	seed_random (int, optional) – Seeds the random number generator, only applicable when max_batch_size is not None

	step_size (float, optional) – Update step size

	normalization_min (float, optional) – Probe normalization minimum as a fraction of the maximum overlap intensity

	positions_step_size (float, optional) – Positions update step size

	fix_com (bool, optional) – If True, fixes center of mass of probe

	fix_probe_iter (int, optional) – Number of iterations to run with a fixed probe before updating probe estimate

	fix_probe_aperture_iter (int, optional) – Number of iterations to run with a fixed probe Fourier amplitude before updating probe estimate

	constrain_probe_amplitude_iter (int, optional) – Number of iterations to run while constraining the real-space probe with a top-hat support.

	constrain_probe_amplitude_relative_radius (float) – Relative location of top-hat inflection point, between 0 and 0.5

	constrain_probe_amplitude_relative_width (float) – Relative width of top-hat sigmoid, between 0 and 0.5

	constrain_probe_fourier_amplitude_iter (int, optional) – Number of iterations to run while constraining the Fourier-space probe by fitting a sigmoid for each angular frequency.

	constrain_probe_fourier_amplitude_max_width_pixels (float) – Maximum pixel width of fitted sigmoid functions.

	constrain_probe_fourier_amplitude_constant_intensity (bool) – If True, the probe aperture is additionally constrained to a constant intensity.

	fix_positions_iter (int, optional) – Number of iterations to run with fixed positions before updating positions estimate

	constrain_position_distance (float) – Distance to constrain position correction within original field of view in A

	global_affine_transformation (bool, optional) – If True, positions are assumed to be a global affine transform from initial scan

	gaussian_filter_sigma (float, optional) – Standard deviation of gaussian kernel in A

	gaussian_filter_iter (int, optional) – Number of iterations to run using object smoothness constraint

	fit_probe_aberrations_iter (int, optional) – Number of iterations to run while fitting the probe aberrations to a low-order expansion

	fit_probe_aberrations_max_angular_order (bool) – Max angular order of probe aberrations basis functions

	fit_probe_aberrations_max_radial_order (bool) – Max radial order of probe aberrations basis functions

	butterworth_filter_iter (int, optional) – Number of iterations to run using high-pass butteworth filter

	q_lowpass (float) – Cut-off frequency in A^-1 for low-pass butterworth filter

	q_highpass (float) – Cut-off frequency in A^-1 for high-pass butterworth filter

	butterworth_order (float) – Butterworth filter order. Smaller gives a smoother filter

	kz_regularization_filter_iter (int, optional) – Number of iterations to run using kz regularization filter

	kz_regularization_gamma – kz regularization strength

	float – kz regularization strength

	optional – kz regularization strength

	identical_slices_iter (int, optional) – Number of iterations to run using identical slices

	object_positivity (bool, optional) – If True, forces object to be positive

	shrinkage_rad (float) – Phase shift in radians to be subtracted from the potential at each iteration

	fix_potential_baseline (bool) – If true, the potential mean outside the FOV is forced to zero at each iteration

	pure_phase_object_iter (int, optional) – Number of iterations where object amplitude is set to unity

	tv_denoise_iter_chambolle (bool) – Number of iterations with TV denoisining

	tv_denoise_weight_chambolle (float) – weight of tv denoising constraint

	tv_denoise_pad_chambolle (bool) – if True, pads object at top and bottom with zeros before applying denoising

	tv_denoise (bool) – If True, applies TV denoising on object

	tv_denoise_weights ([float,float]) – Denoising weights[z weight, r weight]. The greater weight,
the more denoising.

	tv_denoise_inner_iter (float) – Number of iterations to run in inner loop of TV denoising

	switch_object_iter (int, optional) – Iteration to switch object type between ‘complex’ and ‘potential’ or between
‘potential’ and ‘complex’

	store_iterations (bool, optional) – If True, reconstructed objects and probes are stored at each iteration

	progress_bar (bool, optional) – If True, reconstruction progress is displayed

	reset (bool, optional) – If True, previous reconstructions are ignored

	Returns:

	self – Self to accommodate chaining

	Return type:

	MultislicePtychographicReconstruction

	
visualize(fig=None, iterations_grid: Tuple[int, int] | None = None, plot_convergence: bool = True, plot_probe: bool = True, plot_fourier_probe: bool = False, cbar: bool = True, padding: int = 0, **kwargs)

	Displays reconstructed object and probe.

	Parameters:

	
	fig (Figure) – Matplotlib figure to place Gridspec in

	plot_convergence (bool, optional) – If true, the normalized mean squared error (NMSE) plot is displayed

	iterations_grid (Tuple[int,int]) – Grid dimensions to plot reconstruction iterations

	cbar (bool, optional) – If true, displays a colorbar

	plot_probe (bool) – If true, the reconstructed probe intensity is also displayed

	plot_fourier_probe (bool, optional) – If true, the reconstructed complex Fourier probe is displayed

	padding (int, optional) – Pixels to pad by post rotating-cropping object

	Returns:

	self – Self to accommodate chaining

	Return type:

	PtychographicReconstruction

	
show_transmitted_probe(plot_fourier_probe: bool = False, **kwargs)

	Plots the min, max, and mean transmitted probe after propagation and transmission.

	Parameters:

	
	plot_fourier_probe (boolean, optional) – If True, the transmitted probes are also plotted in Fourier space

	kwargs – Passed to show_complex

	
show_slices(ms_object=None, cbar: bool = True, common_color_scale: bool = True, padding: int = 0, num_cols: int = 3, show_fft: bool = False, **kwargs)

	Displays reconstructed slices of object

	Parameters:

	
	ms_object (nd.array, optional) – Object to plot slices of. If None, uses current object

	cbar (bool, optional) – If True, displays a colorbar

	padding (int, optional) – Padding to leave uncropped

	num_cols (int, optional) – Number of GridSpec columns

	show_fft (bool, optional) – if True, plots fft of object slices

	
show_depth(x1: float, x2: float, y1: float, y2: float, specify_calibrated: bool = False, gaussian_filter_sigma: float | None = None, ms_object=None, cbar: bool = False, aspect: float | None = None, plot_line_profile: bool = False, **kwargs)

	Displays line profile depth section

	Parameters:

	
	x1 (floats (pixels)) – Line profile for depth section runs from (x1,y1) to (x2,y2)
Specified in pixels unless specify_calibrated is True

	x2 (floats (pixels)) – Line profile for depth section runs from (x1,y1) to (x2,y2)
Specified in pixels unless specify_calibrated is True

	y1 (floats (pixels)) – Line profile for depth section runs from (x1,y1) to (x2,y2)
Specified in pixels unless specify_calibrated is True

	y2 (floats (pixels)) – Line profile for depth section runs from (x1,y1) to (x2,y2)
Specified in pixels unless specify_calibrated is True

	specify_calibrated (bool (optional)) – If True, specify x1, x2, y1, y2 in A values instead of pixels

	gaussian_filter_sigma (float (optional)) – Standard deviation of gaussian kernel in A

	ms_object (np.array) – Object to plot slices of. If None, uses current object

	cbar (bool, optional) – If True, displays a colorbar

	aspect (float, optional) – aspect ratio for depth profile plot

	plot_line_profile (bool) – If True, also plots line profile showing where depth profile is taken

	
tune_num_slices_and_thicknesses(num_slices_guess=None, thicknesses_guess=None, num_slices_step_size=1, thicknesses_step_size=20, num_slices_values=3, num_thicknesses_values=3, update_defocus=False, max_iter=5, plot_reconstructions=True, plot_convergence=True, return_values=False, **kwargs)

	Run reconstructions over a parameters space of number of slices
and slice thicknesses. Should be run after the preprocess step.

	Parameters:

	
	num_slices_guess (float, optional) – initial starting guess for number of slices, rounds to nearest integer
if None, uses current initialized values

	thicknesses_guess (float (A), optional) – initial starting guess for thicknesses of slices assuming same
thickness for each slice
if None, uses current initialized values

	num_slices_step_size (float, optional) – size of change of number of slices for each step in parameter space

	thicknesses_step_size (float (A), optional) – size of change of slice thicknesses for each step in parameter space

	num_slices_values (int, optional) – number of number of slice values to test, must be >= 1

	num_thicknesses_values (int,optional) – number of thicknesses values to test, must be >= 1

	update_defocus (bool, optional) – if True, updates defocus based on estimated total thickness

	max_iter (int, optional) – number of iterations to run in ptychographic reconstruction

	plot_reconstructions (bool, optional) – if True, plot phase of reconstructed objects

	plot_convergence (bool, optional) – if True, plots error for each iteration for each reconstruction

	return_values (bool, optional) – if True, returns objects, convergence

	Returns:

	
	objects (list) – reconstructed objects

	convergence (np.ndarray) – array of convergence values from reconstructions

Module for reconstructing phase objects from 4DSTEM datasets using iterative methods,
namely overlap tomography.

	
class py4DSTEM.process.phase.iterative_overlap_tomography.OverlapTomographicReconstruction(energy: float, num_slices: int, tilt_orientation_matrices: Sequence[ndarray], datacube: Sequence[DataCube] | None = None, semiangle_cutoff: float | None = None, semiangle_cutoff_pixels: float | None = None, rolloff: float = 2.0, vacuum_probe_intensity: ndarray | None = None, polar_parameters: Mapping[str, float] | None = None, object_padding_px: Tuple[int, int] | None = None, object_type: str = 'potential', positions_mask: ndarray | None = None, initial_object_guess: ndarray | None = None, initial_probe_guess: ndarray | None = None, initial_scan_positions: Sequence[ndarray] | None = None, verbose: bool = True, device: str = 'cpu', name: str = 'overlap-tomographic_reconstruction', **kwargs)

	Overlap Tomographic Reconstruction Class.

List of diffraction intensities dimensions : (Rx,Ry,Qx,Qy)
Reconstructed probe dimensions : (Sx,Sy)
Reconstructed object dimensions : (Px,Py,Py)

such that (Sx,Sy) is the region-of-interest (ROI) size of our probe
and (Px,Py,Py) is the padded-object electrostatic potential volume,
where x-axis is the tilt.

	Parameters:

	
	datacube (List of DataCubes) – Input list of 4D diffraction pattern intensities

	energy (float) – The electron energy of the wave functions in eV

	num_slices (int) – Number of slices to use in the forward model

	tilt_orientation_matrices (Sequence[np.ndarray]) – List of orientation matrices for each tilt

	semiangle_cutoff (float, optional) – Semiangle cutoff for the initial probe guess in mrad

	semiangle_cutoff_pixels (float, optional) – Semiangle cutoff for the initial probe guess in pixels

	rolloff (float, optional) – Semiangle rolloff for the initial probe guess

	vacuum_probe_intensity (np.ndarray, optional) – Vacuum probe to use as intensity aperture for initial probe guess

	polar_parameters (dict, optional) – Mapping from aberration symbols to their corresponding values. All aberration
magnitudes should be given in Å and angles should be given in radians.

	object_padding_px (Tuple[int,int], optional) – Pixel dimensions to pad object with
If None, the padding is set to half the probe ROI dimensions

	initial_object_guess (np.ndarray, optional) – Initial guess for complex-valued object of dimensions (Px,Py,Py)
If None, initialized to 1.0

	initial_probe_guess (np.ndarray, optional) – Initial guess for complex-valued probe of dimensions (Sx,Sy). If None,
initialized to ComplexProbe with semiangle_cutoff, energy, and aberrations

	initial_scan_positions (list of np.ndarray, optional) – Probe positions in Å for each diffraction intensity per tilt
If None, initialized to a grid scan centered along tilt axis

	verbose (bool, optional) – If True, class methods will inherit this and print additional information

	device (str, optional) – Calculation device will be perfomed on. Must be ‘cpu’ or ‘gpu’

	object_type (str, optional) – The object can be reconstructed as a real potential (‘potential’) or a complex
object (‘complex’)

	positions_mask (np.ndarray, optional) – Boolean real space mask to select positions to ignore in reconstruction

	name (str, optional) – Class name

	kwargs – Provide the aberration coefficients as keyword arguments.

	
__init__(energy: float, num_slices: int, tilt_orientation_matrices: Sequence[ndarray], datacube: Sequence[DataCube] | None = None, semiangle_cutoff: float | None = None, semiangle_cutoff_pixels: float | None = None, rolloff: float = 2.0, vacuum_probe_intensity: ndarray | None = None, polar_parameters: Mapping[str, float] | None = None, object_padding_px: Tuple[int, int] | None = None, object_type: str = 'potential', positions_mask: ndarray | None = None, initial_object_guess: ndarray | None = None, initial_probe_guess: ndarray | None = None, initial_scan_positions: Sequence[ndarray] | None = None, verbose: bool = True, device: str = 'cpu', name: str = 'overlap-tomographic_reconstruction', **kwargs)

	

	
preprocess(diffraction_intensities_shape: Tuple[int, int] | None = None, reshaping_method: str = 'fourier', probe_roi_shape: Tuple[int, int] | None = None, dp_mask: ndarray | None = None, fit_function: str = 'plane', plot_probe_overlaps: bool = True, rotation_real_space_degrees: float | None = None, diffraction_patterns_rotate_degrees: float | None = None, diffraction_patterns_transpose: bool | None = None, force_com_shifts: Sequence[float] | None = None, force_scan_sampling: float | None = None, force_angular_sampling: float | None = None, force_reciprocal_sampling: float | None = None, progress_bar: bool = True, object_fov_mask: ndarray | None = None, crop_patterns: bool = False, **kwargs)

	Ptychographic preprocessing step.

Additionally, it initializes an (Px,Py, Py) array of 1.0
and a complex probe using the specified polar parameters.

	Parameters:

	
	diffraction_intensities_shape (Tuple[int,int], optional) – Pixel dimensions (Qx’,Qy’) of the resampled diffraction intensities
If None, no resampling of diffraction intenstities is performed

	reshaping_method (str, optional) – Method to use for reshaping, either ‘bin, ‘bilinear’, or ‘fourier’ (default)

	probe_roi_shape – Padded diffraction intensities shape.
If None, no padding is performed

	(int – Padded diffraction intensities shape.
If None, no padding is performed

	int) – Padded diffraction intensities shape.
If None, no padding is performed

	optional – Padded diffraction intensities shape.
If None, no padding is performed

	dp_mask (ndarray, optional) – Mask for datacube intensities (Qx,Qy)

	fit_function (str, optional) – 2D fitting function for CoM fitting. One of ‘plane’,’parabola’,’bezier_two’

	plot_probe_overlaps (bool, optional) – If True, initial probe overlaps scanned over the object will be displayed

	rotation_real_space_degrees (float (degrees), optional) – In plane rotation around z axis between x axis and tilt axis in
real space (forced to be in xy plane)

	diffraction_patterns_rotate_degrees (float, optional) – Relative rotation angle between real and reciprocal space

	diffraction_patterns_transpose (bool, optional) – Whether diffraction intensities need to be transposed.

	force_com_shifts (list of tuple of ndarrays (CoMx, CoMy)) – Amplitudes come from diffraction patterns shifted with
the CoM in the upper left corner for each probe unless
shift is overwritten. One tuple per tilt.

	force_scan_sampling (float, optional) – Override DataCube real space scan pixel size calibrations, in Angstrom

	force_angular_sampling (float, optional) – Override DataCube reciprocal pixel size calibration, in mrad

	force_reciprocal_sampling (float, optional) – Override DataCube reciprocal pixel size calibration, in A^-1

	object_fov_mask (np.ndarray (boolean)) – Boolean mask of FOV. Used to calculate additional shrinkage of object
If None, probe_overlap intensity is thresholded

	crop_patterns (bool) – if True, crop patterns to avoid wrap around of patterns when centering

	Returns:

	self – Self to accommodate chaining

	Return type:

	OverlapTomographicReconstruction

	
reconstruct(max_iter: int = 64, reconstruction_method: str = 'gradient-descent', reconstruction_parameter: float = 1.0, reconstruction_parameter_a: float | None = None, reconstruction_parameter_b: float | None = None, reconstruction_parameter_c: float | None = None, max_batch_size: int | None = None, seed_random: int | None = None, step_size: float = 0.5, normalization_min: float = 1, positions_step_size: float = 0.9, fix_com: bool = True, fix_probe_iter: int = 0, fix_probe_aperture_iter: int = 0, constrain_probe_amplitude_iter: int = 0, constrain_probe_amplitude_relative_radius: float = 0.5, constrain_probe_amplitude_relative_width: float = 0.05, constrain_probe_fourier_amplitude_iter: int = 0, constrain_probe_fourier_amplitude_max_width_pixels: float = 3.0, constrain_probe_fourier_amplitude_constant_intensity: bool = False, fix_positions_iter: int = inf, constrain_position_distance: float | None = None, global_affine_transformation: bool = True, gaussian_filter_sigma: float | None = None, gaussian_filter_iter: int = inf, fit_probe_aberrations_iter: int = 0, fit_probe_aberrations_max_angular_order: int = 4, fit_probe_aberrations_max_radial_order: int = 4, butterworth_filter_iter: int = inf, q_lowpass: float | None = None, q_highpass: float | None = None, butterworth_order: float = 2, object_positivity: bool = True, shrinkage_rad: float = 0.0, fix_potential_baseline: bool = True, tv_denoise_iter=inf, tv_denoise_weights=None, tv_denoise_inner_iter=40, collective_tilt_updates: bool = False, store_iterations: bool = False, progress_bar: bool = True, reset: bool | None = None)

	Ptychographic reconstruction main method.

	Parameters:

	
	max_iter (int, optional) – Maximum number of iterations to run

	reconstruction_method (str, optional) – Specifies which reconstruction algorithm to use, one of:
“generalized-projections”,
“DM_AP” (or “difference-map_alternating-projections”),
“RAAR” (or “relaxed-averaged-alternating-reflections”),
“RRR” (or “relax-reflect-reflect”),
“SUPERFLIP” (or “charge-flipping”), or
“GD” (or “gradient_descent”)

	reconstruction_parameter (float, optional) – Reconstruction parameter for various reconstruction methods above.

	reconstruction_parameter_a (float, optional) – Reconstruction parameter a for reconstruction_method=’generalized-projections’.

	reconstruction_parameter_b (float, optional) – Reconstruction parameter b for reconstruction_method=’generalized-projections’.

	reconstruction_parameter_c (float, optional) – Reconstruction parameter c for reconstruction_method=’generalized-projections’.

	max_batch_size (int, optional) – Max number of probes to update at once

	seed_random (int, optional) – Seeds the random number generator, only applicable when max_batch_size is not None

	step_size (float, optional) – Update step size

	normalization_min (float, optional) – Probe normalization minimum as a fraction of the maximum overlap intensity

	positions_step_size (float, optional) – Positions update step size

	fix_com (bool, optional) – If True, fixes center of mass of probe

	fix_probe_iter (int, optional) – Number of iterations to run with a fixed probe before updating probe estimate

	fix_probe_aperture_iter (int, optional) – Number of iterations to run with a fixed probe Fourier amplitude before updating probe estimate

	constrain_probe_amplitude_iter (int, optional) – Number of iterations to run while constraining the real-space probe with a top-hat support.

	constrain_probe_amplitude_relative_radius (float) – Relative location of top-hat inflection point, between 0 and 0.5

	constrain_probe_amplitude_relative_width (float) – Relative width of top-hat sigmoid, between 0 and 0.5

	constrain_probe_fourier_amplitude_iter (int, optional) – Number of iterations to run while constraining the Fourier-space probe by fitting a sigmoid for each angular frequency.

	constrain_probe_fourier_amplitude_max_width_pixels (float) – Maximum pixel width of fitted sigmoid functions.

	constrain_probe_fourier_amplitude_constant_intensity (bool) – If True, the probe aperture is additionally constrained to a constant intensity.

	fix_positions_iter (int, optional) – Number of iterations to run with fixed positions before updating positions estimate

	constrain_position_distance (float, optional) – Distance to constrain position correction within original
field of view in A

	global_affine_transformation (bool, optional) – If True, positions are assumed to be a global affine transform from initial scan

	gaussian_filter_sigma (float, optional) – Standard deviation of gaussian kernel in A

	gaussian_filter_iter (int, optional) – Number of iterations to run using object smoothness constraint

	fit_probe_aberrations_iter (int, optional) – Number of iterations to run while fitting the probe aberrations to a low-order expansion

	fit_probe_aberrations_max_angular_order (bool) – Max angular order of probe aberrations basis functions

	fit_probe_aberrations_max_radial_order (bool) – Max radial order of probe aberrations basis functions

	butterworth_filter_iter (int, optional) – Number of iterations to run using high-pass butteworth filter

	q_lowpass (float) – Cut-off frequency in A^-1 for low-pass butterworth filter

	q_highpass (float) – Cut-off frequency in A^-1 for high-pass butterworth filter

	butterworth_order (float) – Butterworth filter order. Smaller gives a smoother filter

	object_positivity (bool, optional) – If True, forces object to be positive

	tv_denoise (bool) – If True, applies TV denoising on object

	tv_denoise_weights ([float,float]) – Denoising weights[z weight, r weight]. The greater weight,
the more denoising.

	tv_denoise_inner_iter (float) – Number of iterations to run in inner loop of TV denoising

	collective_tilt_updates (bool) – if True perform collective tilt updates

	shrinkage_rad (float) – Phase shift in radians to be subtracted from the potential at each iteration

	store_iterations (bool, optional) – If True, reconstructed objects and probes are stored at each iteration

	progress_bar (bool, optional) – If True, reconstruction progress is displayed

	reset (bool, optional) – If True, previous reconstructions are ignored

	Returns:

	self – Self to accommodate chaining

	Return type:

	OverlapTomographicReconstruction

	
visualize(fig=None, iterations_grid: Tuple[int, int] | None = None, plot_convergence: bool = True, plot_probe: bool = True, plot_fourier_probe: bool = False, cbar: bool = True, projection_angle_deg: float | None = None, projection_axes: Tuple[int, int] = (0, 2), x_lims=(None, None), y_lims=(None, None), **kwargs)

	Displays reconstructed object and probe.

	Parameters:

	
	fig (Figure) – Matplotlib figure to place Gridspec in

	plot_convergence (bool, optional) – If true, the normalized mean squared error (NMSE) plot is displayed

	cbar (bool, optional) – If true, displays a colorbar

	plot_probe (bool) – If true, the reconstructed probe intensity is also displayed

	plot_fourier_probe (bool, optional) – If true, the reconstructed complex Fourier probe is displayed

	iterations_grid (Tuple[int,int]) – Grid dimensions to plot reconstruction iterations

	projection_angle_deg (float) – Angle in degrees to rotate 3D array around prior to projection

	projection_axes (tuple(int,int)) – Axes defining projection plane

	x_lims (tuple(float,float)) – min/max x indices

	y_lims (tuple(float,float)) – min/max y indices

	Returns:

	self – Self to accommodate chaining

	Return type:

	OverlapTomographicReconstruction

	
show_object_fft(obj=None, projection_angle_deg: float | None = None, projection_axes: Tuple[int, int] = (0, 2), x_lims: Tuple[int, int] = (None, None), y_lims: Tuple[int, int] = (None, None), **kwargs)

	Plot FFT of reconstructed object

	Parameters:

	
	obj (array, optional) – if None is specified, uses self._object

	projection_angle_deg (float) – Angle in degrees to rotate 3D array around prior to projection

	projection_axes (tuple(int,int)) – Axes defining projection plane

	x_lims (tuple(float,float)) – min/max x indices

	y_lims (tuple(float,float)) – min/max y indices

	
property positions

	Probe positions [A]

	
show_uncertainty_visualization(errors=None, max_batch_size=None, projected_cropped_potential=None, kde_sigma=None, plot_histogram=True, plot_contours=False, **kwargs)

	Plot uncertainty visualization using self-consistency errors

Module for reconstructing virtual parallax (also known as tilted-shifted bright field)
images by aligning each virtual BF image.

	
class py4DSTEM.process.phase.iterative_parallax.ParallaxReconstruction(energy: float, datacube: DataCube | None = None, verbose: bool = False, object_padding_px: Tuple[int, int] = (32, 32), device: str = 'cpu', name: str = 'parallax_reconstruction')

	Iterative parallax reconstruction class.

	Parameters:

	
	datacube (DataCube) – Input 4D diffraction pattern intensities

	energy (float) – The electron energy of the wave functions in eV

	verbose (bool, optional) – If True, class methods will inherit this and print additional information

	device (str, optional) – Calculation device will be perfomed on. Must be ‘cpu’ or ‘gpu’

	object_padding_px (Tuple[int,int], optional) – Pixel dimensions to pad object with
If None, the padding is set to half the probe ROI dimensions

	
__init__(energy: float, datacube: DataCube | None = None, verbose: bool = False, object_padding_px: Tuple[int, int] = (32, 32), device: str = 'cpu', name: str = 'parallax_reconstruction')

	

	
to_h5(group)

	Wraps datasets and metadata to write in emdfile classes,
notably the (subpixel-)aligned BF.

	
preprocess(edge_blend: int = 16, threshold_intensity: float = 0.8, normalize_images: bool = True, normalize_order=0, descan_correct: bool = True, defocus_guess: float | None = None, rotation_guess: float | None = None, plot_average_bf: bool = True, **kwargs)

	Iterative parallax reconstruction preprocessing method.

	Parameters:

	
	edge_blend (int, optional) – Pixels to blend image at the border

	threshold (float, optional) – Fraction of max of dp_mean for bright-field pixels

	normalize_images (bool, optional) – If True, bright images normalized to have a mean of 1

	normalize_order (integer, optional) – Polynomial order for normalization. 0 means constant, 1 means linear, etc.
Higher orders not yet implemented.

	defocus_guess (float, optional) – Initial guess of defocus value (defocus dF) in A
If None, first iteration is assumed to be in-focus

	descan_correct (float, optional) – If True, aligns bright field stack based on measured descan

	rotation_guess (float, optional) – Initial guess of defocus value in degrees
If None, first iteration assumed to be 0

	plot_average_bf (bool, optional) – If True, plots the average bright field image, using defocus_guess

	Returns:

	self – Self to accommodate chaining

	Return type:

	ParallaxReconstruction

	
tune_angle_and_defocus(angle_guess=None, defocus_guess=None, angle_step_size=5, defocus_step_size=100, num_angle_values=5, num_defocus_values=5, return_values=False, plot_reconstructions=True, plot_convergence=True, **kwargs)

	Run parallax reconstruction over a parameters space of pre-determined angles
and defocus

	Parameters:

	
	angle_guess (float (degrees), optional) – initial starting guess for rotation angle between real and reciprocal space
if None, uses 0

	defocus_guess (float (A), optional) – initial starting guess for defocus (defocus dF)
if None, uses 0

	angle_step_size (float (degrees), optional) – size of change of rotation angle between real and reciprocal space for
each step in parameter space

	defocus_step_size (float (A), optional) – size of change of defocus for each step in parameter space

	num_angle_values (int, optional) – number of values of angle to test, must be >= 1.

	num_defocus_values (int,optional) – number of values of defocus to test, must be >= 1

	plot_reconstructions (bool, optional) – if True, plot phase of reconstructed objects

	plot_convergence (bool, optional) – if True, makes 2D plot of error metrix

	return_values (bool, optional) – if True, returns objects, convergence

	Returns:

	
	objects (list) – reconstructed objects

	convergence (np.ndarray) – array of convergence values from reconstructions

	
reconstruct(max_alignment_bin: int | None = None, min_alignment_bin: int = 1, max_iter_at_min_bin: int = 2, cross_correlation_upsample_factor: int = 8, regularizer_matrix_size: Tuple[int, int] = (1, 1), regularize_shifts: bool = True, running_average: bool = True, progress_bar: bool = True, plot_aligned_bf: bool = True, plot_convergence: bool = True, reset: bool | None = None, **kwargs)

	Iterative Parallax Reconstruction main reconstruction method.

	Parameters:

	
	max_alignment_bin (int, optional) – Maximum bin size for bright field alignment
If None, the bright field disk radius is used

	min_alignment_bin (int, optional) – Minimum bin size for bright field alignment

	max_iter_at_min_bin (int, optional) – Number of iterations to run at the smallest bin size

	cross_correlation_upsample_factor (int, optional) – DFT upsample factor for subpixel alignment

	regularizer_matrix_size (Tuple[int,int], optional) – Bernstein basis degree used for regularizing shifts

	regularize_shifts (bool, optional) – If True, the cross-correlated shifts are constrained to a spline interpolation

	running_average (bool, optional) – If True, the bright field reference image is updated in a spiral from the origin

	progress_bar (bool, optional) – If True, progress bar is displayed

	plot_aligned_bf (bool, optional) – If True, the aligned bright field image is plotted at each bin level

	plot_convergence (bool, optional) – If True, the convergence error is also plotted

	reset (bool, optional) – If True, the reconstruction is reset

	Returns:

	self – Self to accommodate chaining

	Return type:

	BFReconstruction

	
subpixel_alignment(kde_upsample_factor=None, kde_sigma=0.125, plot_upsampled_BF_comparison: bool = True, plot_upsampled_FFT_comparison: bool = False, **kwargs)

	Upsample and subpixel-align BFs using the measured image shifts.
Uses kernel density estimation (KDE) to align upsampled BFs.

	Parameters:

	
	kde_upsample_factor (int, optional) – Real-space upsampling factor

	kde_sigma (float, optional) – KDE gaussian kernel bandwidth

	plot_upsampled_BF_comparison (bool, optional) – If True, the pre/post alignment BF images are plotted for comparison

	plot_upsampled_FFT_comparison (bool, optional) – If True, the pre/post alignment BF FFTs are plotted for comparison

	
aberration_fit(fit_BF_shifts: bool = False, fit_CTF_FFT: bool = False, fit_aberrations_max_radial_order: int = 3, fit_aberrations_max_angular_order: int = 4, fit_aberrations_min_radial_order: int = 2, fit_aberrations_min_angular_order: int = 0, fit_max_thon_rings: int = 6, fit_power_alpha: float = 2.0, plot_CTF_comparison: bool | None = None, plot_BF_shifts_comparison: bool | None = None, upsampled: bool = True, force_transpose: bool = False)

	Fit aberrations to the measured image shifts.

	Parameters:

	
	fit_BF_shifts (bool) – Set to True to fit aberrations to the measured BF shifts directly.

	fit_CTF_FFT (bool) – Set to True to fit aberrations in the FFT of the (upsampled) BF
image. Note that this method relies on visible zero crossings in the FFT.

	fit_aberrations_max_radial_order (int) – Max radial order for fitting of aberrations.

	fit_aberrations_max_angular_order (int) – Max angular order for fitting of aberrations.

	fit_aberrations_min_radial_order (int) – Min radial order for fitting of aberrations.

	fit_aberrations_min_angular_order (int) – Min angular order for fitting of aberrations.

	fit_max_thon_rings (int) – Max number of Thon rings to search for during CTF FFT fitting.

	fit_power_alpha (int) – Power to raise FFT alpha weighting during CTF FFT fitting.

	plot_CTF_comparison (bool, optional) – If True, the fitted CTF is plotted against the reconstructed frequencies.

	plot_BF_shifts_comparison (bool, optional) – If True, the measured vs fitted BF shifts are plotted.

	upsampled (bool) – If True, and upsampled BF is available, uses that for CTF FFT fitting.

	force_transpose (bool) – If True, and fit_BF_shifts is True, flips the measured x and y shifts

	
aberration_correct(use_CTF_fit=None, plot_corrected_phase: bool = True, k_info_limit: float | None = None, k_info_power: float = 1.0, Wiener_filter=False, Wiener_signal_noise_ratio: float = 1.0, Wiener_filter_low_only: bool = False, upsampled: bool = True, **kwargs)

	CTF correction of the phase image using the measured defocus aberration.

	Parameters:

	
	use_FFT_fit (bool) – Use the CTF fitted to the zero crossings of the FFT.
Default is True

	plot_corrected_phase (bool, optional) – If True, the CTF-corrected phase is plotted

	k_info_limit (float, optional) – maximum allowed frequency in butterworth filter

	k_info_power (float, optional) – power of butterworth filter

	Wiener_filter (bool, optional) – Use Wiener filtering instead of CTF sign correction.

	Wiener_signal_noise_ratio (float, optional) – Signal to noise radio at k = 0 for Wiener filter

	Wiener_filter_low_only (bool, optional) – Apply Wiener filtering only to the CTF portions before the 1st CTF maxima.

	
depth_section(depth_angstroms=array([-250, -150, -50, 50, 150, 250]), plot_depth_sections=True, k_info_limit: float | None = None, k_info_power: float = 1.0, progress_bar=True, **kwargs)

	CTF correction of the BF image using the measured defocus aberration.

	Parameters:

	
	depth_angstroms (np.array) – Specify the depths

	k_info_limit (float, optional) – maximum allowed frequency in butterworth filter

	k_info_power (float, optional) – power of butterworth filter

	Returns:

	stack_depth – stack of phase images at different depths with shape [depth Nx Ny]

	Return type:

	np.array

	
show_shifts(scale_arrows=1, plot_arrow_freq=1, plot_rotated_shifts=True, **kwargs)

	Utility function to visualize bright field disk pixel shifts

	Parameters:

	
	scale_arrows (float, optional) – Scale to multiply shifts by

	plot_arrow_freq (int, optional) – Frequency of shifts to plot in quiver plot

	
visualize(**kwargs)

	Visualization function for bright field average

	Returns:

	self – Self to accommodate chaining

	Return type:

	BFReconstruction

	
property object_cropped

	cropped object

Module for reconstructing phase objects from 4DSTEM datasets using iterative methods,
namely joint ptychography.

	
class py4DSTEM.process.phase.iterative_simultaneous_ptychography.SimultaneousPtychographicReconstruction(energy: float, datacube: Sequence[DataCube] | None = None, simultaneous_measurements_mode: str = '-+', semiangle_cutoff: float | None = None, semiangle_cutoff_pixels: float | None = None, rolloff: float = 2.0, vacuum_probe_intensity: ndarray | None = None, polar_parameters: Mapping[str, float] | None = None, object_padding_px: Tuple[int, int] | None = None, positions_mask: ndarray | None = None, initial_object_guess: ndarray | None = None, initial_probe_guess: ndarray | None = None, initial_scan_positions: ndarray | None = None, object_type: str = 'complex', verbose: bool = True, device: str = 'cpu', name: str = 'simultaneous_ptychographic_reconstruction', **kwargs)

	Iterative Simultaneous Ptychographic Reconstruction Class.

Diffraction intensities dimensions : (Rx,Ry,Qx,Qy) (for each measurement)
Reconstructed probe dimensions : (Sx,Sy)
Reconstructed electrostatic dimensions : (Px,Py)
Reconstructed magnetic dimensions : (Px,Py)

such that (Sx,Sy) is the region-of-interest (ROI) size of our probe
and (Px,Py) is the padded-object size we position our ROI around in.

	Parameters:

	
	datacube (Sequence[DataCube]) – Tuple of input 4D diffraction pattern intensities

	energy (float) – The electron energy of the wave functions in eV

	simultaneous_measurements_mode (str, optional) – One of ‘-+’, ‘-0+’, ‘0+’, where -/0/+ refer to the sign of the magnetic potential

	semiangle_cutoff (float, optional) – Semiangle cutoff for the initial probe guess in mrad

	semiangle_cutoff_pixels (float, optional) – Semiangle cutoff for the initial probe guess in pixels

	rolloff (float, optional) – Semiangle rolloff for the initial probe guess

	vacuum_probe_intensity (np.ndarray, optional) – Vacuum probe to use as intensity aperture for initial probe guess

	polar_parameters (dict, optional) – Mapping from aberration symbols to their corresponding values. All aberration
magnitudes should be given in Å and angles should be given in radians.

	object_padding_px (Tuple[int,int], optional) – Pixel dimensions to pad objects with
If None, the padding is set to half the probe ROI dimensions

	positions_mask (np.ndarray, optional) – Boolean real space mask to select positions in datacube to skip for reconstruction

	initial_object_guess (np.ndarray, optional) – Initial guess for complex-valued object of dimensions (Px,Py)
If None, initialized to 1.0j

	initial_probe_guess (np.ndarray, optional) – Initial guess for complex-valued probe of dimensions (Sx,Sy). If None,
initialized to ComplexProbe with semiangle_cutoff, energy, and aberrations

	initial_scan_positions (np.ndarray, optional) – Probe positions in Å for each diffraction intensity
If None, initialized to a grid scan

	verbose (bool, optional) – If True, class methods will inherit this and print additional information

	device (str, optional) – Calculation device will be perfomed on. Must be ‘cpu’ or ‘gpu’

	object_type (str, optional) – The object can be reconstructed as a real potential (‘potential’) or a complex
object (‘complex’)

	name (str, optional) – Class name

	kwargs – Provide the aberration coefficients as keyword arguments.

	
__init__(energy: float, datacube: Sequence[DataCube] | None = None, simultaneous_measurements_mode: str = '-+', semiangle_cutoff: float | None = None, semiangle_cutoff_pixels: float | None = None, rolloff: float = 2.0, vacuum_probe_intensity: ndarray | None = None, polar_parameters: Mapping[str, float] | None = None, object_padding_px: Tuple[int, int] | None = None, positions_mask: ndarray | None = None, initial_object_guess: ndarray | None = None, initial_probe_guess: ndarray | None = None, initial_scan_positions: ndarray | None = None, object_type: str = 'complex', verbose: bool = True, device: str = 'cpu', name: str = 'simultaneous_ptychographic_reconstruction', **kwargs)

	

	
preprocess(diffraction_intensities_shape: Tuple[int, int] | None = None, reshaping_method: str = 'fourier', probe_roi_shape: Tuple[int, int] | None = None, dp_mask: ndarray | None = None, fit_function: str = 'plane', plot_rotation: bool = True, maximize_divergence: bool = False, rotation_angles_deg: ndarray = array([-89., -88., -87., -86., -85., -84., -83., -82., -81., -80., -79., -78., -77., -76., -75., -74., -73., -72., -71., -70., -69., -68., -67., -66., -65., -64., -63., -62., -61., -60., -59., -58., -57., -56., -55., -54., -53., -52., -51., -50., -49., -48., -47., -46., -45., -44., -43., -42., -41., -40., -39., -38., -37., -36., -35., -34., -33., -32., -31., -30., -29., -28., -27., -26., -25., -24., -23., -22., -21., -20., -19., -18., -17., -16., -15., -14., -13., -12., -11., -10., -9., -8., -7., -6., -5., -4., -3., -2., -1., 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89.]), plot_probe_overlaps: bool = True, force_com_rotation: float | None = None, force_com_transpose: float | None = None, force_com_shifts: float | None = None, force_scan_sampling: float | None = None, force_angular_sampling: float | None = None, force_reciprocal_sampling: float | None = None, object_fov_mask: ndarray | None = None, crop_patterns: bool = False, **kwargs)

	Ptychographic preprocessing step.
Calls the base class methods:

_extract_intensities_and_calibrations_from_datacube,
_compute_center_of_mass(),
_solve_CoM_rotation(),
_normalize_diffraction_intensities()
_calculate_scan_positions_in_px()

Additionally, it initializes an (Px,Py) array of 1.0j
and a complex probe using the specified polar parameters.

	Parameters:

	
	diffraction_intensities_shape (Tuple[int,int], optional) – Pixel dimensions (Qx’,Qy’) of the resampled diffraction intensities
If None, no resampling of diffraction intenstities is performed

	reshaping_method (str, optional) – Method to use for reshaping, either ‘bin’, ‘bilinear’, or ‘fourier’ (default)

	probe_roi_shape – Padded diffraction intensities shape.
If None, no padding is performed

	(int – Padded diffraction intensities shape.
If None, no padding is performed

	int) – Padded diffraction intensities shape.
If None, no padding is performed

	optional – Padded diffraction intensities shape.
If None, no padding is performed

	dp_mask (ndarray, optional) – Mask for datacube intensities (Qx,Qy)

	fit_function (str, optional) – 2D fitting function for CoM fitting. One of ‘plane’,’parabola’,’bezier_two’

	plot_rotation (bool, optional) – If True, the CoM curl minimization search result will be displayed

	maximize_divergence (bool, optional) – If True, the divergence of the CoM gradient vector field is maximized

	rotation_angles_deg (np.darray, optional) – Array of angles in degrees to perform curl minimization over

	plot_probe_overlaps (bool, optional) – If True, initial probe overlaps scanned over the object will be displayed

	force_com_rotation (float (degrees), optional) – Force relative rotation angle between real and reciprocal space

	force_com_transpose (bool, optional) – Force whether diffraction intensities need to be transposed.

	force_com_shifts (sequence of tuples of ndarrays (CoMx, CoMy)) – Amplitudes come from diffraction patterns shifted with
the CoM in the upper left corner for each probe unless
shift is overwritten.

	force_scan_sampling (float, optional) – Override DataCube real space scan pixel size calibrations, in Angstrom

	force_angular_sampling (float, optional) – Override DataCube reciprocal pixel size calibration, in mrad

	force_reciprocal_sampling (float, optional) – Override DataCube reciprocal pixel size calibration, in A^-1

	object_fov_mask (np.ndarray (boolean)) – Boolean mask of FOV. Used to calculate additional shrinkage of object
If None, probe_overlap intensity is thresholded

	crop_patterns (bool) – if True, crop patterns to avoid wrap around of patterns when centering

	Returns:

	self – Self to accommodate chaining

	Return type:

	PtychographicReconstruction

	
reconstruct(max_iter: int = 64, reconstruction_method: str = 'gradient-descent', reconstruction_parameter: float = 1.0, reconstruction_parameter_a: float | None = None, reconstruction_parameter_b: float | None = None, reconstruction_parameter_c: float | None = None, max_batch_size: int | None = None, seed_random: int | None = None, step_size: float = 0.5, normalization_min: float = 1, positions_step_size: float = 0.9, pure_phase_object_iter: int = 0, fix_com: bool = True, fix_probe_iter: int = 0, warmup_iter: int = 0, fix_probe_aperture_iter: int = 0, constrain_probe_amplitude_iter: int = 0, constrain_probe_amplitude_relative_radius: float = 0.5, constrain_probe_amplitude_relative_width: float = 0.05, constrain_probe_fourier_amplitude_iter: int = 0, constrain_probe_fourier_amplitude_max_width_pixels: float = 3.0, constrain_probe_fourier_amplitude_constant_intensity: bool = False, fix_positions_iter: int = inf, constrain_position_distance: float | None = None, global_affine_transformation: bool = True, gaussian_filter_sigma_e: float | None = None, gaussian_filter_sigma_m: float | None = None, gaussian_filter_iter: int = inf, fit_probe_aberrations_iter: int = 0, fit_probe_aberrations_max_angular_order: int = 4, fit_probe_aberrations_max_radial_order: int = 4, butterworth_filter_iter: int = inf, q_lowpass_e: float | None = None, q_lowpass_m: float | None = None, q_highpass_e: float | None = None, q_highpass_m: float | None = None, butterworth_order: float = 2, tv_denoise_iter: int = inf, tv_denoise_weight: float | None = None, tv_denoise_inner_iter: float = 40, object_positivity: bool = True, shrinkage_rad: float = 0.0, fix_potential_baseline: bool = True, switch_object_iter: int = inf, store_iterations: bool = False, progress_bar: bool = True, reset: bool | None = None)

	Ptychographic reconstruction main method.

	Parameters:

	
	max_iter (int, optional) – Maximum number of iterations to run

	reconstruction_method (str, optional) – Specifies which reconstruction algorithm to use, one of:
“generalized-projections”,
“DM_AP” (or “difference-map_alternating-projections”),
“RAAR” (or “relaxed-averaged-alternating-reflections”),
“RRR” (or “relax-reflect-reflect”),
“SUPERFLIP” (or “charge-flipping”), or
“GD” (or “gradient_descent”)

	reconstruction_parameter (float, optional) – Reconstruction parameter for various reconstruction methods above.

	reconstruction_parameter_a (float, optional) – Reconstruction parameter a for reconstruction_method=’generalized-projections’.

	reconstruction_parameter_b (float, optional) – Reconstruction parameter b for reconstruction_method=’generalized-projections’.

	reconstruction_parameter_c (float, optional) – Reconstruction parameter c for reconstruction_method=’generalized-projections’.

	max_batch_size (int, optional) – Max number of probes to update at once

	seed_random (int, optional) – Seeds the random number generator, only applicable when max_batch_size is not None

	step_size (float, optional) – Update step size

	normalization_min (float, optional) – Probe normalization minimum as a fraction of the maximum overlap intensity

	positions_step_size (float, optional) – Positions update step size

	pure_phase_object_iter (float, optional) – Number of iterations where object amplitude is set to unity

	fix_com (bool, optional) – If True, fixes center of mass of probe

	fix_probe_iter (int, optional) – Number of iterations to run with a fixed probe before updating probe estimate

	fix_probe_aperture_iter (int, optional) – Number of iterations to run with a fixed probe Fourier amplitude before updating probe estimate

	constrain_probe_amplitude_iter (int, optional) – Number of iterations to run while constraining the real-space probe with a top-hat support.

	constrain_probe_amplitude_relative_radius (float) – Relative location of top-hat inflection point, between 0 and 0.5

	constrain_probe_amplitude_relative_width (float) – Relative width of top-hat sigmoid, between 0 and 0.5

	constrain_probe_fourier_amplitude_iter (int, optional) – Number of iterations to run while constraining the Fourier-space probe by fitting a sigmoid for each angular frequency.

	constrain_probe_fourier_amplitude_max_width_pixels (float) – Maximum pixel width of fitted sigmoid functions.

	constrain_probe_fourier_amplitude_constant_intensity (bool) – If True, the probe aperture is additionally constrained to a constant intensity.

	fix_positions_iter (int, optional) – Number of iterations to run with fixed positions before updating positions estimate

	constrain_position_distance (float) – Distance to constrain position correction within original
field of view in A

	global_affine_transformation (bool, optional) – If True, positions are assumed to be a global affine transform from initial scan

	gaussian_filter_sigma_e (float) – Standard deviation of gaussian kernel for electrostatic object in A

	gaussian_filter_sigma_m (float) – Standard deviation of gaussian kernel for magnetic object in A

	gaussian_filter_iter (int, optional) – Number of iterations to run using object smoothness constraint

	fit_probe_aberrations_iter (int, optional) – Number of iterations to run while fitting the probe aberrations to a low-order expansion

	fit_probe_aberrations_max_angular_order (bool) – Max angular order of probe aberrations basis functions

	fit_probe_aberrations_max_radial_order (bool) – Max radial order of probe aberrations basis functions

	butterworth_filter_iter (int, optional) – Number of iterations to run using high-pass butteworth filter

	q_lowpass_e (float) – Cut-off frequency in A^-1 for low-pass filtering electrostatic object

	q_lowpass_m (float) – Cut-off frequency in A^-1 for low-pass filtering magnetic object

	q_highpass_e (float) – Cut-off frequency in A^-1 for high-pass filtering electrostatic object

	q_highpass_m (float) – Cut-off frequency in A^-1 for high-pass filtering magnetic object

	butterworth_order (float) – Butterworth filter order. Smaller gives a smoother filter

	tv_denoise_iter (int, optional) – Number of iterations to run using tv denoise filter on object

	tv_denoise_weight (float) – Denoising weight. The greater weight, the more denoising.

	tv_denoise_inner_iter (float) – Number of iterations to run in inner loop of TV denoising

	object_positivity (bool, optional) – If True, forces object to be positive

	shrinkage_rad (float) – Phase shift in radians to be subtracted from the potential at each iteration

	fix_potential_baseline (bool) – If true, the potential mean outside the FOV is forced to zero at each iteration

	switch_object_iter (int, optional) – Iteration to switch object type between ‘complex’ and ‘potential’ or between
‘potential’ and ‘complex’

	store_iterations (bool, optional) – If True, reconstructed objects and probes are stored at each iteration

	progress_bar (bool, optional) – If True, reconstruction progress is displayed

	reset (bool, optional) – If True, previous reconstructions are ignored

	Returns:

	self – Self to accommodate chaining

	Return type:

	PtychographicReconstruction

	
visualize(fig=None, iterations_grid: Tuple[int, int] | None = None, plot_convergence: bool = True, plot_probe: bool = True, plot_fourier_probe: bool = False, cbar: bool = True, padding: int = 0, **kwargs)

	Displays reconstructed object and probe.

	Parameters:

	
	fig (Figure) – Matplotlib figure to place Gridspec in

	plot_convergence (bool, optional) – If true, the normalized mean squared error (NMSE) plot is displayed

	iterations_grid (Tuple[int,int]) – Grid dimensions to plot reconstruction iterations

	cbar (bool, optional) – If true, displays a colorbar

	plot_probe (bool, optional) – If true, the reconstructed complex probe is displayed

	plot_fourier_probe (bool, optional) – If true, the reconstructed complex Fourier probe is displayed

	padding (int, optional) – Pixels to pad by post rotating-cropping object

	Returns:

	self – Self to accommodate chaining

	Return type:

	PtychographicReconstruction

	
property self_consistency_errors

	Compute the self-consistency errors for each probe position

	
property object_cropped

	Cropped and rotated object

	
py4DSTEM.process.phase.utils.polar_symbols = ('C10', 'C12', 'phi12', 'C21', 'phi21', 'C23', 'phi23', 'C30', 'C32', 'phi32', 'C34', 'phi34', 'C41', 'phi41', 'C43', 'phi43', 'C45', 'phi45', 'C50', 'C52', 'phi52', 'C54', 'phi54', 'C56', 'phi56')

	Symbols for the polar representation of all optical aberrations up to the fifth order.

	
py4DSTEM.process.phase.utils.polar_aliases = {'C5': 'C50', 'Cs': 'C30', 'astigmatism': 'C12', 'astigmatism_angle': 'phi12', 'coma': 'C21', 'coma_angle': 'phi21', 'defocus': 'C10'}

	Aliases for the most commonly used optical aberrations.

	
class py4DSTEM.process.phase.utils.ComplexProbe(energy: float, gpts: Tuple[int, int], sampling: Tuple[float, float], semiangle_cutoff: float = inf, rolloff: float = 2.0, vacuum_probe_intensity: ndarray | None = None, device: str = 'cpu', focal_spread: float = 0.0, angular_spread: float = 0.0, gaussian_spread: float = 0.0, phase_shift: float = 0.0, parameters: Mapping[str, float] | None = None, **kwargs)

	Complex Probe Class.

Simplified version of CTF and Probe from abTEM:
https://github.com/abTEM/abTEM/blob/master/abtem/transfer.py
https://github.com/abTEM/abTEM/blob/master/abtem/waves.py

	Parameters:

	
	energy (float) – The electron energy of the wave functions this contrast transfer function will be applied to [eV].

	semiangle_cutoff (float) – The semiangle cutoff describes the sharp Fourier space cutoff due to the objective aperture [mrad].

	gpts (Tuple[int,int]) – Number of grid points describing the wave functions.

	sampling (Tuple[float,float]) – Lateral sampling of wave functions in Å

	device (str, optional) – Device to perform calculations on. Must be either ‘cpu’ or ‘gpu’

	rolloff (float, optional) – Tapers the cutoff edge over the given angular range [mrad].

	vacuum_probe_intensity (np.ndarray, optional) – Squared of corner-centered aperture amplitude to use, instead of semiangle_cutoff + rolloff

	focal_spread (float, optional) – The 1/e width of the focal spread due to chromatic aberration and lens current instability [Å].

	angular_spread (float, optional) – The 1/e width of the angular deviations due to source size [mrad].

	gaussian_spread (float, optional) – The 1/e width image deflections due to vibrations and thermal magnetic noise [Å].

	phase_shift (float, optional) – A constant phase shift [radians].

	parameters (dict, optional) – Mapping from aberration symbols to their corresponding values. All aberration magnitudes should be given in Å
and angles should be given in radians.

	kwargs – Provide the aberration coefficients as keyword arguments.

	
__init__(energy: float, gpts: Tuple[int, int], sampling: Tuple[float, float], semiangle_cutoff: float = inf, rolloff: float = 2.0, vacuum_probe_intensity: ndarray | None = None, device: str = 'cpu', focal_spread: float = 0.0, angular_spread: float = 0.0, gaussian_spread: float = 0.0, phase_shift: float = 0.0, parameters: Mapping[str, float] | None = None, **kwargs)

	

	
set_parameters(parameters: dict)

	Set the phase of the phase aberration.
:param parameters: Mapping from aberration symbols to their corresponding values.
:type parameters: dict

	
polar_coordinates(x, y)

	Calculate a polar grid for a given Cartesian grid.

	
build()

	Builds corner-centered complex probe in the center of the region of interest.

	
visualize(**kwargs)

	Plots the probe intensity.

	
py4DSTEM.process.phase.utils.spatial_frequencies(gpts: Tuple[int, int], sampling: Tuple[float, float])

	Calculate spatial frequencies of a grid.

	Parameters:

	
	gpts (tuple of int) – Number of grid points.

	sampling (tuple of float) – Sampling of the potential [1 / Å].

	Return type:

	tuple of arrays

	
py4DSTEM.process.phase.utils.fourier_translation_operator(positions: ~numpy.ndarray, shape: tuple, xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>) → ndarray

	Create an array representing one or more phase ramp(s) for shifting another array.

	Parameters:

	
	positions (array of xy-positions) – Positions to calculate fourier translation operators for

	shape (two int) – Array dimensions to be fourier-shifted

	xp (Callable) – Array computing module

	Return type:

	Fourier translation operators

	
py4DSTEM.process.phase.utils.fft_shift(array, positions, xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	Fourier-shift array using positions.

	Parameters:

	
	array (np.ndarray) – Array to be shifted

	positions (array of xy-positions) – Positions to fourier-shift array with

	xp (Callable) – Array computing module

	Return type:

	Fourier-shifted array

	
py4DSTEM.process.phase.utils.subdivide_into_batches(num_items: int, num_batches: int | None = None, max_batch: int | None = None)

	Split an n integer into m (almost) equal integers, such that the sum of smaller integers equals n.

	Parameters:

	
	n (int) – The integer to split.

	m (int) – The number integers n will be split into.

	Return type:

	list of int

	
class py4DSTEM.process.phase.utils.AffineTransform(scale0: float = 1.0, scale1: float = 1.0, shear1: float = 0.0, angle: float = 0.0, t0: float = 0.0, t1: float = 0.0, dilation: float = 1.0)

	Affine Transform Class.

Simplified version of AffineTransform from tike:
https://github.com/AdvancedPhotonSource/tike/blob/f9004a32fda5e49fa63b987e9ffe3c8447d59950/src/tike/ptycho/position.py

AffineTransform() -> Identity

	Parameters:

	
	scale0 (float) – x-scaling

	scale1 (float) – y-scaling

	shear1 (float) – gamma shear

	angle (float) – theta rotation angle

	t0 (float) – x-translation

	t1 (float) – y-translation

	dilation (float) – Isotropic expansion (multiplies scale0 and scale1)

	
__init__(scale0: float = 1.0, scale1: float = 1.0, shear1: float = 0.0, angle: float = 0.0, t0: float = 0.0, t1: float = 0.0, dilation: float = 1.0)

	

	
classmethod fromarray(T: ndarray)

	Return an Affine Transfrom from a 2x2 matrix.
Use decomposition method from Graphics Gems 2 Section 7.1

	
asarray()

	Return an 2x2 matrix of scale, shear, rotation.
This matrix is scale @ shear @ rotate from left to right.

	
asarray3()

	Return an 3x2 matrix of scale, shear, rotation, translation.
This matrix is scale @ shear @ rotate from left to right.
Expects a homogenous (z) coordinate of 1.

	
astuple()

	Return the constructor parameters in a tuple.

	
py4DSTEM.process.phase.utils.estimate_global_transformation(positions0: ~numpy.ndarray, positions1: ~numpy.ndarray, origin: ~typing.Tuple[int, int] = (0, 0), translation_allowed: bool = True, xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	Use least squares to estimate the global affine transformation.

	
py4DSTEM.process.phase.utils.estimate_global_transformation_ransac(positions0: ~numpy.ndarray, positions1: ~numpy.ndarray, origin: ~typing.Tuple[int, int] = (0, 0), translation_allowed: bool = True, min_sample: int = 64, max_error: float = 16, min_consensus: float = 0.75, max_iter: int = 20, xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	Use RANSAC to estimate the global affine transformation.

	
py4DSTEM.process.phase.utils.fourier_ring_correlation(image_1, image_2, pixel_size=None, bin_size=None, sigma=None, align_images=False, upsample_factor=8, device='cpu', plot_frc=True, frc_color='red', half_bit_color='blue')

	Computes fourier ring correlation (FRC) of 2 arrays.
Arrays must bet the same size.

	Parameters
	

	image1: ndarray
	first image for FRC

	image2: ndarray
	second image for FRC

	pixel_size: tuple
	size of pixels in A (x,y)

	bin_size: float, optional
	size of bins for ring profile

	sigma: float, optional
	standard deviation for Gaussian kernel

	align_images: bool
	if True, aligns images using DFT upsampling of cross correlation.

	upsample factor: int
	if align_images, upsampling for correlation. Must be greater than 2.

	device: str, optional
	calculation device will be perfomed on. Must be ‘cpu’ or ‘gpu’

	plot_frc: bool, optional
	if True, plots frc

	frc_color: str, optional
	color of FRC line in plot

	half_bit_color: str, optional
	color of half-bit line

	Returns:

	
	q_frc (ndarray) – spatial frequencies of FRC

	frc (ndarray) – fourier ring correlation

	half_bit (ndarray) – half-bit criteria

	
py4DSTEM.process.phase.utils.return_1D_profile(intensity, pixel_size=None, bin_size=None, sigma=None, device='cpu')

	Return 1D radial profile from corner centered array

	Parameters
	

	intensity: ndarray
	Array for computing 1D profile

	pixel_size: tuple
	Size of pixels in A (x,y)

	bin_size: float, optional
	Size of bins for ring profile

	sigma: float, optional
	standard deviation for Gaussian kernel

	device: str, optional
	calculation device will be perfomed on. Must be ‘cpu’ or ‘gpu’

	Returns:

	
	q_bins (ndarray) – spatial frequencies of bins

	I_bins (ndarray) – Intensity of bins

	n (ndarray) – Number of pixels in each bin

	
py4DSTEM.process.phase.utils.fourier_rotate_real_volume(array, angle, axes=(0, 1), xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	Rotates a 3D array using three Fourier-based shear operators.

	Parameters
	

	array: ndarray
	3D array to rotate

	angle: float
	Angle in deg to rotate array by

	axes: tuple, Optional
	Axes defining plane in which to rotate about

	xp: Callable, optional
	Array computing module

	Returns:

	output_arr – Fourier-rotated array

	Return type:

	ndarray

	
py4DSTEM.process.phase.utils.compute_divergence(vector_field, spacings, xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	Computes divergence of vector_field

	
py4DSTEM.process.phase.utils.compute_gradient(scalar_field, spacings, xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	Computes gradient of scalar_field

	
py4DSTEM.process.phase.utils.array_slice(axis, ndim, start, end, step=1)

	Returns array slice along dynamic axis

	
py4DSTEM.process.phase.utils.make_array_rfft_compatible(array_nd, axis=0, xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	Expand array to be rfft compatible

	
py4DSTEM.process.phase.utils.dst_I(array_nd, xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	1D rfft-based DST-I

	
py4DSTEM.process.phase.utils.idst_I(array_nd, xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	1D rfft-based iDST-I

	
py4DSTEM.process.phase.utils.preconditioned_laplacian(num_exterior, spacing=1, xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	DST-I eigenvalues

	
py4DSTEM.process.phase.utils.preconditioned_poisson_solver(rhs_interior, spacing=1, xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	DST-I based poisson solver

	
py4DSTEM.process.phase.utils.project_vector_field_divergence(vector_field, spacings=(1, 1, 1), xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	Returns solenoidal part of vector field using projection:

f - grad{p}
s.t. laplacian{p} = div{f}

	
py4DSTEM.process.phase.utils.cartesian_to_polar_transform_2Ddata(im_cart, xy_center, num_theta_bins=90, radius_max=None, corner_centered=False, xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	Quick cartesian to polar conversion.

	
py4DSTEM.process.phase.utils.polar_to_cartesian_transform_2Ddata(im_polar, xy_size, xy_center, corner_centered=False, xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	Quick polar to cartesian conversion.

	
py4DSTEM.process.phase.utils.regularize_probe_amplitude(probe_init, width_max_pixels=2.0, nearest_angular_neighbor_averaging=5, enforce_constant_intensity=True, corner_centered=False)

	Fits sigmoid for each angular direction.

	Parameters:

	
	probe_init (np.array) – 2D complex image of the probe in Fourier space.

	width_max_pixels (float) – Maximum edge width of the probe in pixels.

	nearest_angular_neighbor_averaging (int) – Number of nearest angular neighbor pixels to average to make aperture less jagged.

	enforce_constant_intensity (bool) – Set to true to make intensity inside the aperture constant.

	corner_centered (bool) – If True, the probe is assumed to be corner-centered

	Returns:

	
	probe_corr (np.ndarray) – 2D complex image of the corrected probe in Fourier space.

	coefs_all (np.ndarray) – coefficients for the sigmoid fits

	
py4DSTEM.process.phase.utils.rotate_point(origin, point, angle)

	Rotate a point (x1, y1) counterclockwise by a given angle around
a given origin (x0, y0).

	Parameters:

	
	origin (2-tuple of floats) – (x0, y0)

	point (2-tuple of floats) – (x1, y1)

	angle (float (radians)) –

	Return type:

	rotated points (2-tuple)

probe

rdf

	
py4DSTEM.process.rdf.amorph.fit_stack(datacube, init_coefs, mask=None)

	This will fit an ellipse using the polar elliptical transform code to all the
diffraction patterns. It will take in a datacube and return a coefficient array which
can then be used to map strain, fit the centers, etc.

	Parameters:

	
	datacute – a datacube of diffraction data

	init_coefs – an initial starting guess for the fit

	mask – a mask, either 2D or 4D, for either one mask for the whole stack, or one
per pattern.

	Returns:

	an array of coefficients of the fit

	
py4DSTEM.process.rdf.amorph.calculate_coef_strain(coef_cube, r_ref)

	This function will calculate the strains from a 3D matrix output by fit_stack

	Coefs order:
	
	I0 the intensity of the first gaussian function

	I1 the intensity of the Janus gaussian

	sigma0 std of first gaussian

	sigma1 inner std of Janus gaussian

	sigma2 outer std of Janus gaussian

	c_bkgd a constant offset

	R center of the Janus gaussian

	x0,y0 the origin

	B,C 1x^2 + Bxy + Cy^2 = 1

	Parameters:

	
	coef_cube – output from fit_stack

	r_ref – a reference 0 strain radius - needed because we fit r as well as B and C

	Returns:

	
	exx: strain in the x axis direction in image coordinates

	eyy: strain in the y axis direction in image coordinates

	exy: shear

	Return type:

	(3-tuple) A 3-tuple containing

	
py4DSTEM.process.rdf.amorph.plot_strains(strains, cmap='RdBu_r', vmin=None, vmax=None, mask=None)

	This function will plot strains with a unified color scale.

	Parameters:

	
	strains (3-tuple of arrays) – (exx, eyy, exy)

	cmap – imshow parameters

	vmin – imshow parameters

	vmax – imshow parameters

	mask – real space mask of values not to show (black)

	
py4DSTEM.process.rdf.amorph.convert_stack_polar(datacube, coef_cube)

	This function will take the coef_cube from fit_stack and apply it to the image stack,
to return polar transformed images.

	Parameters:

	
	datacube – data in datacube format

	coef_cube – coefs from fit_stack

	Returns:

	polar transformed datacube

	
py4DSTEM.process.rdf.amorph.compute_polar_stack_symmetries(datacube_polar)

	This function will take in a datacube of polar-transformed diffraction patterns, and
do the autocorrelation, before taking the fourier transform along the theta
direction, such that symmetries can be measured. They will be plotted by a different
function

	Parameters:

	datacube_polar – diffraction pattern cube that has been polar transformed

	Returns:

	the normalized fft along the theta direction of the autocorrelated patterns in
datacube_polar

	
py4DSTEM.process.rdf.amorph.plot_symmetries(datacube_symmetries, sym_order)

	This function will take in a datacube from compute_polar_stack_symmetries and plot a
specific symmetry order.

	Parameters:

	
	datacube_symmetries – result of compute_polar_stack_symmetries, the stack of
fft’d autocorrelated diffraction patterns

	sym_order – symmetry order desired to plot

	Returns:

	None

	
py4DSTEM.process.rdf.rdf.get_radial_intensity(polar_img, polar_mask)

	Takes in a radial transformed image and the radial mask (if any) applied to that image.
Designed to be compatible with polar-elliptical transforms from utils

	
py4DSTEM.process.rdf.rdf.fit_scattering_factor(scale, elements, composition, q_arr, units)

	Scale is linear factor
Elements is an 1D array of atomic numbers.
Composition is a 1D array, same length as elements, describing the average atomic
composition of the sample. If the Q_coords is a 1D array of Fourier coordinates,
given in inverse Angstroms. Units is a string of ‘VA’ or ‘A’, which returns the
scattering factor in volt angtroms or in angstroms.

	
py4DSTEM.process.rdf.rdf.get_phi(radialIntensity, scatter, q_arr)

	ymean
scale*scatter.fe**2

	
py4DSTEM.process.rdf.rdf.get_mask(left, right, midpoint, slopes, q_arr)

	start is float
stop is float
midpoint is float
slopes is [float,float]

	
py4DSTEM.process.rdf.rdf.get_rdf(phi, q_arr)

	phi can be masked or not masked

utils

	
py4DSTEM.process.utils.cross_correlate.get_cross_correlation(ar, template, corrPower=1, _returnval='real')

	Get the cross/phase/hybrid correlation of ar with template, where
the latter is in real space.

If _returnval is ‘real’, returns the real-valued cross-correlation.
Otherwise, returns the complex valued result.

	
py4DSTEM.process.utils.cross_correlate.get_cross_correlation_FT(ar, template_FT, corrPower=1, _returnval='real')

	Get the cross/phase/hybrid correlation of ar with template_FT, where
the latter is already in Fourier space (i.e. template_FT is
np.conj(np.fft.fft2(template)).

If _returnval is ‘real’, returns the real-valued cross-correlation.
Otherwise, returns the complex valued result.

	
py4DSTEM.process.utils.cross_correlate.get_shift(ar1, ar2, corrPower=1)

	
Determine the relative shift between a pair of arrays giving the best overlap.

Shift determination uses the brightest pixel in the cross correlation, and is

thus limited to pixel resolution. corrPower specifies the cross correlation
power, with 1 corresponding to a cross correlation and 0 a phase correlation.

	Args:
	ar1,ar2 (2D ndarrays):

	corrPower (float between 0 and 1, inclusive): 1=cross correlation, 0=phase
	correlation

	Returns:

	(shiftx,shifty) - the relative image shift, in pixels

	Return type:

	(2-tuple)

	
py4DSTEM.process.utils.cross_correlate.align_images_fourier(G1, G2, upsample_factor, device='cpu')

	Alignment of two images using DFT upsampling of cross correlation.

	Parameters:

	
	G1 (ndarray) – fourier transform of image 1

	G2 (ndarray) – fourier transform of image 2

	upsample_factor (float) – upsampling for correlation. Must be greater than 2.

	device (str, optional) – calculation device will be perfomed on. Must be ‘cpu’ or ‘gpu’

	Returns – xy_shift [pixels]

	
py4DSTEM.process.utils.cross_correlate.align_and_shift_images(image_1, image_2, upsample_factor, device='cpu')

	Alignment of two images using DFT upsampling of cross correlation.

	Parameters:

	
	image_1 (ndarray) – image 1

	image_2 (ndarray) – image 2

	upsample_factor (float) – upsampling for correlation. Must be greater than 2.

	device (str, optional) – calculation device will be perfomed on. Must be ‘cpu’ or ‘gpu’.

	Returns – shifted image [pixels]

Contains functions relating to polar-elliptical calculations.

	This includes
	
	transforming data from cartesian to polar-elliptical coordinates

	converting between ellipse representations

	radial and polar-elliptical radial integration

Functions for measuring/fitting elliptical distortions are found in
process/calibration/ellipse.py. Functions for computing radial and
polar-elliptical radial backgrounds are found in process/preprocess/ellipse.py.

py4DSTEM uses 2 ellipse representations - one user-facing representation, and
one internal representation. The user-facing represenation is in terms of the
following 5 parameters:

x0,y0 the center of the ellipse
a the semimajor axis length
b the semiminor axis length
theta the (positive, right handed) tilt of the a-axis

to the x-axis, in radians

Internally, fits are performed using the canonical ellipse parameterization,
in terms of the parameters (x0,y0,A,B,C):

A(x-x0)^2 + B(x-x0)(y-y0) C(y-y0)^2 = 1

It is possible to convert between (a,b,theta) <–> (A,B,C) using
the convert_ellipse_params() and convert_ellipse_params_r() methods.

Transformation from cartesian to polar-elliptical space is done using

x = x0 + a*r*cos(phi)*cos(theta) + b*r*sin(phi)*sin(theta)
y = y0 + a*r*cos(phi)*sin(theta) - b*r*sin(phi)*cos(theta)

where (r,phi) are the polar-elliptical coordinates. All angular quantities are in
radians.

	
py4DSTEM.process.utils.elliptical_coords.convert_ellipse_params(A, B, C)

	Converts ellipse parameters from canonical form (A,B,C) into semi-axis lengths and
tilt (a,b,theta).
See module docstring for more info.

	Parameters:

	
	A (floats) – parameters of an ellipse in the form:
Ax^2 + Bxy + Cy^2 = 1

	B (floats) – parameters of an ellipse in the form:
Ax^2 + Bxy + Cy^2 = 1

	C (floats) – parameters of an ellipse in the form:
Ax^2 + Bxy + Cy^2 = 1

	Returns:

	A 3-tuple consisting of:

	a: (float) the semimajor axis length

	b: (float) the semiminor axis length

	theta: (float) the tilt of the ellipse semimajor axis with respect to
the x-axis, in radians

	Return type:

	(3-tuple)

	
py4DSTEM.process.utils.elliptical_coords.convert_ellipse_params_r(a, b, theta)

	Converts from ellipse parameters (a,b,theta) to (A,B,C).
See module docstring for more info.

	Parameters:

	
	a (floats) – parameters of an ellipse, where a/b are the
semimajor/semiminor axis lengths, and theta is the tilt of the semimajor axis
with respect to the x-axis, in radians.

	b (floats) – parameters of an ellipse, where a/b are the
semimajor/semiminor axis lengths, and theta is the tilt of the semimajor axis
with respect to the x-axis, in radians.

	theta (floats) – parameters of an ellipse, where a/b are the
semimajor/semiminor axis lengths, and theta is the tilt of the semimajor axis
with respect to the x-axis, in radians.

	Returns:

	
	A 3-tuple consisting of (A,B,C), the ellipse parameters in
	canonical form.

	Return type:

	(3-tuple)

	
py4DSTEM.process.utils.elliptical_coords.cartesian_to_polarelliptical_transform(cartesianData, p_ellipse, dr=1, dphi=0.03490658503988659, r_range=None, mask=None, maskThresh=0.99)

	Transforms an array of data in cartesian coordinates into a data array in
polar-elliptical coordinates.

Discussion of the elliptical parametrization used can be found in the docstring
for the process.utils.elliptical_coords module.

	Parameters:

	
	cartesianData (2D float array) – the data in cartesian coordinates

	p_ellipse (5-tuple) – specifies (qx0,qy0,a,b,theta), the parameters for the
transformation. These are the same 5 parameters which are outputs
of the elliptical fitting functions in the process.calibration
module, e.g. fit_ellipse_amorphous_ring and fit_ellipse_1D. For
more details, see the process.utils.elliptical_coords module docstring

	dr (float) – sampling of the (r,phi) coords: the width of the bins in r

	dphi (float) – sampling of the (r,phi) coords: the width of the bins in phi,
in radians

	r_range (number or length 2 list/tuple or None) – specifies the sampling of the
(r,theta) coords. Precise behavior which depends on the parameter type:

	if None, autoselects max r value

	if r_range is a number, specifies the maximum r value

	if r_range is a length 2 list/tuple, specifies the min/max r values

	mask (2d array of bools) – shape must match cartesianData; where mask==False,
ignore these datapoints in making the polarElliptical data array

	maskThresh (float) – the final data mask is calculated by converting mask (above)
from cartesian to polar elliptical coords. Due to interpolation, this
results in some non-boolean values - this is converted back to a boolean
array by taking polarEllipticalMask = polarTrans(mask) < maskThresh. Cells
where polarTrans is less than 1 (i.e. has at least one masked NN) should
generally be masked, hence the default value of 0.99.

	Returns:

	A 3-tuple, containing:

	polarEllipticalData: (2D masked array) a masked array containing
the data and the data mask, in polarElliptical coordinates

	rr: (2D array) meshgrid of the r coordinates

	pp: (2D array) meshgrid of the phi coordinates

	Return type:

	(3-tuple)

	
py4DSTEM.process.utils.elliptical_coords.elliptical_resample_datacube(datacube, p_ellipse, mask=None, maskThresh=0.99)

	Perform elliptic resamplig on each diffraction pattern in a DataCube
Detailed description of the args is found in elliptical_resample.

NOTE: Only use this function if you need to resample the raw data.
If you only need for Bragg disk positions to be corrected, use the
BraggVector calibration routines, as it is much faster to perform
this on the peak positions than the entire datacube.

	
py4DSTEM.process.utils.elliptical_coords.elliptical_resample(data, p_ellipse, mask=None, maskThresh=0.99)

	Resamples data with elliptic distortion to correct distortion of the
input pattern.

Discussion of the elliptical parametrization used can be found in the docstring
for the process.utils.elliptical_coords module.

	Parameters:

	
	data (2D float array) – the data in cartesian coordinates

	p_ellipse (5-tuple) – specifies (qx0,qy0,a,b,theta), the parameters for the
transformation. These are the same 5 parameters which are outputs
of the elliptical fitting functions in the process.calibration
module, e.g. fit_ellipse_amorphous_ring and fit_ellipse_1D. For
more details, see the process.utils.elliptical_coords module docstring

	dr (float) – sampling of the (r,phi) coords: the width of the bins in r

	dphi (float) – sampling of the (r,phi) coords: the width of the bins in phi,
in radians

	r_range (number or length 2 list/tuple or None) – specifies the sampling of the
(r,theta) coords. Precise behavior which depends on the parameter type:

	if None, autoselects max r value

	if r_range is a number, specifies the maximum r value

	if r_range is a length 2 list/tuple, specifies the min/max r values

	mask (2d array of bools) – shape must match cartesianData; where mask==False,
ignore these datapoints in making the polarElliptical data array

	maskThresh (float) – the final data mask is calculated by converting mask (above)
from cartesian to polar elliptical coords. Due to interpolation, this
results in some non-boolean values - this is converted back to a boolean
array by taking polarEllipticalMask = polarTrans(mask) < maskThresh. Cells
where polarTrans is less than 1 (i.e. has at least one masked NN) should
generally be masked, hence the default value of 0.99.

	Returns:

	A 3-tuple, containing:

	resampled_data: (2D masked array) a masked array containing
the data and the data mask, in polarElliptical coordinates

	Return type:

	(3-tuple)

	
py4DSTEM.process.utils.elliptical_coords.radial_elliptical_integral(ar, dr, p_ellipse, rmax=None)

	Computes the radial integral of array ar from center (x0,y0) with a step size in r of
dr.

	Parameters:

	
	ar (2d array) – the data

	dr (number) – the r sampling

	p_ellipse (5-tuple) – the parameters (x0,y0,a,b,theta) for the ellipse

	r_max (float) – maximum radial value

	Returns:

	A 2-tuple containing:

	rbin_centers: (1d array) the bins centers of the radial integral

	radial_integral: (1d array) the radial integral

radial_integral (1d array) the radial integral

	Return type:

	(2-tuple)

	
py4DSTEM.process.utils.elliptical_coords.radial_integral(ar, x0=None, y0=None, dr=0.1, rmax=None)

	Computes the radial integral of array ar from center (x0,y0) with a step size in r of dr.

	Parameters:

	
	ar (2d array) – the data

	x0 (floats) – the origin

	y0 (floats) – the origin

	dr (number) – radial step size

	rmax (float) – maximum radial dimension

	Returns:

	A 2-tuple containing:

	rbin_centers: (1d array) the bins centers of the radial integral

	radial_integral: (1d array) the radial integral

	Return type:

	(2-tuple)

	
py4DSTEM.process.utils.masks.get_beamstop_mask(dp, qx0, qy0, theta, dtheta=1, w=10, r=10)

	Generates a beamstop shaped mask.

	Parameters:

	
	dp (2d array) – a diffraction pattern

	qx0 (numbers) – the center position of the beamstop

	qy0 (numbers) – the center position of the beamstop

	theta (number) – the orientation of the beamstop, in degrees

	dtheta (number) – angular span of the wedge representing the beamstop, in degrees

	w (integer) – half the width of the beamstop arm, in pixels

	r (number) – the radius of a circle at the end of the beamstop, in pixels

	Returns:

	the mask

	Return type:

	(2d boolean array)

	
py4DSTEM.process.utils.masks.make_circular_mask(shape, qxy0, radius)

	Create a hard circular mask, for use in DPC integration or
or to use as a filter in diffraction or real space.

	Parameters:

	
	shape (2-tuple of ints) –

	qxy0 (2-tuple of floats) center coordinates, in pixels. Must be in (row, column) –

	radius (float) –

	Returns:

	mask (2D boolean array) the mask

loosely based on multicorr.py found at:
https://github.com/ercius/openNCEM/blob/master/ncempy/algo/multicorr.py

	modified by SEZ, May 2019 to integrate with py4DSTEM utility functions
	
	rewrote upsampleFFT (previously did not work correctly)

	modified upsampled_correlation to accept xyShift, the point around which to

upsample the DFT
* eliminated the factor-2 FFT upsample step in favor of using parabolic
for first-pass subpixel (since parabolic is so fast)
* rewrote the matrix multiply DFT to be more pythonic

	
py4DSTEM.process.utils.multicorr.upsampled_correlation(imageCorr, upsampleFactor, xyShift, device='cpu')

	Refine the correlation peak of imageCorr around xyShift by DFT upsampling.

There are two approaches to Fourier upsampling for subpixel refinement: (a) one
can pad an (appropriately shifted) FFT with zeros and take the inverse transform,
or (b) one can compute the DFT by matrix multiplication using modified
transformation matrices. The former approach is straightforward but requires
performing the FFT algorithm (which is fast) on very large data. The latter method
trades one speedup for a slowdown elsewhere: the matrix multiply steps are expensive
but we operate on smaller matrices. Since we are only interested in a very small
region of the FT around a peak of interest, we use the latter method to get
a substantial speedup and enormous decrease in memory requirement. This
“DFT upsampling” approach computes the transformation matrices for the matrix-
multiply DFT around a small 1.5px wide region in the original imageCorr.

Following the matrix multiply DFT we use parabolic subpixel fitting to
get even more precision! (below 1/upsampleFactor pixels)

NOTE: previous versions of multiCorr operated in two steps: using the zero-
padding upsample method for a first-pass factor-2 upsampling, followed by the
DFT upsampling (at whatever user-specified factor). I have implemented it
differently, to better support iterating over multiple peaks. The DFT is always
upsampled around xyShift, which MUST be specified to HALF-PIXEL precision
(no more, no less) to replicate the behavior of the factor-2 step.
(It is possible to refactor this so that peak detection is done on a Fourier
upsampled image rather than using the parabolic subpixel and rounding as now…
I like keeping it this way because all of the parameters and logic will be identical
to the other subpixel methods.)

	Parameters:

	
	imageCorr (complex valued ndarray) – Complex product of the FFTs of the two images to be registered
i.e. m = np.fft.fft2(DP) * probe_kernel_FT;
imageCorr = np.abs(m)**(corrPower) * np.exp(1j*np.angle(m))

	upsampleFactor (int) – Upsampling factor. Must be greater than 2. (To do upsampling
with factor 2, use upsampleFFT, which is faster.)

	xyShift – Location in original image coordinates around which to upsample the
FT. This should be given to exactly half-pixel precision to
replicate the initial FFT step that this implementation skips

	Returns:

	Refined location of the peak in image coordinates.

	Return type:

	(2-element np array)

	
py4DSTEM.process.utils.multicorr.upsampleFFT(cc, device='cpu')

	Zero-padding FFT upsampling. Returns the real IFFT of the input with 2x
upsampling. This may have an error for matrices with an odd size. Takes
a complex np array as input.

	
py4DSTEM.process.utils.multicorr.dftUpsample(imageCorr, upsampleFactor, xyShift, device='cpu')

	This performs a matrix multiply DFT around a small neighboring region of the inital
correlation peak. By using the matrix multiply DFT to do the Fourier upsampling, the
efficiency is greatly improved. This is adapted from the subfuction dftups found in
the dftregistration function on the Matlab File Exchange.

https://www.mathworks.com/matlabcentral/fileexchange/18401-efficient-subpixel-image-registration-by-cross-correlation

The matrix multiplication DFT is from:

Manuel Guizar-Sicairos, Samuel T. Thurman, and James R. Fienup, “Efficient subpixel
image registration algorithms,” Opt. Lett. 33, 156-158 (2008).
http://www.sciencedirect.com/science/article/pii/S0045790612000778

	Parameters:

	
	imageCorr (complex valued ndarray) – Correlation image between two images in Fourier space.

	upsampleFactor (int) – Scalar integer of how much to upsample.

	xyShift (list of 2 floats) – Coordinates in the UPSAMPLED GRID around which to upsample.
These must be single-pixel IN THE UPSAMPLED GRID

	Returns:

	Upsampled image from region around correlation peak.

	Return type:

	(ndarray)

	
py4DSTEM.process.utils.utils.radial_reduction(ar, x0, y0, binsize=1, fn=<function mean>, coords=None)

	Evaluate a reduction function on pixels within annular rings centered on (x0,y0),
with a ring width of binsize.

By default, returns the mean value of pixels within each annulus.
Some other useful reductions include: np.sum, np.std, np.count, np.median, …

When running in a loop, pre-compute the pixel coordinates and pass them in
for improved performance, like so:

coords = np.mgrid[0:ar.shape[0],0:ar.shape[1]]
radial_sums = radial_reduction(ar, x0,y0, coords=coords)

	
py4DSTEM.process.utils.utils.sector_mask(shape, centre, radius, angle_range=(0, 360))

	Return a boolean mask for a circular sector. The start/stop angles in
angle_range should be given in clockwise order.

	Parameters:

	
	shape – 2D shape of the mask

	centre – 2D center of the circular sector

	radius – radius of the circular mask

	angle_range – angular range of the circular mask

	
py4DSTEM.process.utils.utils.get_qx_qy_1d(M, dx=[1, 1], fft_shifted=False)

	Generates 1D Fourier coordinates for a (Nx,Ny)-shaped 2D array.
Specifying the dx argument sets a unit size.

	Parameters:

	
	M – (2,) shape of the returned array

	dx – (2,) tuple, pixel size

	fft_shifted – True if result should be fft_shifted to have the origin in the center of the array

	
py4DSTEM.process.utils.utils.make_Fourier_coords2D(Nx, Ny, pixelSize=1)

	
	Generates Fourier coordinates for a (Nx,Ny)-shaped 2D array.
	Specifying the pixelSize argument sets a unit size.

	
py4DSTEM.process.utils.utils.get_CoM(ar, device='cpu', corner_centered=False)

	Finds and returns the center of mass of array ar.
If corner_centered is True, uses fftfreq for indices.

	
py4DSTEM.process.utils.utils.get_maxima_1D(ar, sigma=0, minSpacing=0, minRelativeIntensity=0, relativeToPeak=0)

	Finds the indices where 1D array ar is a local maximum.
Optional parameters allow blurring the array and filtering the output;
setting each to 0 (default) turns off these functions.

	Parameters:

	
	ar (1D array) –

	sigma (number) – gaussian blur std to apply to ar before finding maxima

	minSpacing (number) – if two maxima are found within minSpacing, the dimmer one
is removed

	minRelativeIntensity (number) – maxima dimmer than minRelativeIntensity compared
to the relativeToPeak’th brightest maximum are removed

	relativeToPeak (int) – 0=brightest maximum. 1=next brightest, etc.

	Returns:

	An array of indices where ar is a local maximum, sorted by intensity.

	Return type:

	(array of ints)

	
py4DSTEM.process.utils.utils.linear_interpolation_1D(ar, x)

	Calculates the 1D linear interpolation of array ar at position x using the two
nearest elements.

	
py4DSTEM.process.utils.utils.add_to_2D_array_from_floats(ar, x, y, I)

	Adds the values I to array ar, distributing the value between the four pixels nearest
(x,y) using linear interpolation. Inputs (x,y,I) may be floats or arrays of floats.

Note that if the same [x,y] coordinate appears more than once in the input array,
only the final value of I at that coordinate will get added.

	
py4DSTEM.process.utils.utils.get_voronoi_vertices(voronoi, nx, ny, dist=10)

	From a scipy.spatial.Voronoi instance, return a list of ndarrays, where each array
is shape (N,2) and contains the (x,y) positions of the vertices of a voronoi region.

The problem this function solves is that in a Voronoi instance, some vertices outside
the field of view of the tesselated region are left unspecified; only the existence
of a point beyond the field is referenced (which may or may not be ‘at infinity’).
This function specifies all points, such that the vertices and edges of the
tesselation may be directly laid over data.

	Parameters:

	
	voronoi (scipy.spatial.Voronoi) – the voronoi tesselation

	nx (int) – the x field-of-view of the tesselated region

	ny (int) – the y field-of-view of the tesselated region

	dist (float, optional) – place new vertices by extending new voronoi edges outside
the frame by a distance of this factor times the distance of its known vertex
from the frame edge

	Returns:

	the (x,y) coords of the vertices of each
voronoi region

	Return type:

	(list of ndarrays of shape (N,2))

	
py4DSTEM.process.utils.utils.get_ewpc_filter_function(Q_Nx, Q_Ny)

	Returns a function for computing the exit wave power cepstrum of a diffraction
pattern using a Hanning window. This can be passed as the filter_function in the
Bragg disk detection functions (with the probe an array of ones) to find the lattice
vectors by the EWPC method (but be careful as the lengths are now in realspace
units!) See https://arxiv.org/abs/1911.00984

	
py4DSTEM.process.utils.utils.fourier_resample(array, scale=None, output_size=None, force_nonnegative=False, bandlimit_nyquist=None, bandlimit_power=2, dtype=<class 'numpy.float32'>)

	Resize a 2D array along any dimension, using Fourier interpolation / extrapolation.
For 4D input arrays, only the final two axes can be resized.

The scaling of the array can be specified by passing either scale, which sets
the scaling factor along both axes to be scaled; or by passing output_size,
which specifies the final dimensions of the scaled axes (and allows for different
scaling along the x,y or kx,ky axes.)

	Parameters:

	
	array (2D/4D numpy array) – Input array, or 4D stack of arrays, to be resized.

	scale (float) – scalar value giving the scaling factor for all dimensions

	output_size (2-tuple of ints) – two values giving either the (x,y) output size for 2D, or (kx,ky) for 4D

	force_nonnegative (bool) – Force all outputs to be nonnegative, after filtering

	bandlimit_nyquist (float) – Gaussian filter information limit in Nyquist units (0.5 max in both directions)

	bandlimit_power (float) – Gaussian filter power law scaling (higher is sharper)

	dtype (numpy dtype) – datatype for binned array. default is single precision float

	Returns:

	the resized array (2D/4D numpy array)

virtualdiffraction

virtualimage

wholepatternfit

	
class py4DSTEM.process.wholepatternfit.wp_models.WPFModelType(value)

	Flags to signify capabilities and other semantics of a Model

	
class py4DSTEM.process.wholepatternfit.wp_models.WPFModel(name: str, params: dict, model_type=WPFModelType.DUMMY)

	Prototype class for a compent of a whole-pattern model.
Holds the following:

name: human-readable name of the model
params: a dict of names and initial (or returned) values of the model parameters
func: a function that takes as arguments:

	the diffraction pattern being built up, which the function should modify in place

	positional arguments in the same order as the params dictionary

	
	keyword arguments. this is to provide some pre-computed information for convenience
	
	kwargs will include:
	
	xArray, yArray meshgrid of the x and y coordinates

	global_x0 global x-coordinate of the pattern center

	global_y0 global y-coordinate of the pattern center

	jacobian: a function that takes as arguments:
	
	the diffraction pattern being built up, which the function should modify in place

	positional arguments in the same order as the params dictionary

	
	offset: the first index (j) that values should be written into
	(the function should ONLY write into 0,1, and offset:offset+nParams)
0 and 1 are the entries for global_x0 and global_y0, respectively
REMEMBER TO ADD TO 0 and 1 SINCE ALL MODELS CAN CONTRIBUTE TO THIS PARTIAL DERIVATIVE

	keyword arguments. this is to provide some pre-computed information for convenience

	
__init__(name: str, params: dict, model_type=WPFModelType.DUMMY)

	

	
class py4DSTEM.process.wholepatternfit.wp_models.DCBackground(background_value=0.0, name='DC Background')

	Model representing constant background intensity.

	Parameters:

	background_value – Background intensity value.
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	
__init__(background_value=0.0, name='DC Background')

	

	
class py4DSTEM.process.wholepatternfit.wp_models.GaussianBackground(WPF, sigma, intensity, global_center=True, x0=0.0, y0=0.0, name='Gaussian Background')

	Model representing a 2D Gaussian intensity distribution

	Parameters:

	
	WPF (WholePatternFit) – Parent WPF object

	sigma – parameter specifying width of the Gaussian
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	intensity – parameter specifying intensity of the Gaussian
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	global_center (bool) – If True, uses same center coordinate as the global model
If False, uses an independent center

	x0 – Center coordinates of model for local origin
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	y0 – Center coordinates of model for local origin
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	
__init__(WPF, sigma, intensity, global_center=True, x0=0.0, y0=0.0, name='Gaussian Background')

	

	
class py4DSTEM.process.wholepatternfit.wp_models.GaussianRing(WPF, radius, sigma, intensity, global_center=True, x0=0.0, y0=0.0, name='Gaussian Ring')

	Model representing a halo with Gaussian falloff

	Parameters:

	
	WPF (WholePatternFit) – parent fitting object

	radius – radius of halo
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	sigma – width of Gaussian falloff
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	intensity – Intensity of the halo
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	global_center (bool) – If True, uses same center coordinate as the global model
If False, uses an independent center

	x0 – Center coordinates of model for local origin
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	y0 – Center coordinates of model for local origin
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	
__init__(WPF, radius, sigma, intensity, global_center=True, x0=0.0, y0=0.0, name='Gaussian Ring')

	

	
class py4DSTEM.process.wholepatternfit.wp_models.SyntheticDiskLattice(WPF, ux: float, uy: float, vx: float, vy: float, disk_radius: float, disk_width: float, u_max: int, v_max: int, intensity_0: float, refine_radius: bool = False, refine_width: bool = False, global_center: bool = True, x0: float = 0.0, y0: float = 0.0, exclude_indices: list = [], include_indices: list | None = None, name='Synthetic Disk Lattice', verbose=False)

	Model representing a lattice of diffraction disks with a soft edge

	Parameters:

	
	WPF (WholePatternFit) – parent fitting object

	ux – x and y components of the lattice vectors u and v.
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	uy – x and y components of the lattice vectors u and v.
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	vx – x and y components of the lattice vectors u and v.
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	vy – x and y components of the lattice vectors u and v.
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	disk_radius – Radius of each diffraction disk.
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	disk_width – Width of the smooth falloff at the edge of the disk
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	u_max – Maximum lattice indices to include in the pattern.
Disks outside the pattern are automatically clipped.

	v_max – Maximum lattice indices to include in the pattern.
Disks outside the pattern are automatically clipped.

	intensity_0 – Initial intensity for each diffraction disk.
Each disk intensity is an independent fit variable in the final model
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	refine_radius (bool) – Flag whether disk radius is made a fitting parameter

	refine_width (bool) – Flag whether disk edge width is made a fitting parameter

	global_center (bool) – If True, uses same center coordinate as the global model
If False, uses an independent center

	x0 – Center coordinates of model for local origin
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	y0 – Center coordinates of model for local origin
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	exclude_indices (list) – Indices to exclude from the pattern

	include_indices (list) – If specified, only the indices in the list are added to the pattern

	
__init__(WPF, ux: float, uy: float, vx: float, vy: float, disk_radius: float, disk_width: float, u_max: int, v_max: int, intensity_0: float, refine_radius: bool = False, refine_width: bool = False, global_center: bool = True, x0: float = 0.0, y0: float = 0.0, exclude_indices: list = [], include_indices: list | None = None, name='Synthetic Disk Lattice', verbose=False)

	

	
class py4DSTEM.process.wholepatternfit.wp_models.SyntheticDiskMoire(WPF, lattice_a: SyntheticDiskLattice, lattice_b: SyntheticDiskLattice, intensity_0: float, decorated_peaks: list | None = None, link_moire_disk_intensities: bool = False, link_disk_parameters: bool = True, refine_width: bool = True, edge_width: list | None = None, refine_radius: bool = True, disk_radius: list | None = None, name: str = 'Moire Lattice')

	Model of diffraction disks arising from interference between two lattices.

The Moire unit cell is determined automatically using the two input lattices.

	Parameters:

	
	WPF (WholePatternFit) – parent fitting object

	lattice_a (SyntheticDiskLattice) – parent lattices for the Moire

	lattice_b (SyntheticDiskLattice) – parent lattices for the Moire

	intensity_0 – Initial guess of Moire disk intensity
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	decorated_peaks (list) – When specified, only the reflections in the list are decorated with Moire spots
If not specified, all peaks are decorated

	link_moire_disk_intensities (bool) – When False, each Moire disk has an independently fit intensity
When True, Moire disks arising from the same order of parent reflection share
the same intensity

	link_disk_parameters (bool) – When True, edge_width and disk_radius are inherited from lattice_a

	refine_width (bool) – Flag whether disk edge width is a fit variable

	edge_width – Width of the soft edge of the diffraction disk.
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	refine_radius (bool) – Flag whether disk radius is a fit variable

	radius (disk) – Radius of the diffraction disks
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	
__init__(WPF, lattice_a: SyntheticDiskLattice, lattice_b: SyntheticDiskLattice, intensity_0: float, decorated_peaks: list | None = None, link_moire_disk_intensities: bool = False, link_disk_parameters: bool = True, refine_width: bool = True, edge_width: list | None = None, refine_radius: bool = True, disk_radius: list | None = None, name: str = 'Moire Lattice')

	

	
class py4DSTEM.process.wholepatternfit.wp_models.ComplexOverlapKernelDiskLattice(WPF, probe_kernel: ndarray, ux: float, uy: float, vx: float, vy: float, u_max: int, v_max: int, intensity_0: float, exclude_indices: list = [], global_center: bool = True, x0=0.0, y0=0.0, name='Complex Overlapped Disk Lattice', verbose=False)

	
	
__init__(WPF, probe_kernel: ndarray, ux: float, uy: float, vx: float, vy: float, u_max: int, v_max: int, intensity_0: float, exclude_indices: list = [], global_center: bool = True, x0=0.0, y0=0.0, name='Complex Overlapped Disk Lattice', verbose=False)

	

	
class py4DSTEM.process.wholepatternfit.wp_models.KernelDiskLattice(WPF, probe_kernel: ndarray, ux: float, uy: float, vx: float, vy: float, u_max: int, v_max: int, intensity_0: float, exclude_indices: list = [], global_center: bool = True, x0=0.0, y0=0.0, name='Custom Kernel Disk Lattice', verbose=False)

	
	
__init__(WPF, probe_kernel: ndarray, ux: float, uy: float, vx: float, vy: float, u_max: int, v_max: int, intensity_0: float, exclude_indices: list = [], global_center: bool = True, x0=0.0, y0=0.0, name='Custom Kernel Disk Lattice', verbose=False)

	

	
py4DSTEM.process.wholepatternfit.wpf_viz.show_lattice_points(self, im=None, vmin=None, vmax=None, power=None, show_vectors=True, crop_to_pattern=False, returnfig=False, moire_origin_idx=[0, 0, 0, 0], *args, **kwargs)

	Plotting utility to show the initial lattice points.

	Parameters:

	
	im (np.ndarray) – Optional: Image to show, defaults to mean CBED

	vmin (float) – Intensity ranges for plotting im

	vmax (float) – Intensity ranges for plotting im

	power (float) – Gamma level for showing im

	show_vectors (bool) – Flag to plot the lattice vectors

	crop_to_pattern (bool) – Flag to limit the field of view to the pattern area. If False,
spots outside the pattern are shown

	returnfig (bool) – If True, (fig,ax) are returned and plt.show() is not called

	moire_origin_idx (list of length 4) – Indices of peak on which to draw Moire vectors, written as
[a_u, a_v, b_u, b_v]

	args – Passed to plt.subplots

	kwargs – Passed to plt.subplots

	Returns:

	fig,ax

	Return type:

	If returnfig=True

visualize

Table of Contents

	visualize

	show

	overlay

	virtualimage

	vis_RQ

	vis_grid

	vis_special

show

	
py4DSTEM.visualize.show(ar, figsize=(5, 5), cmap='gray', scaling='none', intensity_range='ordered', clipvals=None, vmin=None, vmax=None, min=None, max=None, power=None, power_offset=True, combine_images=False, ticks=True, bordercolor=None, borderwidth=5, show_image=True, return_ar_scaled=False, return_intensity_range=False, returncax=False, returnfig=False, figax=None, hist=False, n_bins=256, mask=None, mask_color='k', mask_alpha=0.0, masked_intensity_range=False, rectangle=None, circle=None, annulus=None, ellipse=None, points=None, grid_overlay=None, cartesian_grid=None, polarelliptical_grid=None, rtheta_grid=None, scalebar=None, calibration=None, rx=None, ry=None, space='Q', pixelsize=None, pixelunits=None, x0=None, y0=None, a=None, e=None, theta=None, title=None, show_fft=False, show_cbar=False, **kwargs)

	General visualization function for 2D arrays.

The simplest use of this function is:

>>> show(ar)

which will generate and display a matplotlib figure showing the 2D array ar.
Additional functionality includes:

	scaling the image (log scaling, power law scaling)

	displaying the image histogram

	altering the histogram clip values

	masking some subset of the image

	setting the colormap

	adding geometric overlays (e.g. points, circles, rectangles, annuli)

	adding informational overlays (scalebars, coordinate grids, oriented axes or
vectors)

	further customization tools

These are each discussed in turn below.

	Scaling:
	Setting the parameter scaling will scale the display image. Options are
‘none’, ‘auto’, ‘power’, or ‘log’. If ‘power’ is specified, the parameter power must
also be passed. The underlying data is not altered. Values less than or equal to
zero are set to zero. If the image histogram is displayed using hist=True,
the scaled image histogram is shown.

Examples:

>>> show(ar,scaling='log')
>>> show(ar,power=0.5)
>>> show(ar,scaling='power',power=0.5,hist=True)

	Histogram:
	Setting the argument hist=True will display the image histogram, instead of
the image. The displayed histogram will reflect any scaling requested. The number
of bins can be set with n_bins. The upper and lower clip values, indicating
where the image display will be saturated, are shown with dashed lines.

	Intensity range:
	Controlling the lower and upper values at which the display image will be
saturated is accomplished with the intensity_range parameter, or its
(soon deprecated) alias clipvals, in combination with vmin,
and vmax. The method by which the upper and lower clip values
are determined is controlled by intensity_range, and must be a string in
(‘None’,’ordered’,’minmax’,’absolute’,’std’,’centered’). See the argument
description for intensity_range for a description of the behavior for each.
The clip values can be returned with the return_intensity_range parameter.

	Masking:
	If a numpy masked array is passed to show, the function will automatically
mask the appropriate pixels. Alternatively, a boolean array of the same shape as
the data array may be passed to the mask argument, and these pixels will be
masked. Masked pixels are displayed as a single uniform color, black by default,
and which can be specified with the mask_color argument. Masked pixels
are excluded when displaying the histogram or computing clip values. The mask
can also be blended with the hidden data by setting the mask_alpha argument.

	Overlays (geometric):
	The function natively supports overlaying points, circles, rectangles, annuli,
and ellipses. Each is invoked by passing a dictionary to the appropriate input
variable specifying the geometry and features of the requested overlay. For
example:

>>> show(ar, rectangle={'lims':(10,20,10,20),'color':'r'})

will overlay a single red square, and

>>> show(ar, annulus={'center':[(28,68),(92,160)],
 'radii':[(16,24),(12,36)],
 'fill':True,
 'alpha':[0.9,0.3],
 'color':['r',(0,1,1,1)]})

will overlay two annuli with two different centers, radii, colors, and
transparencies. For a description of the accepted dictionary parameters
for each type of overlay, see the visualize functions add_*, where
* = (‘rectangle’,’circle’,’annulus’,’ellipse’,’points’). (These docstrings
are under construction!)

	Overlays (informational):
	Informational overlays supported by this function include coordinate axes
(cartesian, polar-elliptical, or r-theta) and scalebars. These are added
by passing the appropriate input argument a dictionary of the desired
parameters, as with geometric overlays. However, there are two key differences
between these overlays and the geometric overlays. First, informational
overlays (coordinate systems and scalebars) require information about the
plot - e.g. the position of the origin, the pixel sizes, the pixel units,
any elliptical distortions, etc. The easiest way to pass this information
is by pass a Calibration object containing this info to show as the
keyword calibration. Second, once the coordinate information has been
passed, informational overlays can autoselect their own parameters, thus simply
passing an empty dict to one of these parameters will add that overlay.

For example:

>>> show(dp, scalebar={}, calibration=calibration)

will display the diffraction pattern dp with a scalebar overlaid in the
bottom left corner given the pixel size and units described in calibration,
and

>>> show(dp, calibration=calibration, scalebar={'length':0.5,'width':2,
 'position':'ul','label':True'})

will display a more customized scalebar.

When overlaying coordinate grids, it is important to note that some relevant
parameters, e.g. the position of the origin, may change by scan position.
In these cases, the parameters rx,``ry`` must also be passed to show,
to tell the Calibration object where to look for the relevant parameters.
For example:

>>> show(dp, cartesian_grid={}, calibration=calibration, rx=2,ry=5)

will overlay a cartesian coordinate grid on the diffraction pattern at scan
position (2,5). Adding

>>> show(dp, calibration=calibration, rx=2, ry=5, cartesian_grid={'label':True,
 'alpha':0.7,'color':'r'})

will customize the appearance of the grid further. And

>>> show(im, calibration=calibration, cartesian_grid={}, space='R')

displays a cartesian grid over a real space image. For more details, see the
documentation for the visualize functions add_*, where * = (‘scalebar’,
‘cartesian_grid’, ‘polarelliptical_grid’, ‘rtheta_grid’). (Under construction!)

	Further customization:
	Most parameters accepted by a matplotlib axis will be accepted by show.
Pass a valid matplotlib colormap or a known string indicating a colormap
as the argument cmap to specify the colormap. Pass figsize to
specify the figure size. Etc.

Further customization can be accomplished by either (1) returning the figure
generated by show and then manipulating it using the normal matplotlib
functions, or (2) generating a matplotlib Figure with Axes any way you like
(e.g. with plt.subplots) and then using this function to plot inside a
single one of the Axes of your choice.

Option (1) is accomplished by simply passing this function returnfig=True.
Thus:

>>> fig,ax = show(ar, returnfig=True)

will now give you direct access to the figure and axes to continue to alter.
Option (2) is accomplished by passing an existing figure and axis to show
as a 2-tuple to the figax argument. Thus:

>>> fig,(ax1,ax2) = plt.subplots(1,2)
>>> show(ar, figax=(fig,ax1))
>>> show(ar, figax=(fig,ax2), hist=True)

will generate a 2-axis figure, and then plot the array ar as an image on
the left, while plotting its histogram on the right.

	Parameters:

	
	ar (2D array or a list of 2D arrays) – the data to plot. Normally this
is a 2D array of the data. If a list of 2D arrays is passed, plots
a corresponding grid of images.

	figsize (2-tuple) – size of the plot

	cmap (colormap) – any matplotlib cmap; default is gray

	scaling (str) – selects a scaling scheme for the intensity values. Default is
none. Accepted values:

	’none’: do not scale intensity values

	’full’: fill entire color range with sorted intensity values

	’power’: power law scaling

	’log’: values where ar<=0 are set to 0

	intensity_range (str) –
	method for setting clipvalues (min and max intensities).
	The original name “clipvals” is now deprecated.
Default is ‘ordered’. Accepted values:

	’ordered’: vmin/vmax are set to fractions of the
distribution of pixel values in the array, e.g. vmin=0.02
will set the minumum display value to saturate the lower 2% of pixels

	’minmax’: The vmin/vmax values are np.min(ar)/np.max(r)

	’absolute’: The vmin/vmax values are set to the values of
the vmin,vmax arguments received by this function

	
	’std’: The vmin/vmax values are np.median(ar) -/+ N*np.std(ar), and
	N is this functions min,max vals.

	’centered’: The vmin/vmax values are set to c -/+ m, where by default
‘c’ is zero and m is the max(abs(ar-c), or the two params can be user
specified using the kwargs vmin/vmax -> c/m.

	vmin (number) – min intensity, behavior depends on clipvals

	vmax (number) – max intensity, behavior depends on clipvals

	min – alias’ for vmin,vmax, throws deprecation warning

	max – alias’ for vmin,vmax, throws deprecation warning

	power (number) – specifies the scaling power

	power_offset (bool) – If true, image has min value subtracted before power scaling

	ticks (bool) – Turn outer tick marks on or off

	bordercolor (color or None) – if not None, add a border of this color.
The color can be anything matplotlib recognizes as a color.

	borderwidth (number) –

	returnfig (bool) – if True, the function returns the tuple (figure,axis)

	figax (None or 2-tuple) – controls which matplotlib Axes object draws the image.
If None, generates a new figure with a single Axes instance. Otherwise, ax
must be a 2-tuple containing the matplotlib class instances (Figure,Axes),
with ar then plotted in the specified Axes instance.

	hist (bool) – if True, instead of plotting a 2D image in ax, plots a histogram of
the intensity values of ar, after any scaling this function has performed.
Plots the clipvals as dashed vertical lines

	n_bins (int) – number of hist bins

	mask (None or boolean array) – if not None, must have the same shape as ‘ar’.
Wherever mask==True, plot the pixel normally, and where mask==False,
pixel values are set to mask_color. If hist==True, ignore these values in the
histogram. If mask_alpha is specified, the mask is blended with the array
underneath, with 0 yielding an opaque mask and 1 yielding a fully transparent
mask. If mask_color is set to 'empty' instead of a matplotlib.color,
nothing is done to pixels where mask==False, allowing overlaying multiple
arrays in different regions of an image by invoking the ``figax` kwarg over
multiple calls to show

	mask_color (color) – see ‘mask’

	mask_alpha (float) – see ‘mask’

	masked_intensity_range (bool) – controls if masked pixel values are included when
determining the display value range; False indicates that all pixel values
will be used to determine the intensity range, True indicates only unmasked
pixels will be used

	scalebar (None or dict or Bool) – if None, and a DiffractionSlice or RealSlice
with calibrations is passed, adds a scalebar. If scalebar is not displaying the proper
calibration, check .calibration pixel_size and pixel_units. If None and an array is passed,
does not add a scalebar. If a dict is passed, it is propagated to the add_scalebar function
which will attempt to use it to overlay a scalebar. If True, uses calibraiton or pixelsize/pixelunits
for scalebar. If False, no scalebar is added.

	show_fft (bool) – if True, plots 2D-fft of array

	show_cbar (bool) – if True, adds cbar

	**kwargs – any keywords accepted by matplotlib’s ax.matshow()

	Returns:

	if returnfig==False (default), the figure is plotted and nothing is returned.
if returnfig==True, return the figure and the axis.

	
py4DSTEM.visualize.show_hist(arr, bins=200, vlines=None, vlinecolor='k', vlinestyle='--', returnhist=False, returnfig=False)

	Visualization function to show histogram from any ndarray (arr).

	Accepts:
	arr (ndarray) any array
bins (int) number of bins that the intensity values will be sorted

into for histogram

	returnhist (bool) determines whether or not the histogram values are
	returned (see Returns)

	returnfig (bool) determines whether or not figure and its axis are
	returned (see Returns)

	Returns:

	
	If
	returnhist==False and returnfig==False returns nothing
returnhist==True and returnfig==True returns (counts,bin_edges) the histogram

values and bin edge locations

returnhist==False and returnfig==True returns (fig,ax), the Figure and Axis
returnhist==True and returnfig==True returns (hist,bin_edges),(fig,ax)

	
py4DSTEM.visualize.show_Q(ar, scalebar=True, grid=False, polargrid=False, Q_pixel_size=None, Q_pixel_units=None, calibration=None, rx=None, ry=None, qx0=None, qy0=None, e=None, theta=None, scalebarloc=0, scalebarsize=None, scalebarwidth=None, scalebartext=None, scalebartextloc='above', scalebartextsize=12, gridspacing=None, gridcolor='w', majorgridlines=True, majorgridlw=1, majorgridls=':', minorgridlines=True, minorgridlw=0.5, minorgridls=':', gridlabels=False, gridlabelsize=12, gridlabelcolor='k', alpha=0.35, **kwargs)

	Shows a diffraction space image with options for several overlays to define the scale,
including a scalebar, a cartesian grid, or a polar / polar-elliptical grid.

Regardless of which overlay is requested, the function must recieve either values
for Q_pixel_size and Q_pixel_units, or a Calibration instance containing these values.
If both are passed, the absolutely passed values take precedence.
If a cartesian grid is requested, (qx0,qy0) are required, either passed absolutely or
passed as a Calibration instance with the appropriate (rx,ry) value.
If a polar grid is requested, (qx0,qy0,e,theta) are required, again either absolutely
or via a Calibration instance.

Any arguments accepted by the show() function (e.g. image scaling, clipvalues, etc)
may be passed to this function as kwargs.

	
py4DSTEM.visualize.show_rectangles(ar, lims=(0, 1, 0, 1), color='r', fill=True, alpha=0.25, linewidth=2, returnfig=False, **kwargs)

	Visualization function which plots a 2D array with one or more overlayed rectangles.
lims is specified in the order (x0,xf,y0,yf). The rectangle bounds begin at the upper
left corner of (x0,y0) and end at the upper left corner of (xf,yf) – i.e inclusive
in the lower bound, exclusive in the upper bound – so that the boxed region encloses
the area of array ar specified by ar[x0:xf,y0:yf].

To overlay one rectangle, lims must be a single 4-tuple. To overlay N rectangles,
lims must be a list of N 4-tuples. color, fill, and alpha may each be single values,
which are then applied to all the rectangles, or a length N list.

See the docstring for py4DSTEM.visualize.show() for descriptions of all input
parameters not listed below.

	Accepts:
	lims (4-tuple, or list of N 4-tuples) the rectangle bounds (x0,xf,y0,yf)
color (valid matplotlib color, or list of N colors)
fill (bool or list of N bools) filled in or empty rectangles
alpha (number, 0 to 1) transparency
linewidth (number)

	Returns:

	If returnfig==False (default), the figure is plotted and nothing is returned.
If returnfig==False, the figure and its one axis are returned, and can be
further edited.

	
py4DSTEM.visualize.show_circles(ar, center, R, color='r', fill=True, alpha=0.3, linewidth=2, returnfig=False, **kwargs)

	Visualization function which plots a 2D array with one or more overlayed circles.
To overlay one circle, center must be a single 2-tuple. To overlay N circles,
center must be a list of N 2-tuples. color, fill, and alpha may each be single values,
which are then applied to all the circles, or a length N list.

See the docstring for py4DSTEM.visualize.show() for descriptions of all input
parameters not listed below.

	Accepts:
	ar (2D array) the data
center (2-tuple, or list of N 2-tuples) the center of the circle (x0,y0)
R (number of list of N numbers) the circles radius
color (valid matplotlib color, or list of N colors)
fill (bool or list of N bools) filled in or empty rectangles
alpha (number, 0 to 1) transparency
linewidth (number)

	Returns:

	If returnfig==False (default), the figure is plotted and nothing is returned.
If returnfig==False, the figure and its one axis are returned, and can be
further edited.

	
py4DSTEM.visualize.show_ellipses(ar, center, a, b, theta, color='r', fill=True, alpha=0.3, linewidth=2, returnfig=False, **kwargs)

	Visualization function which plots a 2D array with one or more overlayed ellipses.
To overlay one ellipse, center must be a single 2-tuple. To overlay N circles,
center must be a list of N 2-tuples. Similarly, the remaining ellipse parameters -
a, e, and theta - must each be a single number or a len-N list. color, fill, and
alpha may each be single values, which are then applied to all the circles, or
length N lists.

See the docstring for py4DSTEM.visualize.show() for descriptions of all input
parameters not listed below.

	Accepts:
	center (2-tuple, or list of N 2-tuples) the center of the circle (x0,y0)
a (number or list of N numbers) the semimajor axis length
e (number or list of N numbers) ratio of semiminor/semimajor length
theta (number or list of N numbers) the tilt angle in radians
color (valid matplotlib color, or list of N colors)
fill (bool or list of N bools) filled in or empty rectangles
alpha (number, 0 to 1) transparency
linewidth (number)

	Returns:

	If returnfig==False (default), the figure is plotted and nothing is returned.
If returnfig==False, the figure and its one axis are returned, and can be
further edited.

	
py4DSTEM.visualize.show_annuli(ar, center, radii, color='r', fill=True, alpha=0.3, linewidth=2, returnfig=False, **kwargs)

	Visualization function which plots a 2D array with one or more overlayed annuli.
To overlay one annulus, center must be a single 2-tuple. To overlay N annuli,
center must be a list of N 2-tuples. color, fill, and alpha may each be single values,
which are then applied to all the circles, or a length N list.

See the docstring for py4DSTEM.visualize.show() for descriptions of all input
parameters not listed below.

	Accepts:
	center (2-tuple, or list of N 2-tuples) the center of the annulus (x0,y0)
radii (2-tuple, or list of N 2-tuples) the inner and outer radii
color (string of list of N strings)
fill (bool or list of N bools) filled in or empty rectangles
alpha (number, 0 to 1) transparency
linewidth (number)

	Returns:

	If returnfig==False (default), the figure is plotted and nothing is returned.
If returnfig==False, the figure and its one axis are returned, and can be
further edited.

	
py4DSTEM.visualize.show_points(ar, x, y, s=1, scale=50, alpha=1, pointcolor='r', open_circles=False, title=None, returnfig=False, **kwargs)

	Plots a 2D array with one or more points.
x and y are the point centers and must have the same length, N.
s is the relative point sizes, and must have length 1 or N.
scale is the size of the largest point.
pointcolor have length 1 or N.

	Accepts:
	ar (array) the image
x,y (number or iterable of numbers) the point positions
s (number or iterable of numbers) the relative point sizes
scale (number) the maximum point size
title (str) title for plot
pointcolor
alpha

	Returns:

	If returnfig==False (default), the figure is plotted and nothing is returned.
If returnfig==False, the figure and its one axis are returned, and can be
further edited.

overlay

	
py4DSTEM.visualize.overlay.add_annuli(ax, d)

	Adds one or more annuli to Axis ax using the parameters in dictionary d.

	
py4DSTEM.visualize.overlay.add_bragg_index_labels(ax, d)

	Adds labels for indexed bragg directions to a plot, using the parameters in dict d.

	The dictionary d has required and optional parameters as follows:
	
	bragg_directions (req’d) (PointList) the Bragg directions. This PointList must have
	the fields ‘qx’,’qy’,’h’, and ‘k’, and may optionally have ‘l’

voffset (number) vertical offset for the labels
hoffset (number) horizontal offset for the labels
color (color)
size (number)
points (bool)
pointsize (number)
pointcolor (color)

	
py4DSTEM.visualize.overlay.add_cartesian_grid(ax, d)

	Adds an overlaid cartesian coordinate grid over an image
using the parameters in dictionary d.

	The dictionary d has required and optional parameters as follows:
	x0,y0 (req’d) the origin
Nx,Ny (req’d) the image extent
space (str) ‘Q’ or ‘R’
spacing (number) spacing between gridlines
pixelsize (number)
pixelunits (str)
lw (number)
ls (str)
color (color)
label (bool)
labelsize (number)
labelcolor (color)
alpha (number)

	
py4DSTEM.visualize.overlay.add_circles(ax, d)

	adds one or more circles to axis ax using the parameters in dictionary d.

	
py4DSTEM.visualize.overlay.add_ellipses(ax, d)

	Adds one or more ellipses to axis ax using the parameters in dictionary d.

	Parameters:

	
	center –

	a –

	b –

	theta –

	color –

	fill –

	alpha –

	linewidth –

	linestyle –

	
py4DSTEM.visualize.overlay.add_grid_overlay(ax, d)

	adds an overlaid grid over some subset of pixels in an image
using the parameters in dictionary d.

	The dictionary d has required and optional parameters as follows:
	x0,y0 (req’d) (ints) the corner of the grid
xL,xL (req’d) (ints) the extent of the grid
color (color)
linewidth (number)
alpha (number)

	
py4DSTEM.visualize.overlay.add_pointlabels(ax, d)

	adds number indices for a set of points to axis ax using the parameters in dictionary d.

	
py4DSTEM.visualize.overlay.add_points(ax, d)

	adds one or more points to axis ax using the parameters in dictionary d.

	
py4DSTEM.visualize.overlay.add_polarelliptical_grid(ax, d)

	adds an overlaid polar-ellitpical coordinate grid over an image
using the parameters in dictionary d.

	The dictionary d has required and optional parameters as follows:
	x0,y0 (req’d) the origin
e,theta (req’d) the ellipticity (a/b) and major axis angle (radians)
Nx,Ny (req’d) the image extent
space (str) ‘Q’ or ‘R’
spacing (number) spacing between radial gridlines
N_thetalines (int) the number of theta gridlines
pixelsize (number)
pixelunits (str)
lw (number)
ls (str)
color (color)
label (bool)
labelsize (number)
labelcolor (color)
alpha (number)

	
py4DSTEM.visualize.overlay.add_rectangles(ax, d)

	Adds one or more rectangles to Axis ax using the parameters in dictionary d.

	
py4DSTEM.visualize.overlay.add_rtheta_grid(ar, d)

	

	
py4DSTEM.visualize.overlay.add_scalebar(ax, d)

	Adds an overlaid scalebar to an image, using the parameters in dict d.

	The dictionary d has required and optional parameters as follows:
	Nx,Ny (req’d) the image extent
space (str) ‘Q’ or ‘R’
length (number) the scalebar length
width (number) the scalebar width
pixelsize (number)
pixelunits (str)
color (color)
label (bool)
labelsize (number)
labelcolor (color)
alpha (number)
position (str) ‘ul’,’ur’,’bl’, or ‘br’ for the

upperleft, upperright, bottomleft, bottomright

ticks (bool) if False, turns off image border ticks

	
py4DSTEM.visualize.overlay.add_vector(ax, d)

	Adds a vector to an image, using the parameters in dict d.

	The dictionary d has required and optional parameters as follows:
	x0,y0 (req’d) the tail position
vx,vy (req’d) the vector
color (color)
width (number)
label (str)
labelsize (number)
labelcolor (color)

	
py4DSTEM.visualize.overlay.get_nice_spacing(Nx, Ny, pixelsize)

	Get a nice distance for gridlines, scalebars, etc

	Parameters:

	
	Nx (int) – the image dimensions

	Nx – the image dimensions

	pixelsize (float) – the size of each pixel, in some units

	Returns:

	A 3-tuple containing:

	spacing_units: the spacing in real units

	spacing_pixels:the spacing in pixels

	spacing: the leading digits of the spacing

	Return type:

	(3-tuple)

	
py4DSTEM.visualize.overlay.is_color_like(c)

	Return whether c can be interpreted as an RGB(A) color.

virtualimage

vis_RQ

	
py4DSTEM.visualize.vis_RQ.ax_addaxes(ax, vx, vy, vlength, x0, y0, width=1, color='r', labelaxes=True, labelsize=12, labelcolor='r', righthandedcoords=True)

	Adds a pair of x/y axes to the matplotlib subplot ax. The user supplies
the x-axis direction with (vx,vy), and the y-axis is then chosen
by rotating 90 degrees, in a direction set by righthandedcoords.

	Accepts:
	ax (matplotlib subplot)
vx,vy (numbers) x,y components of the x-axis,

Only the orientation is used; the axis
is normalized and rescaled by

vlength (number) the axis length
x0,y0 (numbers) the origin of the axes
labelaxes (bool) if True, label ‘x’ and ‘y’
righthandedcoords (bool) if True, y-axis is counterclockwise

with respect to x-axis

	
py4DSTEM.visualize.vis_RQ.ax_addaxes_QtoR(ax, vx, vy, vlength, x0, y0, QR_rotation, width=1, color='r', labelaxes=True, labelsize=12, labelcolor='r')

	Adds a pair of x/y axes to the matplotlib subplot ax. The user supplies
the x-axis direction with (vx,vy) in reciprocal space coordinates, and
the function transforms and displays the corresponding vector in real space.

	Accepts:
	ax (matplotlib subplot)
vx,vy (numbers) x,y components of the x-axis,

in reciprocal space coordinates. Only
the orientation is used; the axes
are normalized and rescaled by

vlength (number) the axis length, in real space
x0,y0 (numbers) the origin of the axes, in

real space

labelaxes (bool) if True, label ‘x’ and ‘y’
QR_rotation (number) the offset angle between real and

diffraction space. Specifically, this is
the counterclockwise rotation of real space
with respect to diffraction space. In degrees.

	
py4DSTEM.visualize.vis_RQ.ax_addaxes_RtoQ(ax, vx, vy, vlength, x0, y0, QR_rotation, width=1, color='r', labelaxes=True, labelsize=12, labelcolor='r')

	Adds a pair of x/y axes to the matplotlib subplot ax. The user supplies
the x-axis direction with (vx,vy) in real space coordinates, and the function
transforms and displays the corresponding vector in reciprocal space.

	Accepts:
	ax (matplotlib subplot)
vx,vy (numbers) x,y components of the x-axis,

in real space coordinates. Only
the orientation is used; the axes
are normalized and rescaled by

vlength (number) the axis length, in reciprocal space
x0,y0 (numbers) the origin of the axes, in

reciprocal space

labelaxes (bool) if True, label ‘x’ and ‘y’
QR_rotation (number) the offset angle between real and

diffraction space. Specifically, this is
the counterclockwise rotation of real space
with respect to diffraction space. In degrees.

	
py4DSTEM.visualize.vis_RQ.ax_addvector(ax, vx, vy, vlength, x0, y0, width=1, color='r')

	Adds a vector to the subplot at ax.

	Accepts:
	ax (matplotlib subplot)
vx,vy (numbers) x,y components of the vector

Only the orientation is used, vector is
normalized and rescaled by

vlength (number) the vector length
x0,y0 (numbers) the origin / vector tail position

	
py4DSTEM.visualize.vis_RQ.ax_addvector_QtoR(ax, vx, vy, vlength, x0, y0, QR_rotation, width=1, color='r')

	Adds a vector to the subplot at ax, where the vector (vx,vy) passed
to the function is in reciprocal space and the plotted vector is
transformed into and plotted in real space.

	Accepts:
	ax (matplotlib subplot)
vx,vy (numbers) x,y components of the vector,

in reciprocal space. Only the orientation is
used, vector is normalized and rescaled by

vlength (number) the vector length, in real space
x0,y0 (numbers) the origin / vector tail position,

in real space

	QR_rotation (number) the offset angle between real and
	diffraction space. Specifically, this is
the counterclockwise rotation of real space
with respect to diffraction space. In degrees.

	
py4DSTEM.visualize.vis_RQ.ax_addvector_RtoQ(ax, vx, vy, vlength, x0, y0, QR_rotation, width=1, color='r')

	Adds a vector to the subplot at ax, where the vector (vx,vy) passed
to the function is in real space and the plotted vector is transformed
into and plotted in reciprocal space.

	Accepts:
	ax (matplotlib subplot)
vx,vy (numbers) x,y components of the vector,

in real space. Only the orientation is used,
vector is normalized and rescaled by

	vlength (number) the vector length, in reciprocal
	space

	x0,y0 (numbers) the origin / vector tail position,
	in reciprocal space

	QR_rotation (number) the offset angle between real and
	diffraction space. Specifically, this is
the counterclockwise rotation of real space
with respect to diffraction space. In degrees.

	
py4DSTEM.visualize.vis_RQ.show(ar, figsize=(5, 5), cmap='gray', scaling='none', intensity_range='ordered', clipvals=None, vmin=None, vmax=None, min=None, max=None, power=None, power_offset=True, combine_images=False, ticks=True, bordercolor=None, borderwidth=5, show_image=True, return_ar_scaled=False, return_intensity_range=False, returncax=False, returnfig=False, figax=None, hist=False, n_bins=256, mask=None, mask_color='k', mask_alpha=0.0, masked_intensity_range=False, rectangle=None, circle=None, annulus=None, ellipse=None, points=None, grid_overlay=None, cartesian_grid=None, polarelliptical_grid=None, rtheta_grid=None, scalebar=None, calibration=None, rx=None, ry=None, space='Q', pixelsize=None, pixelunits=None, x0=None, y0=None, a=None, e=None, theta=None, title=None, show_fft=False, show_cbar=False, **kwargs)

	General visualization function for 2D arrays.

The simplest use of this function is:

>>> show(ar)

which will generate and display a matplotlib figure showing the 2D array ar.
Additional functionality includes:

	scaling the image (log scaling, power law scaling)

	displaying the image histogram

	altering the histogram clip values

	masking some subset of the image

	setting the colormap

	adding geometric overlays (e.g. points, circles, rectangles, annuli)

	adding informational overlays (scalebars, coordinate grids, oriented axes or
vectors)

	further customization tools

These are each discussed in turn below.

	Scaling:
	Setting the parameter scaling will scale the display image. Options are
‘none’, ‘auto’, ‘power’, or ‘log’. If ‘power’ is specified, the parameter power must
also be passed. The underlying data is not altered. Values less than or equal to
zero are set to zero. If the image histogram is displayed using hist=True,
the scaled image histogram is shown.

Examples:

>>> show(ar,scaling='log')
>>> show(ar,power=0.5)
>>> show(ar,scaling='power',power=0.5,hist=True)

	Histogram:
	Setting the argument hist=True will display the image histogram, instead of
the image. The displayed histogram will reflect any scaling requested. The number
of bins can be set with n_bins. The upper and lower clip values, indicating
where the image display will be saturated, are shown with dashed lines.

	Intensity range:
	Controlling the lower and upper values at which the display image will be
saturated is accomplished with the intensity_range parameter, or its
(soon deprecated) alias clipvals, in combination with vmin,
and vmax. The method by which the upper and lower clip values
are determined is controlled by intensity_range, and must be a string in
(‘None’,’ordered’,’minmax’,’absolute’,’std’,’centered’). See the argument
description for intensity_range for a description of the behavior for each.
The clip values can be returned with the return_intensity_range parameter.

	Masking:
	If a numpy masked array is passed to show, the function will automatically
mask the appropriate pixels. Alternatively, a boolean array of the same shape as
the data array may be passed to the mask argument, and these pixels will be
masked. Masked pixels are displayed as a single uniform color, black by default,
and which can be specified with the mask_color argument. Masked pixels
are excluded when displaying the histogram or computing clip values. The mask
can also be blended with the hidden data by setting the mask_alpha argument.

	Overlays (geometric):
	The function natively supports overlaying points, circles, rectangles, annuli,
and ellipses. Each is invoked by passing a dictionary to the appropriate input
variable specifying the geometry and features of the requested overlay. For
example:

>>> show(ar, rectangle={'lims':(10,20,10,20),'color':'r'})

will overlay a single red square, and

>>> show(ar, annulus={'center':[(28,68),(92,160)],
 'radii':[(16,24),(12,36)],
 'fill':True,
 'alpha':[0.9,0.3],
 'color':['r',(0,1,1,1)]})

will overlay two annuli with two different centers, radii, colors, and
transparencies. For a description of the accepted dictionary parameters
for each type of overlay, see the visualize functions add_*, where
* = (‘rectangle’,’circle’,’annulus’,’ellipse’,’points’). (These docstrings
are under construction!)

	Overlays (informational):
	Informational overlays supported by this function include coordinate axes
(cartesian, polar-elliptical, or r-theta) and scalebars. These are added
by passing the appropriate input argument a dictionary of the desired
parameters, as with geometric overlays. However, there are two key differences
between these overlays and the geometric overlays. First, informational
overlays (coordinate systems and scalebars) require information about the
plot - e.g. the position of the origin, the pixel sizes, the pixel units,
any elliptical distortions, etc. The easiest way to pass this information
is by pass a Calibration object containing this info to show as the
keyword calibration. Second, once the coordinate information has been
passed, informational overlays can autoselect their own parameters, thus simply
passing an empty dict to one of these parameters will add that overlay.

For example:

>>> show(dp, scalebar={}, calibration=calibration)

will display the diffraction pattern dp with a scalebar overlaid in the
bottom left corner given the pixel size and units described in calibration,
and

>>> show(dp, calibration=calibration, scalebar={'length':0.5,'width':2,
 'position':'ul','label':True'})

will display a more customized scalebar.

When overlaying coordinate grids, it is important to note that some relevant
parameters, e.g. the position of the origin, may change by scan position.
In these cases, the parameters rx,``ry`` must also be passed to show,
to tell the Calibration object where to look for the relevant parameters.
For example:

>>> show(dp, cartesian_grid={}, calibration=calibration, rx=2,ry=5)

will overlay a cartesian coordinate grid on the diffraction pattern at scan
position (2,5). Adding

>>> show(dp, calibration=calibration, rx=2, ry=5, cartesian_grid={'label':True,
 'alpha':0.7,'color':'r'})

will customize the appearance of the grid further. And

>>> show(im, calibration=calibration, cartesian_grid={}, space='R')

displays a cartesian grid over a real space image. For more details, see the
documentation for the visualize functions add_*, where * = (‘scalebar’,
‘cartesian_grid’, ‘polarelliptical_grid’, ‘rtheta_grid’). (Under construction!)

	Further customization:
	Most parameters accepted by a matplotlib axis will be accepted by show.
Pass a valid matplotlib colormap or a known string indicating a colormap
as the argument cmap to specify the colormap. Pass figsize to
specify the figure size. Etc.

Further customization can be accomplished by either (1) returning the figure
generated by show and then manipulating it using the normal matplotlib
functions, or (2) generating a matplotlib Figure with Axes any way you like
(e.g. with plt.subplots) and then using this function to plot inside a
single one of the Axes of your choice.

Option (1) is accomplished by simply passing this function returnfig=True.
Thus:

>>> fig,ax = show(ar, returnfig=True)

will now give you direct access to the figure and axes to continue to alter.
Option (2) is accomplished by passing an existing figure and axis to show
as a 2-tuple to the figax argument. Thus:

>>> fig,(ax1,ax2) = plt.subplots(1,2)
>>> show(ar, figax=(fig,ax1))
>>> show(ar, figax=(fig,ax2), hist=True)

will generate a 2-axis figure, and then plot the array ar as an image on
the left, while plotting its histogram on the right.

	Parameters:

	
	ar (2D array or a list of 2D arrays) – the data to plot. Normally this
is a 2D array of the data. If a list of 2D arrays is passed, plots
a corresponding grid of images.

	figsize (2-tuple) – size of the plot

	cmap (colormap) – any matplotlib cmap; default is gray

	scaling (str) – selects a scaling scheme for the intensity values. Default is
none. Accepted values:

	’none’: do not scale intensity values

	’full’: fill entire color range with sorted intensity values

	’power’: power law scaling

	’log’: values where ar<=0 are set to 0

	intensity_range (str) –
	method for setting clipvalues (min and max intensities).
	The original name “clipvals” is now deprecated.
Default is ‘ordered’. Accepted values:

	’ordered’: vmin/vmax are set to fractions of the
distribution of pixel values in the array, e.g. vmin=0.02
will set the minumum display value to saturate the lower 2% of pixels

	’minmax’: The vmin/vmax values are np.min(ar)/np.max(r)

	’absolute’: The vmin/vmax values are set to the values of
the vmin,vmax arguments received by this function

	
	’std’: The vmin/vmax values are np.median(ar) -/+ N*np.std(ar), and
	N is this functions min,max vals.

	’centered’: The vmin/vmax values are set to c -/+ m, where by default
‘c’ is zero and m is the max(abs(ar-c), or the two params can be user
specified using the kwargs vmin/vmax -> c/m.

	vmin (number) – min intensity, behavior depends on clipvals

	vmax (number) – max intensity, behavior depends on clipvals

	min – alias’ for vmin,vmax, throws deprecation warning

	max – alias’ for vmin,vmax, throws deprecation warning

	power (number) – specifies the scaling power

	power_offset (bool) – If true, image has min value subtracted before power scaling

	ticks (bool) – Turn outer tick marks on or off

	bordercolor (color or None) – if not None, add a border of this color.
The color can be anything matplotlib recognizes as a color.

	borderwidth (number) –

	returnfig (bool) – if True, the function returns the tuple (figure,axis)

	figax (None or 2-tuple) – controls which matplotlib Axes object draws the image.
If None, generates a new figure with a single Axes instance. Otherwise, ax
must be a 2-tuple containing the matplotlib class instances (Figure,Axes),
with ar then plotted in the specified Axes instance.

	hist (bool) – if True, instead of plotting a 2D image in ax, plots a histogram of
the intensity values of ar, after any scaling this function has performed.
Plots the clipvals as dashed vertical lines

	n_bins (int) – number of hist bins

	mask (None or boolean array) – if not None, must have the same shape as ‘ar’.
Wherever mask==True, plot the pixel normally, and where mask==False,
pixel values are set to mask_color. If hist==True, ignore these values in the
histogram. If mask_alpha is specified, the mask is blended with the array
underneath, with 0 yielding an opaque mask and 1 yielding a fully transparent
mask. If mask_color is set to 'empty' instead of a matplotlib.color,
nothing is done to pixels where mask==False, allowing overlaying multiple
arrays in different regions of an image by invoking the ``figax` kwarg over
multiple calls to show

	mask_color (color) – see ‘mask’

	mask_alpha (float) – see ‘mask’

	masked_intensity_range (bool) – controls if masked pixel values are included when
determining the display value range; False indicates that all pixel values
will be used to determine the intensity range, True indicates only unmasked
pixels will be used

	scalebar (None or dict or Bool) – if None, and a DiffractionSlice or RealSlice
with calibrations is passed, adds a scalebar. If scalebar is not displaying the proper
calibration, check .calibration pixel_size and pixel_units. If None and an array is passed,
does not add a scalebar. If a dict is passed, it is propagated to the add_scalebar function
which will attempt to use it to overlay a scalebar. If True, uses calibraiton or pixelsize/pixelunits
for scalebar. If False, no scalebar is added.

	show_fft (bool) – if True, plots 2D-fft of array

	show_cbar (bool) – if True, adds cbar

	**kwargs – any keywords accepted by matplotlib’s ax.matshow()

	Returns:

	if returnfig==False (default), the figure is plotted and nothing is returned.
if returnfig==True, return the figure and the axis.

	
py4DSTEM.visualize.vis_RQ.show_RQ(realspace_image, diffractionspace_image, realspace_pdict={}, diffractionspace_pdict={'scaling': 'log'}, figsize=(12, 6), returnfig=False)

	Shows side-by-side real/reciprocal space images.

	Accepts:
	realspace_image (2D array)
diffractionspace_image (2D array)
realspace_pdict (dictionary) arguments and values to pass

to the show() fn for the real space image

diffractionspace_pdict (dictionary)

	
py4DSTEM.visualize.vis_RQ.show_RQ_axes(realspace_image, diffractionspace_image, realspace_pdict, diffractionspace_pdict, vx, vy, vlength_R, vlength_Q, x0_R, y0_R, x0_Q, y0_Q, QR_rotation, vector_space='R', width_R=1, color_R='r', width_Q=1, color_Q='r', labelaxes=True, labelcolor_R='r', labelcolor_Q='r', labelsize_R=12, labelsize_Q=12, figsize=(12, 6), returnfig=False)

	Shows side-by-side real/reciprocal space images with a set of corresponding
coordinate axes overlaid in each. (vx,vy) specifies the x-axis, and the y-axis
is rotated 90 degrees counterclockwise in reciprocal space (relevant in case of
an R/Q transposition).

	Accepts:
	realspace_image (2D array)
diffractionspace_image (2D array)
realspace_pdict (dictionary) arguments and values to pass

to the show() fn for the real space image

diffractionspace_pdict (dictionary)
vx,vy (numbers) x,y components of the x-axis

in either real or diffraction space,
depending on the value of vector_space.
Note (vx,vy) is used for the orientation
only - the vectors are normalized
and rescaled by

	vlength_R,vlength_Q (number or 1D arrays) the vector length in each
	space, in pixels

x0_R,y0_R,x0_Q,y0_Q (number) the origins / vector tail positions
QR_rotation (number) the offset angle between real and

diffraction space. Specifically, this is
the counterclockwise rotation of real space
with respect to diffraction space. In degrees.

	vector_space (string) must be ‘R’ or ‘Q’. Specifies
	whether the (vx,vy) values passed to this
function describes a real or diffracation
space vector.

	
py4DSTEM.visualize.vis_RQ.show_RQ_vector(realspace_image, diffractionspace_image, realspace_pdict, diffractionspace_pdict, vx, vy, vlength_R, vlength_Q, x0_R, y0_R, x0_Q, y0_Q, QR_rotation, vector_space='R', width_R=1, color_R='r', width_Q=1, color_Q='r', figsize=(12, 6), returnfig=False)

	Shows side-by-side real/reciprocal space images with a vector
overlaid in each showing corresponding directions.

	Accepts:
	realspace_image (2D array)
diffractionspace_image (2D array)
realspace_pdict (dictionary) arguments and values to pass

to the show() fn for the real space image

diffractionspace_pdict (dictionary)
vx,vy (numbers) x,y components of the vector

in either real or diffraction space,
depending on the value of vector_space.
Note (vx,vy) is used for the orientation
only - the two vectors are normalized
and rescaled by

	vlength_R,vlength_Q (number) the vector length in each
	space, in pixels

x0_R,y0_R,x0_Q,y0_Q (numbers) the origins / vector tail positions
QR_rotation (number) the offset angle between real and

diffraction space. Specifically, this is
the counterclockwise rotation of real space
with respect to diffraction space. In degrees.

	vector_space (string) must be ‘R’ or ‘Q’. Specifies
	whether the (vx,vy) values passed to this
function describes a real or diffracation
space vector.

	
py4DSTEM.visualize.vis_RQ.show_RQ_vectors(realspace_image, diffractionspace_image, realspace_pdict, diffractionspace_pdict, vx, vy, vlength_R, vlength_Q, x0_R, y0_R, x0_Q, y0_Q, QR_rotation, vector_space='R', width_R=1, color_R='r', width_Q=1, color_Q='r', figsize=(12, 6), returnfig=False)

	Shows side-by-side real/reciprocal space images with several vectors
overlaid in each showing corresponding directions.

	Accepts:
	realspace_image (2D array)
diffractionspace_image (2D array)
realspace_pdict (dictionary) arguments and values to pass

to the show() fn for the real space image

diffractionspace_pdict (dictionary)
vx,vy (1D arrays) x,y components of the vectors

in either real or diffraction space,
depending on the value of vector_space.
Note (vx,vy) is used for the orientation
only - the two vectors are normalized
and rescaled by

	vlength_R,vlenght_Q (number) the vector length in each
	space, in pixels

x0_R,y0_R,x0_Q,y0_Q (numbers) the origins / vector tail positions
QR_rotation (number) the offset angle between real and

diffraction space. Specifically, this is
the counterclockwise rotation of real space
with respect to diffraction space. In degrees.

	vector_space (string) must be ‘R’ or ‘Q’. Specifies
	whether the (vx,vy) values passed to this
function describes a real or diffracation
space vector.

	
py4DSTEM.visualize.vis_RQ.show_points(ar, x, y, s=1, scale=50, alpha=1, pointcolor='r', open_circles=False, title=None, returnfig=False, **kwargs)

	Plots a 2D array with one or more points.
x and y are the point centers and must have the same length, N.
s is the relative point sizes, and must have length 1 or N.
scale is the size of the largest point.
pointcolor have length 1 or N.

	Accepts:
	ar (array) the image
x,y (number or iterable of numbers) the point positions
s (number or iterable of numbers) the relative point sizes
scale (number) the maximum point size
title (str) title for plot
pointcolor
alpha

	Returns:

	If returnfig==False (default), the figure is plotted and nothing is returned.
If returnfig==False, the figure and its one axis are returned, and can be
further edited.

	
py4DSTEM.visualize.vis_RQ.show_selected_dp(datacube, image, rx, ry, figsize=(12, 6), returnfig=False, pointsize=50, pointcolor='r', scaling='log', **kwargs)

	

vis_grid

	
py4DSTEM.visualize.vis_grid._show_grid_overlay(image, x0, y0, xL, yL, color='k', linewidth=1, alpha=1, returnfig=False, **kwargs)

	Shows the image with an overlaid boxgrid outline about the pixels
beginning at (x0,y0) and with extent xL,yL in the two directions.

	Accepts:
	image the image array
x0,y0 the corner of the grid
xL,xL the extent of the grid

	
py4DSTEM.visualize.vis_grid.add_grid_overlay(ax, d)

	adds an overlaid grid over some subset of pixels in an image
using the parameters in dictionary d.

	The dictionary d has required and optional parameters as follows:
	x0,y0 (req’d) (ints) the corner of the grid
xL,xL (req’d) (ints) the extent of the grid
color (color)
linewidth (number)
alpha (number)

	
py4DSTEM.visualize.vis_grid.show(ar, figsize=(5, 5), cmap='gray', scaling='none', intensity_range='ordered', clipvals=None, vmin=None, vmax=None, min=None, max=None, power=None, power_offset=True, combine_images=False, ticks=True, bordercolor=None, borderwidth=5, show_image=True, return_ar_scaled=False, return_intensity_range=False, returncax=False, returnfig=False, figax=None, hist=False, n_bins=256, mask=None, mask_color='k', mask_alpha=0.0, masked_intensity_range=False, rectangle=None, circle=None, annulus=None, ellipse=None, points=None, grid_overlay=None, cartesian_grid=None, polarelliptical_grid=None, rtheta_grid=None, scalebar=None, calibration=None, rx=None, ry=None, space='Q', pixelsize=None, pixelunits=None, x0=None, y0=None, a=None, e=None, theta=None, title=None, show_fft=False, show_cbar=False, **kwargs)

	General visualization function for 2D arrays.

The simplest use of this function is:

>>> show(ar)

which will generate and display a matplotlib figure showing the 2D array ar.
Additional functionality includes:

	scaling the image (log scaling, power law scaling)

	displaying the image histogram

	altering the histogram clip values

	masking some subset of the image

	setting the colormap

	adding geometric overlays (e.g. points, circles, rectangles, annuli)

	adding informational overlays (scalebars, coordinate grids, oriented axes or
vectors)

	further customization tools

These are each discussed in turn below.

	Scaling:
	Setting the parameter scaling will scale the display image. Options are
‘none’, ‘auto’, ‘power’, or ‘log’. If ‘power’ is specified, the parameter power must
also be passed. The underlying data is not altered. Values less than or equal to
zero are set to zero. If the image histogram is displayed using hist=True,
the scaled image histogram is shown.

Examples:

>>> show(ar,scaling='log')
>>> show(ar,power=0.5)
>>> show(ar,scaling='power',power=0.5,hist=True)

	Histogram:
	Setting the argument hist=True will display the image histogram, instead of
the image. The displayed histogram will reflect any scaling requested. The number
of bins can be set with n_bins. The upper and lower clip values, indicating
where the image display will be saturated, are shown with dashed lines.

	Intensity range:
	Controlling the lower and upper values at which the display image will be
saturated is accomplished with the intensity_range parameter, or its
(soon deprecated) alias clipvals, in combination with vmin,
and vmax. The method by which the upper and lower clip values
are determined is controlled by intensity_range, and must be a string in
(‘None’,’ordered’,’minmax’,’absolute’,’std’,’centered’). See the argument
description for intensity_range for a description of the behavior for each.
The clip values can be returned with the return_intensity_range parameter.

	Masking:
	If a numpy masked array is passed to show, the function will automatically
mask the appropriate pixels. Alternatively, a boolean array of the same shape as
the data array may be passed to the mask argument, and these pixels will be
masked. Masked pixels are displayed as a single uniform color, black by default,
and which can be specified with the mask_color argument. Masked pixels
are excluded when displaying the histogram or computing clip values. The mask
can also be blended with the hidden data by setting the mask_alpha argument.

	Overlays (geometric):
	The function natively supports overlaying points, circles, rectangles, annuli,
and ellipses. Each is invoked by passing a dictionary to the appropriate input
variable specifying the geometry and features of the requested overlay. For
example:

>>> show(ar, rectangle={'lims':(10,20,10,20),'color':'r'})

will overlay a single red square, and

>>> show(ar, annulus={'center':[(28,68),(92,160)],
 'radii':[(16,24),(12,36)],
 'fill':True,
 'alpha':[0.9,0.3],
 'color':['r',(0,1,1,1)]})

will overlay two annuli with two different centers, radii, colors, and
transparencies. For a description of the accepted dictionary parameters
for each type of overlay, see the visualize functions add_*, where
* = (‘rectangle’,’circle’,’annulus’,’ellipse’,’points’). (These docstrings
are under construction!)

	Overlays (informational):
	Informational overlays supported by this function include coordinate axes
(cartesian, polar-elliptical, or r-theta) and scalebars. These are added
by passing the appropriate input argument a dictionary of the desired
parameters, as with geometric overlays. However, there are two key differences
between these overlays and the geometric overlays. First, informational
overlays (coordinate systems and scalebars) require information about the
plot - e.g. the position of the origin, the pixel sizes, the pixel units,
any elliptical distortions, etc. The easiest way to pass this information
is by pass a Calibration object containing this info to show as the
keyword calibration. Second, once the coordinate information has been
passed, informational overlays can autoselect their own parameters, thus simply
passing an empty dict to one of these parameters will add that overlay.

For example:

>>> show(dp, scalebar={}, calibration=calibration)

will display the diffraction pattern dp with a scalebar overlaid in the
bottom left corner given the pixel size and units described in calibration,
and

>>> show(dp, calibration=calibration, scalebar={'length':0.5,'width':2,
 'position':'ul','label':True'})

will display a more customized scalebar.

When overlaying coordinate grids, it is important to note that some relevant
parameters, e.g. the position of the origin, may change by scan position.
In these cases, the parameters rx,``ry`` must also be passed to show,
to tell the Calibration object where to look for the relevant parameters.
For example:

>>> show(dp, cartesian_grid={}, calibration=calibration, rx=2,ry=5)

will overlay a cartesian coordinate grid on the diffraction pattern at scan
position (2,5). Adding

>>> show(dp, calibration=calibration, rx=2, ry=5, cartesian_grid={'label':True,
 'alpha':0.7,'color':'r'})

will customize the appearance of the grid further. And

>>> show(im, calibration=calibration, cartesian_grid={}, space='R')

displays a cartesian grid over a real space image. For more details, see the
documentation for the visualize functions add_*, where * = (‘scalebar’,
‘cartesian_grid’, ‘polarelliptical_grid’, ‘rtheta_grid’). (Under construction!)

	Further customization:
	Most parameters accepted by a matplotlib axis will be accepted by show.
Pass a valid matplotlib colormap or a known string indicating a colormap
as the argument cmap to specify the colormap. Pass figsize to
specify the figure size. Etc.

Further customization can be accomplished by either (1) returning the figure
generated by show and then manipulating it using the normal matplotlib
functions, or (2) generating a matplotlib Figure with Axes any way you like
(e.g. with plt.subplots) and then using this function to plot inside a
single one of the Axes of your choice.

Option (1) is accomplished by simply passing this function returnfig=True.
Thus:

>>> fig,ax = show(ar, returnfig=True)

will now give you direct access to the figure and axes to continue to alter.
Option (2) is accomplished by passing an existing figure and axis to show
as a 2-tuple to the figax argument. Thus:

>>> fig,(ax1,ax2) = plt.subplots(1,2)
>>> show(ar, figax=(fig,ax1))
>>> show(ar, figax=(fig,ax2), hist=True)

will generate a 2-axis figure, and then plot the array ar as an image on
the left, while plotting its histogram on the right.

	Parameters:

	
	ar (2D array or a list of 2D arrays) – the data to plot. Normally this
is a 2D array of the data. If a list of 2D arrays is passed, plots
a corresponding grid of images.

	figsize (2-tuple) – size of the plot

	cmap (colormap) – any matplotlib cmap; default is gray

	scaling (str) – selects a scaling scheme for the intensity values. Default is
none. Accepted values:

	’none’: do not scale intensity values

	’full’: fill entire color range with sorted intensity values

	’power’: power law scaling

	’log’: values where ar<=0 are set to 0

	intensity_range (str) –
	method for setting clipvalues (min and max intensities).
	The original name “clipvals” is now deprecated.
Default is ‘ordered’. Accepted values:

	’ordered’: vmin/vmax are set to fractions of the
distribution of pixel values in the array, e.g. vmin=0.02
will set the minumum display value to saturate the lower 2% of pixels

	’minmax’: The vmin/vmax values are np.min(ar)/np.max(r)

	’absolute’: The vmin/vmax values are set to the values of
the vmin,vmax arguments received by this function

	
	’std’: The vmin/vmax values are np.median(ar) -/+ N*np.std(ar), and
	N is this functions min,max vals.

	’centered’: The vmin/vmax values are set to c -/+ m, where by default
‘c’ is zero and m is the max(abs(ar-c), or the two params can be user
specified using the kwargs vmin/vmax -> c/m.

	vmin (number) – min intensity, behavior depends on clipvals

	vmax (number) – max intensity, behavior depends on clipvals

	min – alias’ for vmin,vmax, throws deprecation warning

	max – alias’ for vmin,vmax, throws deprecation warning

	power (number) – specifies the scaling power

	power_offset (bool) – If true, image has min value subtracted before power scaling

	ticks (bool) – Turn outer tick marks on or off

	bordercolor (color or None) – if not None, add a border of this color.
The color can be anything matplotlib recognizes as a color.

	borderwidth (number) –

	returnfig (bool) – if True, the function returns the tuple (figure,axis)

	figax (None or 2-tuple) – controls which matplotlib Axes object draws the image.
If None, generates a new figure with a single Axes instance. Otherwise, ax
must be a 2-tuple containing the matplotlib class instances (Figure,Axes),
with ar then plotted in the specified Axes instance.

	hist (bool) – if True, instead of plotting a 2D image in ax, plots a histogram of
the intensity values of ar, after any scaling this function has performed.
Plots the clipvals as dashed vertical lines

	n_bins (int) – number of hist bins

	mask (None or boolean array) – if not None, must have the same shape as ‘ar’.
Wherever mask==True, plot the pixel normally, and where mask==False,
pixel values are set to mask_color. If hist==True, ignore these values in the
histogram. If mask_alpha is specified, the mask is blended with the array
underneath, with 0 yielding an opaque mask and 1 yielding a fully transparent
mask. If mask_color is set to 'empty' instead of a matplotlib.color,
nothing is done to pixels where mask==False, allowing overlaying multiple
arrays in different regions of an image by invoking the ``figax` kwarg over
multiple calls to show

	mask_color (color) – see ‘mask’

	mask_alpha (float) – see ‘mask’

	masked_intensity_range (bool) – controls if masked pixel values are included when
determining the display value range; False indicates that all pixel values
will be used to determine the intensity range, True indicates only unmasked
pixels will be used

	scalebar (None or dict or Bool) – if None, and a DiffractionSlice or RealSlice
with calibrations is passed, adds a scalebar. If scalebar is not displaying the proper
calibration, check .calibration pixel_size and pixel_units. If None and an array is passed,
does not add a scalebar. If a dict is passed, it is propagated to the add_scalebar function
which will attempt to use it to overlay a scalebar. If True, uses calibraiton or pixelsize/pixelunits
for scalebar. If False, no scalebar is added.

	show_fft (bool) – if True, plots 2D-fft of array

	show_cbar (bool) – if True, adds cbar

	**kwargs – any keywords accepted by matplotlib’s ax.matshow()

	Returns:

	if returnfig==False (default), the figure is plotted and nothing is returned.
if returnfig==True, return the figure and the axis.

	
py4DSTEM.visualize.vis_grid.show_DP_grid(datacube, x0, y0, xL, yL, axsize=(6, 6), returnfig=False, space=0, **kwargs)

	Shows a grid of diffraction patterns from DataCube datacube, starting from
scan position (x0,y0) and extending xL,yL.

	Accepts:
	datacube (DataCube) the 4D-STEM data
(x0,y0) the corner of the grid of DPs to display
xL,yL the extent of the grid
axsize the size of each diffraction pattern
space (number) controls the space between subplots

	Returns:

	if returnfig==false (default), the figure is plotted and nothing is returned.
if returnfig==false, the figure and its one axis are returned, and can be
further edited.

	
py4DSTEM.visualize.vis_grid.show_grid_overlay(image, x0, y0, xL, yL, color='k', linewidth=1, alpha=1, returnfig=False, **kwargs)

	Shows the image with an overlaid boxgrid outline about the pixels
beginning at (x0,y0) and with extent xL,yL in the two directions.

	Accepts:
	image the image array
x0,y0 the corner of the grid
xL,xL the extent of the grid

	
py4DSTEM.visualize.vis_grid.show_image_grid(get_ar, H, W, axsize=(6, 6), returnfig=False, figax=None, title=None, title_index=False, suptitle=None, get_bordercolor=None, get_x=None, get_y=None, get_pointcolors=None, get_s=None, open_circles=False, **kwargs)

	Displays a set of images in a grid.

The images are specified by some function get_ar(i), which returns an
image for values of some integer index i. The values of i passed to
get_ar are 0 through HW-1.

To display the first 4 two-dimensional slices of some 3D array ar
some 3D array ar, you can do

>>> show_image_grid(lambda i:ar[:,:,i], H=2, W=2)

Its also possible to add colored borders, or overlaid points,
using similar functions to get_ar, i.e. functions which return
the color or set of points of interest as a function of index
i, which must be defined in the range [0,HW-1].

	Accepts:
	
	get_ar a function which returns a 2D array when passed
	the integers 0 through HW-1

H,W integers, the dimensions of the grid
axsize the size of each image
figax controls which matplotlib Axes object draws the image.

If None, generates a new figure with a single Axes instance.
Otherwise, ax must be a 2-tuple containing the matplotlib class instances
(Figure,Axes), with ar then plotted in the specified Axes instance.

	title if title is sting, then prints title as suptitle. If a suptitle is also provided,
	the suptitle is printed insead.
if title is a list of strings (ex: [‘title 1’,’title 2’]), each array has
corresponding title in list.

title_index if True, prints the index i passed to get_ar over each image
suptitle string, suptitle on plot
get_bordercolor

if not None, should be a function defined over
the same i as get_ar, and which returns a
valid matplotlib color for each i. Adds
a colored bounding box about each image. E.g.
if colors is an array of colors:

>>> show_image_grid(lambda i:ar[:,:,i],H=2,W=2,
 get_bordercolor=lambda i:colors[i])

	get_x,get_y functions which returns sets of x/y positions
	as a function of index i

	get_s function which returns a set of point sizes
	as a function of index i

	get_pointcolors a function which returns a color or list of colors
	as a function of index i

	Returns:

	if returnfig==false (default), the figure is plotted and nothing is returned.
if returnfig==false, the figure and its one axis are returned, and can be
further edited.

	
py4DSTEM.visualize.vis_grid.show_points(ar, x, y, s=1, scale=50, alpha=1, pointcolor='r', open_circles=False, title=None, returnfig=False, **kwargs)

	Plots a 2D array with one or more points.
x and y are the point centers and must have the same length, N.
s is the relative point sizes, and must have length 1 or N.
scale is the size of the largest point.
pointcolor have length 1 or N.

	Accepts:
	ar (array) the image
x,y (number or iterable of numbers) the point positions
s (number or iterable of numbers) the relative point sizes
scale (number) the maximum point size
title (str) title for plot
pointcolor
alpha

	Returns:

	If returnfig==False (default), the figure is plotted and nothing is returned.
If returnfig==False, the figure and its one axis are returned, and can be
further edited.

vis_special

	
py4DSTEM.visualize.vis_special.Complex2RGB(complex_data, vmin=None, vmax=None, power=None, chroma_boost=1)

	complex_data (array): complex array to plot
vmin (float) : minimum absolute value
vmax (float) : maximum absolute value
power (float) : power to raise amplitude to
chroma_boost (float): boosts chroma for higher-contrast (~1-2.5)

	
py4DSTEM.visualize.vis_special.add_bragg_index_labels(ax, d)

	Adds labels for indexed bragg directions to a plot, using the parameters in dict d.

	The dictionary d has required and optional parameters as follows:
	
	bragg_directions (req’d) (PointList) the Bragg directions. This PointList must have
	the fields ‘qx’,’qy’,’h’, and ‘k’, and may optionally have ‘l’

voffset (number) vertical offset for the labels
hoffset (number) horizontal offset for the labels
color (color)
size (number)
points (bool)
pointsize (number)
pointcolor (color)

	
py4DSTEM.visualize.vis_special.add_ellipses(ax, d)

	Adds one or more ellipses to axis ax using the parameters in dictionary d.

	Parameters:

	
	center –

	a –

	b –

	theta –

	color –

	fill –

	alpha –

	linewidth –

	linestyle –

	
py4DSTEM.visualize.vis_special.add_pointlabels(ax, d)

	adds number indices for a set of points to axis ax using the parameters in dictionary d.

	
py4DSTEM.visualize.vis_special.add_points(ax, d)

	adds one or more points to axis ax using the parameters in dictionary d.

	
py4DSTEM.visualize.vis_special.add_scalebar(ax, d)

	Adds an overlaid scalebar to an image, using the parameters in dict d.

	The dictionary d has required and optional parameters as follows:
	Nx,Ny (req’d) the image extent
space (str) ‘Q’ or ‘R’
length (number) the scalebar length
width (number) the scalebar width
pixelsize (number)
pixelunits (str)
color (color)
label (bool)
labelsize (number)
labelcolor (color)
alpha (number)
position (str) ‘ul’,’ur’,’bl’, or ‘br’ for the

upperleft, upperright, bottomleft, bottomright

ticks (bool) if False, turns off image border ticks

	
py4DSTEM.visualize.vis_special.add_vector(ax, d)

	Adds a vector to an image, using the parameters in dict d.

	The dictionary d has required and optional parameters as follows:
	x0,y0 (req’d) the tail position
vx,vy (req’d) the vector
color (color)
width (number)
label (str)
labelsize (number)
labelcolor (color)

	
py4DSTEM.visualize.vis_special.ax_addaxes(ax, vx, vy, vlength, x0, y0, width=1, color='r', labelaxes=True, labelsize=12, labelcolor='r', righthandedcoords=True)

	Adds a pair of x/y axes to the matplotlib subplot ax. The user supplies
the x-axis direction with (vx,vy), and the y-axis is then chosen
by rotating 90 degrees, in a direction set by righthandedcoords.

	Accepts:
	ax (matplotlib subplot)
vx,vy (numbers) x,y components of the x-axis,

Only the orientation is used; the axis
is normalized and rescaled by

vlength (number) the axis length
x0,y0 (numbers) the origin of the axes
labelaxes (bool) if True, label ‘x’ and ‘y’
righthandedcoords (bool) if True, y-axis is counterclockwise

with respect to x-axis

	
py4DSTEM.visualize.vis_special.ax_addaxes_QtoR(ax, vx, vy, vlength, x0, y0, QR_rotation, width=1, color='r', labelaxes=True, labelsize=12, labelcolor='r')

	Adds a pair of x/y axes to the matplotlib subplot ax. The user supplies
the x-axis direction with (vx,vy) in reciprocal space coordinates, and
the function transforms and displays the corresponding vector in real space.

	Accepts:
	ax (matplotlib subplot)
vx,vy (numbers) x,y components of the x-axis,

in reciprocal space coordinates. Only
the orientation is used; the axes
are normalized and rescaled by

vlength (number) the axis length, in real space
x0,y0 (numbers) the origin of the axes, in

real space

labelaxes (bool) if True, label ‘x’ and ‘y’
QR_rotation (number) the offset angle between real and

diffraction space. Specifically, this is
the counterclockwise rotation of real space
with respect to diffraction space. In degrees.

	
py4DSTEM.visualize.vis_special.make_axes_locatable(axes)

	

	
py4DSTEM.visualize.vis_special.select_point(ar, x, y, i, color='lightblue', color_selected='r', size=20, returnfig=False, **kwargs)

	Show enumerated index labels for a set of points, with one selected point highlighted

	
py4DSTEM.visualize.vis_special.show(ar, figsize=(5, 5), cmap='gray', scaling='none', intensity_range='ordered', clipvals=None, vmin=None, vmax=None, min=None, max=None, power=None, power_offset=True, combine_images=False, ticks=True, bordercolor=None, borderwidth=5, show_image=True, return_ar_scaled=False, return_intensity_range=False, returncax=False, returnfig=False, figax=None, hist=False, n_bins=256, mask=None, mask_color='k', mask_alpha=0.0, masked_intensity_range=False, rectangle=None, circle=None, annulus=None, ellipse=None, points=None, grid_overlay=None, cartesian_grid=None, polarelliptical_grid=None, rtheta_grid=None, scalebar=None, calibration=None, rx=None, ry=None, space='Q', pixelsize=None, pixelunits=None, x0=None, y0=None, a=None, e=None, theta=None, title=None, show_fft=False, show_cbar=False, **kwargs)

	General visualization function for 2D arrays.

The simplest use of this function is:

>>> show(ar)

which will generate and display a matplotlib figure showing the 2D array ar.
Additional functionality includes:

	scaling the image (log scaling, power law scaling)

	displaying the image histogram

	altering the histogram clip values

	masking some subset of the image

	setting the colormap

	adding geometric overlays (e.g. points, circles, rectangles, annuli)

	adding informational overlays (scalebars, coordinate grids, oriented axes or
vectors)

	further customization tools

These are each discussed in turn below.

	Scaling:
	Setting the parameter scaling will scale the display image. Options are
‘none’, ‘auto’, ‘power’, or ‘log’. If ‘power’ is specified, the parameter power must
also be passed. The underlying data is not altered. Values less than or equal to
zero are set to zero. If the image histogram is displayed using hist=True,
the scaled image histogram is shown.

Examples:

>>> show(ar,scaling='log')
>>> show(ar,power=0.5)
>>> show(ar,scaling='power',power=0.5,hist=True)

	Histogram:
	Setting the argument hist=True will display the image histogram, instead of
the image. The displayed histogram will reflect any scaling requested. The number
of bins can be set with n_bins. The upper and lower clip values, indicating
where the image display will be saturated, are shown with dashed lines.

	Intensity range:
	Controlling the lower and upper values at which the display image will be
saturated is accomplished with the intensity_range parameter, or its
(soon deprecated) alias clipvals, in combination with vmin,
and vmax. The method by which the upper and lower clip values
are determined is controlled by intensity_range, and must be a string in
(‘None’,’ordered’,’minmax’,’absolute’,’std’,’centered’). See the argument
description for intensity_range for a description of the behavior for each.
The clip values can be returned with the return_intensity_range parameter.

	Masking:
	If a numpy masked array is passed to show, the function will automatically
mask the appropriate pixels. Alternatively, a boolean array of the same shape as
the data array may be passed to the mask argument, and these pixels will be
masked. Masked pixels are displayed as a single uniform color, black by default,
and which can be specified with the mask_color argument. Masked pixels
are excluded when displaying the histogram or computing clip values. The mask
can also be blended with the hidden data by setting the mask_alpha argument.

	Overlays (geometric):
	The function natively supports overlaying points, circles, rectangles, annuli,
and ellipses. Each is invoked by passing a dictionary to the appropriate input
variable specifying the geometry and features of the requested overlay. For
example:

>>> show(ar, rectangle={'lims':(10,20,10,20),'color':'r'})

will overlay a single red square, and

>>> show(ar, annulus={'center':[(28,68),(92,160)],
 'radii':[(16,24),(12,36)],
 'fill':True,
 'alpha':[0.9,0.3],
 'color':['r',(0,1,1,1)]})

will overlay two annuli with two different centers, radii, colors, and
transparencies. For a description of the accepted dictionary parameters
for each type of overlay, see the visualize functions add_*, where
* = (‘rectangle’,’circle’,’annulus’,’ellipse’,’points’). (These docstrings
are under construction!)

	Overlays (informational):
	Informational overlays supported by this function include coordinate axes
(cartesian, polar-elliptical, or r-theta) and scalebars. These are added
by passing the appropriate input argument a dictionary of the desired
parameters, as with geometric overlays. However, there are two key differences
between these overlays and the geometric overlays. First, informational
overlays (coordinate systems and scalebars) require information about the
plot - e.g. the position of the origin, the pixel sizes, the pixel units,
any elliptical distortions, etc. The easiest way to pass this information
is by pass a Calibration object containing this info to show as the
keyword calibration. Second, once the coordinate information has been
passed, informational overlays can autoselect their own parameters, thus simply
passing an empty dict to one of these parameters will add that overlay.

For example:

>>> show(dp, scalebar={}, calibration=calibration)

will display the diffraction pattern dp with a scalebar overlaid in the
bottom left corner given the pixel size and units described in calibration,
and

>>> show(dp, calibration=calibration, scalebar={'length':0.5,'width':2,
 'position':'ul','label':True'})

will display a more customized scalebar.

When overlaying coordinate grids, it is important to note that some relevant
parameters, e.g. the position of the origin, may change by scan position.
In these cases, the parameters rx,``ry`` must also be passed to show,
to tell the Calibration object where to look for the relevant parameters.
For example:

>>> show(dp, cartesian_grid={}, calibration=calibration, rx=2,ry=5)

will overlay a cartesian coordinate grid on the diffraction pattern at scan
position (2,5). Adding

>>> show(dp, calibration=calibration, rx=2, ry=5, cartesian_grid={'label':True,
 'alpha':0.7,'color':'r'})

will customize the appearance of the grid further. And

>>> show(im, calibration=calibration, cartesian_grid={}, space='R')

displays a cartesian grid over a real space image. For more details, see the
documentation for the visualize functions add_*, where * = (‘scalebar’,
‘cartesian_grid’, ‘polarelliptical_grid’, ‘rtheta_grid’). (Under construction!)

	Further customization:
	Most parameters accepted by a matplotlib axis will be accepted by show.
Pass a valid matplotlib colormap or a known string indicating a colormap
as the argument cmap to specify the colormap. Pass figsize to
specify the figure size. Etc.

Further customization can be accomplished by either (1) returning the figure
generated by show and then manipulating it using the normal matplotlib
functions, or (2) generating a matplotlib Figure with Axes any way you like
(e.g. with plt.subplots) and then using this function to plot inside a
single one of the Axes of your choice.

Option (1) is accomplished by simply passing this function returnfig=True.
Thus:

>>> fig,ax = show(ar, returnfig=True)

will now give you direct access to the figure and axes to continue to alter.
Option (2) is accomplished by passing an existing figure and axis to show
as a 2-tuple to the figax argument. Thus:

>>> fig,(ax1,ax2) = plt.subplots(1,2)
>>> show(ar, figax=(fig,ax1))
>>> show(ar, figax=(fig,ax2), hist=True)

will generate a 2-axis figure, and then plot the array ar as an image on
the left, while plotting its histogram on the right.

	Parameters:

	
	ar (2D array or a list of 2D arrays) – the data to plot. Normally this
is a 2D array of the data. If a list of 2D arrays is passed, plots
a corresponding grid of images.

	figsize (2-tuple) – size of the plot

	cmap (colormap) – any matplotlib cmap; default is gray

	scaling (str) – selects a scaling scheme for the intensity values. Default is
none. Accepted values:

	’none’: do not scale intensity values

	’full’: fill entire color range with sorted intensity values

	’power’: power law scaling

	’log’: values where ar<=0 are set to 0

	intensity_range (str) –
	method for setting clipvalues (min and max intensities).
	The original name “clipvals” is now deprecated.
Default is ‘ordered’. Accepted values:

	’ordered’: vmin/vmax are set to fractions of the
distribution of pixel values in the array, e.g. vmin=0.02
will set the minumum display value to saturate the lower 2% of pixels

	’minmax’: The vmin/vmax values are np.min(ar)/np.max(r)

	’absolute’: The vmin/vmax values are set to the values of
the vmin,vmax arguments received by this function

	
	’std’: The vmin/vmax values are np.median(ar) -/+ N*np.std(ar), and
	N is this functions min,max vals.

	’centered’: The vmin/vmax values are set to c -/+ m, where by default
‘c’ is zero and m is the max(abs(ar-c), or the two params can be user
specified using the kwargs vmin/vmax -> c/m.

	vmin (number) – min intensity, behavior depends on clipvals

	vmax (number) – max intensity, behavior depends on clipvals

	min – alias’ for vmin,vmax, throws deprecation warning

	max – alias’ for vmin,vmax, throws deprecation warning

	power (number) – specifies the scaling power

	power_offset (bool) – If true, image has min value subtracted before power scaling

	ticks (bool) – Turn outer tick marks on or off

	bordercolor (color or None) – if not None, add a border of this color.
The color can be anything matplotlib recognizes as a color.

	borderwidth (number) –

	returnfig (bool) – if True, the function returns the tuple (figure,axis)

	figax (None or 2-tuple) – controls which matplotlib Axes object draws the image.
If None, generates a new figure with a single Axes instance. Otherwise, ax
must be a 2-tuple containing the matplotlib class instances (Figure,Axes),
with ar then plotted in the specified Axes instance.

	hist (bool) – if True, instead of plotting a 2D image in ax, plots a histogram of
the intensity values of ar, after any scaling this function has performed.
Plots the clipvals as dashed vertical lines

	n_bins (int) – number of hist bins

	mask (None or boolean array) – if not None, must have the same shape as ‘ar’.
Wherever mask==True, plot the pixel normally, and where mask==False,
pixel values are set to mask_color. If hist==True, ignore these values in the
histogram. If mask_alpha is specified, the mask is blended with the array
underneath, with 0 yielding an opaque mask and 1 yielding a fully transparent
mask. If mask_color is set to 'empty' instead of a matplotlib.color,
nothing is done to pixels where mask==False, allowing overlaying multiple
arrays in different regions of an image by invoking the ``figax` kwarg over
multiple calls to show

	mask_color (color) – see ‘mask’

	mask_alpha (float) – see ‘mask’

	masked_intensity_range (bool) – controls if masked pixel values are included when
determining the display value range; False indicates that all pixel values
will be used to determine the intensity range, True indicates only unmasked
pixels will be used

	scalebar (None or dict or Bool) – if None, and a DiffractionSlice or RealSlice
with calibrations is passed, adds a scalebar. If scalebar is not displaying the proper
calibration, check .calibration pixel_size and pixel_units. If None and an array is passed,
does not add a scalebar. If a dict is passed, it is propagated to the add_scalebar function
which will attempt to use it to overlay a scalebar. If True, uses calibraiton or pixelsize/pixelunits
for scalebar. If False, no scalebar is added.

	show_fft (bool) – if True, plots 2D-fft of array

	show_cbar (bool) – if True, adds cbar

	**kwargs – any keywords accepted by matplotlib’s ax.matshow()

	Returns:

	if returnfig==False (default), the figure is plotted and nothing is returned.
if returnfig==True, return the figure and the axis.

	
py4DSTEM.visualize.vis_special.show_amorphous_ring_fit(dp, fitradii, p_dsg, N=12, cmap=('gray', 'gray'), fitborder=True, fitbordercolor='k', fitborderlw=0.5, scaling='log', ellipse=False, ellipse_color='r', ellipse_alpha=0.7, ellipse_lw=2, returnfig=False, **kwargs)

	Display a diffraction pattern with a fit to its amorphous ring, interleaving
the data and the fit in a pinwheel pattern.

	Parameters:

	
	dp (array) – the diffraction pattern

	fitradii (2-tuple of numbers) – the min/max distances of the fitting annulus

	p_dsg (11-tuple) – the fit parameters to the double-sided gaussian
function returned by fit_ellipse_amorphous_ring

	N (int) – the number of pinwheel sections

	cmap (colormap or 2-tuple of colormaps) – if passed a single cmap, uses this
colormap for both the data and the fit; if passed a 2-tuple of cmaps, uses
the first for the data and the second for the fit

	fitborder (bool) – if True, plots a border line around the fit data

	fitbordercolor (color) – color of the fitborder

	fitborderlw (number) – linewidth of the fitborder

	scaling (str) – the normal scaling param – see docstring for visualize.show

	ellipse (bool) – if True, overlay an ellipse

	returnfig (bool) – if True, returns the figure

	
py4DSTEM.visualize.vis_special.show_class_BPs(ar, x, y, s, s2, color='r', color2='y', **kwargs)

	words

	
py4DSTEM.visualize.vis_special.show_class_BPs_grid(ar, H, W, x, y, get_s, s2, color='r', color2='y', returnfig=False, axsize=(6, 6), titlesize=0, get_bordercolor=None, **kwargs)

	words

	
py4DSTEM.visualize.vis_special.show_complex(ar_complex, vmin=None, vmax=None, power=None, chroma_boost=1, cbar=True, scalebar=False, pixelunits='pixels', pixelsize=1, returnfig=False, **kwargs)

	Function to plot complex arrays

	Parameters:

	
	ar_complex (2D array) – complex array to be plotted. If ar_complex is list of complex arrarys
such as [array1, array2], then arrays are horizonally plotted in one figure

	vmin (float, optional) – minimum absolute value

	vmax (float, optional) – maximum absolute value
if None, vmin/vmax are set to fractions of the distribution of pixel values in the array,
e.g. vmin=0.02 will set the minumum display value to saturate the lower 2% of pixels

	power (float,optional) – power to raise amplitude to

	chroma_boost (float) – boosts chroma for higher-contrast (~1-2.25)

	cbar (bool, optional) – if True, include color bar

	scalebar (bool, optional) – if True, adds scale bar

	pixelunits (str, optional) – units for scalebar

	pixelsize (float, optional) – size of one pixel in pixelunits for scalebar

	returnfig (bool, optional) – if True, the function returns the tuple (figure,axis)

	Returns:

	if returnfig==False (default), the figure is plotted and nothing is returned.
if returnfig==True, return the figure and the axis.

	
py4DSTEM.visualize.vis_special.show_elliptical_fit(ar, fitradii, p_ellipse, fill=True, color_ann='y', color_ell='r', alpha_ann=0.2, alpha_ell=0.7, linewidth_ann=2, linewidth_ell=2, returnfig=False, **kwargs)

	Plots an elliptical curve over its annular fit region.

	Parameters:

	
	center (2-tuple) – the center

	fitradii (2-tuple of numbers) – the annulus inner and outer fit radii

	p_ellipse (5-tuple) – the parameters of the fit ellipse, (qx0,qy0,a,b,theta).
See the module docstring for utils.elliptical_coords for more details.

	fill (bool) – if True, fills in the annular fitting region,
else shows only inner/outer edges

	color_ann (color) – annulus color

	color_ell (color) – ellipse color

	alpha_ann – transparency for the annulus

	alpha_ell – transparency forn the fit ellipse

	linewidth_ann –

	linewidth_ell –

	
py4DSTEM.visualize.vis_special.show_image_grid(get_ar, H, W, axsize=(6, 6), returnfig=False, figax=None, title=None, title_index=False, suptitle=None, get_bordercolor=None, get_x=None, get_y=None, get_pointcolors=None, get_s=None, open_circles=False, **kwargs)

	Displays a set of images in a grid.

The images are specified by some function get_ar(i), which returns an
image for values of some integer index i. The values of i passed to
get_ar are 0 through HW-1.

To display the first 4 two-dimensional slices of some 3D array ar
some 3D array ar, you can do

>>> show_image_grid(lambda i:ar[:,:,i], H=2, W=2)

Its also possible to add colored borders, or overlaid points,
using similar functions to get_ar, i.e. functions which return
the color or set of points of interest as a function of index
i, which must be defined in the range [0,HW-1].

	Accepts:
	
	get_ar a function which returns a 2D array when passed
	the integers 0 through HW-1

H,W integers, the dimensions of the grid
axsize the size of each image
figax controls which matplotlib Axes object draws the image.

If None, generates a new figure with a single Axes instance.
Otherwise, ax must be a 2-tuple containing the matplotlib class instances
(Figure,Axes), with ar then plotted in the specified Axes instance.

	title if title is sting, then prints title as suptitle. If a suptitle is also provided,
	the suptitle is printed insead.
if title is a list of strings (ex: [‘title 1’,’title 2’]), each array has
corresponding title in list.

title_index if True, prints the index i passed to get_ar over each image
suptitle string, suptitle on plot
get_bordercolor

if not None, should be a function defined over
the same i as get_ar, and which returns a
valid matplotlib color for each i. Adds
a colored bounding box about each image. E.g.
if colors is an array of colors:

>>> show_image_grid(lambda i:ar[:,:,i],H=2,W=2,
 get_bordercolor=lambda i:colors[i])

	get_x,get_y functions which returns sets of x/y positions
	as a function of index i

	get_s function which returns a set of point sizes
	as a function of index i

	get_pointcolors a function which returns a color or list of colors
	as a function of index i

	Returns:

	if returnfig==false (default), the figure is plotted and nothing is returned.
if returnfig==false, the figure and its one axis are returned, and can be
further edited.

	
py4DSTEM.visualize.vis_special.show_kernel(kernel, R, L, W, figsize=(12, 6), returnfig=False, **kwargs)

	Plots, side by side, the probe kernel and its line profile.
R is the kernel plot’s window size.
L and W are the length and width of the lineprofile.

	
py4DSTEM.visualize.vis_special.show_max_peak_spacing(ar, spacing, braggdirections, color='g', lw=2, returnfig=False, **kwargs)

	Show a circle of radius spacing about each Bragg direction

	
py4DSTEM.visualize.vis_special.show_origin_fit(data)

	Show the measured, fit, and residuals of the origin positions.

	Parameters:

	data (DataCube or Calibration or (3,2) – ((qx0_meas,qy0_meas),(qx0_fit,qy0_fit),(qx0_residuals,qy0_residuals))

	
py4DSTEM.visualize.vis_special.show_origin_meas(data)

	Show the measured positions of the origin.

	Parameters:

	data (DataCube or Calibration or 2-tuple of arrays (qx0,qy0)) –

	
py4DSTEM.visualize.vis_special.show_pointlabels(ar, x, y, color='lightblue', size=20, alpha=1, returnfig=False, **kwargs)

	Show enumerated index labels for a set of points

	
py4DSTEM.visualize.vis_special.show_qprofile(q, intensity, ymax=None, figsize=(12, 4), returnfig=False, color='k', xlabel='q (pixels)', ylabel='Intensity (A.U.)', labelsize=16, ticklabelsize=14, grid=True, label=None, **kwargs)

	Plots a diffraction space radial profile.
Params:

q (1D array) the diffraction coordinate / x-axis
intensity (1D array) the y-axis values
ymax (number) max value for the yaxis
color (matplotlib color) profile color
xlabel (str)
ylabel
labelsize size of x and y labels
ticklabelsize
grid True or False
label a legend label for the plotted curve

	
py4DSTEM.visualize.vis_special.show_selected_dps(datacube, positions, im, bragg_pos=None, colors=None, HW=None, figsize_im=(6, 6), figsize_dp=(4, 4), **kwargs)

	Shows two plots: first, a real space image overlaid with colored dots
at the specified positions; second, a grid of diffraction patterns
corresponding to these scan positions.

	Parameters:

	
	datacube (DataCube) –

	positions (len N list or tuple of 2-tuples) – the scan positions

	im (2d array) – a real space image

	bragg_pos (len N list of pointlistarrays) – bragg disk positions
for each position. if passed, overlays the disk positions,
and supresses plot of the real space image

	colors (len N list of colors or None) –

	HW (2-tuple of ints) – diffraction pattern grid shape

	figsize_im (2-tuple) – size of the image figure

	figsize_dp (2-tuple) – size of each diffraction pattern panel

	**kwargs (dict) – arguments passed to visualize.show for the
diffraction patterns. Default is scaling=’log’

	
py4DSTEM.visualize.vis_special.show_voronoi(ar, x, y, color_points='r', color_lines='w', max_dist=None, returnfig=False, **kwargs)

	words

emd

Table of Contents

	emd

	Classes

	Functions

Classes

	
class emdfile.Array(data: ndarray, name: str | None = 'array', units: str | None = '', dims: list | None = None, dim_names: list | None = None, dim_units: list | None = None, slicelabels=None)

	A class which stores any N-dimensional array-like data, plus basic metadata:
a name and units, as well as calibrations for each axis of the array, and names
and units for those axis calibrations.

In the simplest usage, only a data array is passed:

>>> ar = Array(np.ones((20,20,256,256)))

will create an array instance whose data is the numpy array passed, and with
automatically populated dimension calibrations in units of pixels.

Additional arguments may be passed to populate the object metadata:

>>> ar = Array(
>>> np.ones((20,20,256,256)),
>>> name = 'test_array',
>>> units = 'intensity',
>>> dims = [
>>> [0,5],
>>> [0,5],
>>> [0,0.01],
>>> [0,0.01]
>>>],
>>> dim_units = [
>>> 'nm',
>>> 'nm',
>>> 'A^-1',
>>> 'A^-1'
>>>],
>>> dim_names = [
>>> 'rx',
>>> 'ry',
>>> 'qx',
>>> 'qy'
>>>],
>>>)

will create an array with a name and units for its data, where its first two
dimensions are in units of nanometers, have pixel sizes of 5nm, and are
described by the handles ‘rx’ and ‘ry’, and where its last two dimensions
are in units of inverse Angstroms, have pixels sizes of 0.01A^-1, and are
described by the handles ‘qx’ and ‘qy’.

Arrays in which the length of each pixel is non-constant are also
supported. For instance,

>>> x = np.logspace(0,1,100)
>>> y = np.sin(x)
>>> ar = Array(
>>> y,
>>> dims = [
>>> x
>>>]
>>>)

generates an array representing the values of the sine function sampled
100 times along a logarithmic interval from 1 to 10. In this example,
this data could then be plotted with, e.g.

>>> plt.scatter(ar.dims[0], ar.data)

If the slicelabels keyword is passed, the first N-1 dimensions of the
array are treated normally, while the final dimension is used to represent
distinct arrays which share a common shape and set of dim vectors. Thus

>>> ar = Array(
>>> np.ones((50,50,4)),
>>> name = 'test_array_stack',
>>> units = 'intensity',
>>> dims = [
>>> [0,2],
>>> [0,2]
>>>],
>>> dim_units = [
>>> 'nm',
>>> 'nm'
>>>],
>>> dim_names = [
>>> 'rx',
>>> 'ry'
>>>],
>>> slicelabels = [
>>> 'a',
>>> 'b',
>>> 'c',
>>> 'd'
>>>]
>>>)

will generate a single Array instance containing 4 arrays which each have
a shape (50,50) and a common set of dim vectors [‘rx’,’ry’], and which
can be indexed into with the names assigned in slicelabels using

>>> ar.get_slice('a')

which will return a 2D (non-stack-like) Array instance with shape (50,50)
and the dims assigned above. The Array attribute .rank is equal to the
number of dimensions for a non-stack-like Array, and is equal to N-1
for stack-like arrays.

	
__init__(data: ndarray, name: str | None = 'array', units: str | None = '', dims: list | None = None, dim_names: list | None = None, dim_units: list | None = None, slicelabels=None)

	
	Accepts:
	data (np.ndarray): the data
name (str): the name of the Array
units (str): units for the pixel values
dims (variable): calibration vectors for each of the axes of the data

array. Valid values for each element of the list are None,
a number, a 2-element list/array, or an M-element list/array
where M is the data array. If None is passed, the dim will be
populated with integer values starting at 0 and its units will
be set to pixels. If a number is passed, the dim is populated
with a vector beginning at zero and increasing linearly by this
step size. If a 2-element list/array is passed, the dim is
populated with a linear vector with these two numbers as the first
two elements. If a list/array of length M is passed, this is used
as the dim vector, (and must therefore match this dimension’s
length). If dims recieves a list of fewer than N arguments for an
N-dimensional data array, the extra dimensions are populated as if
None were passed, using integer pixel values. If the dims
parameter is not passed, all dim vectors are populated this way.

	dim_units (list): the units for the calibration dim vectors. If
	nothing is passed, dims vectors which have been populated
automatically with integers corresponding to pixel numbers
will be assigned units of ‘pixels’, and any other dim vectors
will be assigned units of ‘unknown’. If a list with length <
the array dimensions, the passed values are assumed to apply
to the first N dimensions, and the remaining values are
populated with ‘pixels’ or ‘unknown’ as above.

	dim_names (list): labels for each axis of the data array. Values
	which are not passed, following the same logic as described
above, will be autopopulated with the name “dim#” where #
is the axis number.

	slicelabels (None or True or list): if not None, must be True or a
	list of strings, indicating a “stack-like” array. In this case,
the first N-1 dimensions of the array are treated normally, in
the sense of populating dims, dim_names, and dim_units, while the
final dimension is treated distinctly: it indexes into
distinct arrays which share a set of dimension attributes, and
can be sliced into using the string labels from the slicelabels
list, with the syntax array[‘label’] or array.get_slice(‘label’).
If slicelabels is True or is a list with length less than the
final dimension length, unassigned dimensions are autopopulated
with labels array{i}. The flag array.is_stack is set to True
and the array.rank attribute is set to N-1.

	Returns:

	A new Array instance

	
get_dim(n)

	Return the n’th dim vector

	
dim(n)

	Return the n’th dim vector

	
set_dim(n: int, dim: list | ndarray, units: str | None = None, name: str | None = None)

	Sets the n’th dim vector, using dim as described in the Array
documentation. If units and/or name are passed, sets these
values for the n’th dim vector.

	Accepts:
	n (int): specifies which dim vector
dim (list or array): length must be either 2, or equal to the

length of the n’th axis of the data array

units (Optional, str):
name: (Optional, str):

	
get_dim_units(n)

	Return the n’th dim vector units

	
set_dim_units(n: int, units: str)

	Sets the n’th dim vector units to units.

	Accepts:
	n (int): specifies which dim vector
units (str): new units

	
get_dim_name(n)

	Get the n’th dim vector name

	
set_dim_name(n: int, name: str)

	Sets the n’th dim vector name to name.

	Accepts:
	n (int): specifies which dim vector
name (str): new name

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this Array, tags indicating its EMD type and Python class,
and the array’s data and metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new array’s Group

	
class emdfile.Custom(name='custom')

	
	
__init__(name='custom')

	

	
to_h5(group)

	Constructs an h5 group, adds metadata, and adds all attributes
which point to EMD nodes.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new node’s Group

	
class emdfile.Metadata(name: str | None = 'metadata', data: dict | None = None)

	Stores metadata in the form of a flat (non-nested) dictionary.
Keys are arbitrary strings. Values may be strings, numbers, arrays,
or lists of the above types.

Usage:

>>> meta = Metadata()
>>> meta['param'] = value
>>> val = meta['param']

If the parameter has not been set, the getter methods return None.

	
__init__(name: str | None = 'metadata', data: dict | None = None)

	
	Parameters:

	name (Optional, string) –

	
copy(name=None)

	

	
to_h5(group)

	Accepts an h5py Group which is open in write or append mode. Writes
a new group with this object’s name and saves its metadata in it.

	Accepts:
	group (h5py Group)

	
classmethod from_h5(group)

	Accepts an h5py Group which is open in read mode, confirms that
it represents an EMD MetadataDict group, then loads and returns it
as a Metadata instance.

	Accepts:
	group (HDF5 group)

	Returns:

	(Metadata)

	
class emdfile.Node(name: str | None = 'node')

	Nodes contain attributes and methods paralleling
the EMD 1.0 file specification in Python runtime objects.

EMD 1.0 is a singly-rooted file format. That is to say:
An EMD data object can and must exist in one and only one
EMD tree. An EMD file can contain any number of EMD trees, each
containing data and metadata which is, within the limits of
the EMD group specifications, of some arbitrary complexity.
An EMD 1.0 file thus represents, stores, and enables
access to some arbitrary data in long term storage on a file
system in the form of an HDF5 file. The Node class provides
machinery for building trees of data and metadata which mirror
the EMD tree format but which exist in a live Python instance,
rather than on the file system. This facilitates ease of
transfer between Python and the file system.

Nodes are intended to be used a base class on which other, more
complex classes can be biult. Nodes themselves contain the
machinery for managing a tree heirarchy of other Nodes and
Metadata instances, and for reading and writing those trees.
They do not contain any particular data. Classes storing data
and analysis methods which inherit from Node will inherit its
tree management and EMD i/o functionality.

Below, the 4 elements of the node class are each described in turn:
roots, trees, metadata, and i/o.

ROOTS

EMD data objects can and must exist in one and only one EMD tree,
each of which must have a single, named root node. To parallel this in
our runtime objects, each Node has a root property, which can be found
by calling self.root.

By default new nodes have their root set to None. If a node
with .root == None is saved to file, it is placed inside a
new root with the same name as the object itself, and this
is then saved to the file as a new (minimal) EMD tree.

A new root node can be instantiated by calling

>>> rootnode = Root(name=some_name).

Objects added to an existing rooted tree (including a new root node)
automatically have their root assigned to the root of that tree.
Adding objects to trees is discussed below.

TREES

The tree associated with a node can be manipulated with the .tree
method. If we have some rooted node node1 and some unrooted node
node2, the unrooted node can be added to the existing tree as a
child of the rooted node with

>>> node1.tree(node2)

If we have a rooted node node1 and another rooted node node2,
we can’t simply add node2 with the code above, as this would
create a conflict between the two roots. In this case, we can
move node2 from its current tree to the new tree using

>>> node1.tree(graft=node2)

The .tree method has various additional functionalities, including
printing the tree, retrieving objects from the tree, and cutting
branches from the tree. These are summarized below:

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keep root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string), i.e.
in most cases, the keyword can be dropped. So

>>> .tree()
>>> .tree(node)
>>> .tree(True)
>>> .tree('some/node')

will, respectively, print the tree from the current node to screen,
add the node node to the tree, pring the tree from the root node
to screen, and return the node at the emdpath ‘some/node’.

If a node needs to be added to a tree and it may or may not
already have its own root, calling

>>> .tree(add=node, force=True)

or

>>> .tree(node, force=True)

will add the node to the tree, using a simple add if node has no
root, and grafting it if it does have a root.

METADATA

Nodes can contain any number of Metadata instances, each of which
wraps a Python dictionary of some arbitrary complexity (to within
the limits of the Metadata group EMD specification, which limits
permissible values somewhat).

The code:

>>> md1 = Metadata(name='md1')
>>> md2 = Metadata(name='md2')
>>> <<< some code populating md1 + md2 >>>
>>> node.metadata = md1
>>> node.metadata = md2

will create two Metadata objects, populate them with data, then
add them to the node. Note that Node.metadata is not a Python
attribute, it is specially defined property, such that the last
line of code does not overwrite the line before it - rather,
assigning to the .metadata property adds the new metadata object
to a running dictionary of arbitrarily many metadata objects.
Both of these two metadata instances can therefore still be
retrieved, using:

>>> x = node.metadata['md1']
>>> y = node.metadata['md2']

Note, however, that if the second metadata instance has an identical
name to the first instance, then in will overwrite the old instance.

I/O

TODO

	
__init__(name: str | None = 'node')

	

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this node, tags indicating the groups EMD type and Python class,
and any metadata in this node.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new node’s Group

	
class emdfile.PointList(data: ndarray, name: str | None = 'pointlist')

	A wrapper around structured numpy arrays, with read/write functionality in/out of
EMD formatted HDF5 files.

	
__init__(data: ndarray, name: str | None = 'pointlist')

	
Instantiate a PointList.

	Parameters:

	
	data (structured numpy ndarray) – the data; the dtype of this array will
specify the fields of the PointList.

	name (str) – name for the PointList

	Returns:

	a PointList instance

	
add(data)

	Appends a numpy structured array. Its dtypes must agree with the existing data.

	
remove(mask)

	Removes points wherever mask==True

	
sort(field, order='ascending')

	Sorts the point list according to field,
which must be a field in self.dtype.
order should be ‘descending’ or ‘ascending’.

	
copy(name=None)

	Returns a copy of the PointList. If name=None, sets to {name}_copy

	
add_fields(new_fields, name='')

	Creates a copy of the PointList, but with additional fields given by new_fields.

	Parameters:

	
	new_fields – a list of 2-tuples, (‘name’, dtype)

	name – a name for the new pointlist

	
add_data_by_field(data, fields=None)

	Add a list of data arrays to the PointList, in the fields
given by fields. If fields is not specified, assumes the data
arrays are in the same order as self.fields

	Parameters:

	data (list) – arrays of data to add to each field

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this PointList, tags indicating its EMD type and Python class,
and the pointlist’s data and metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new pointlist’s group

	
class emdfile.PointListArray(dtype, shape, name: str | None = 'pointlistarray')

	An 2D array of PointLists which share common coordinates.

	
__init__(dtype, shape, name: str | None = 'pointlistarray')

	
Creates an empty PointListArray.

	Parameters:

	
	dtype – the dtype of the numpy structured arrays which will comprise
the data of each PointList

	shape (2-tuple of ints) – the shape of the array of PointLists

	name (str) – a name for the PointListArray

	Returns:

	a PointListArray instance

	
get_pointlist(i, j, name=None)

	Returns the pointlist at i,j

	
copy(name='')

	Returns a copy of itself.

	
add_fields(new_fields, name='')

	Creates a copy of the PointListArray, but with additional fields given
by new_fields.

	Parameters:

	
	new_fields – a list of 2-tuples, (‘name’, dtype)

	name – a name for the new pointlist

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this PointListArray, tags indicating its EMD type and Python class,
and the pointlistarray’s data and metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new pointlistarray’s group

	
class emdfile.Root(name='root')

	A Node instance with its .root property set to itself.

	
__init__(name='root')

	

Functions

	
emdfile._get_EMD_version(filepath, rootgroup=None)

	Returns the version (major,minor,release) of an EMD file.

	
emdfile._is_EMD_file(filepath)

	Returns True iff filepath points to a valid EMD 1.0 file.

	
emdfile._version_is_geq(current, minimum)

	Returns True iff current version (major,minor,release) is greater than or equal to minimum.”

	
emdfile.dirname(p)

	Returns the directory component of a pathname

	
emdfile.join(a, *p)

	Join two or more pathname components, inserting ‘/’ as needed.
If any component is an absolute path, all previous path components
will be discarded. An empty last part will result in a path that
ends with a separator.

	
emdfile.print_h5_tree(filepath, show_metadata=False)

	Prints the contents of an h5 file from a filepath.

	
emdfile.read(filepath, emdpath: str | None = None, tree: bool | str | None = True, **legacy_options)

	File reader for EMD 1.0+ files.

	Parameters:

	
	filepath (str or Path) – the file path

	emdpath (str) – path to the node in an EMD object tree to read
from. May be a root node or some downstream node. Use ‘/’
delimiters between node names. If emdpath is None, checks to
see how many root nodes are present. If there is one, loads
this tree. If there are several, returns a list of the root names.

	tree (True or False or 'branch') – indicates what data should be loaded,
relative to the node specified by emdpath. If set to False,
only data/metadata in the specified node is loaded, plus any
root metadata. If set to True, loads that node plus the
subtree of data objects it contains (and their metadata, and
the root metadata). If set to ‘branch’, loads the branch
under this node as above, but does not load the node itself.
If emdpath points to a root node, setting tree to ‘branch’
or True are equivalent - both return the whole data tree.

	Returns:

	
	(Root) returns a Root instance containing (1) any root metadata from
	the EMD tree loaded from, and (2) a tree of one or more pieces
of data/metadata

	
emdfile.save(filepath, data, mode='w', emdpath=None, tree=True)

	Saves data to a .h5 file at filepath.

Calling

>>> save(path, data)

if data is a Root instance saves this root and its entire tree to a new
file. If data is any other type of rooted node (i.e. a node inside of
some runtime data tree), this code writes a new file with a single tree
using this node’s root (even if this node is far downstream of the root
node), placing this node and the tree branch underneath it inside that
root. In both cases, the root metadata is stored in the new H5 root node.
If data is an unrooted node (i.e. a freestanding node not connected to
a tree), this code creates a new root node with no metadata and this node’s
name, and places this node inside that root in a new file.

If data is a numpy array or Python dictionary, wraps data in either an
emd.Array or emd.Metadata instance, assigns the name ‘np.array’ or
‘dictionary’, places the object in a root of this name and saves. If
data is a list of objects which are all numpy arrays, Python dictionaries,
or emd.Node instances, places all these objects into a single root, assigns
the roots name according to the first object in the list, and saves.

To write a single node from a tree, set tree to False. To write the
tree underneath a node but exclude the node itself set tree to None.

To add to an existing EMD file, use the mode argument to set append or
appendover mode. If the emdpath variable is not set and data has a
runtime root that does not exist in the EMD root groups already present,
adds the new root and writes as described above. If emdpath is not set
and the runtime root group matches a root group that’s already present,
this function performs a diff operation between the root metadata and
data nodes from data and those already in the H5 file. Append mode adds
any data/metadata groups with no equivalent (i.e. same name and tree
location) in the H5 tree, while skipping any data/metadata already found
in the tree. Appendover adds any data/metadata with no equivalent already
in the H5 tree, and overwrites any data/metadata groups that are already
represented in the HDF5 with the new data. Note that this function does
not attempt to take a diff between the contents of the groups and the
runtime data groups - it only considers the names and their locations in
the tree. If append or appendover mode are used and filepath is set to
a location that does not already contain a file on the filesystem,
behavior is identical to write mode. When appendover mode overwrites
data, it is erasing the old links and creating new links to new data;
however, the HDF5 file does not release the space on the filesystem.
To free up storage, set mode to ‘appendover’, and this function will
add a final step to re-write then delete the old file.

The emdpath argument is used to append to a specific location in an
extant EMD file downstream of some extant root. If passed, it must point
to a valid location in the EMD file. This function will then perform a
diff and write as described in the prior paragraph, except beginning
from the H5 node specified in emdpath. Note that in this case the root
metadata is still compared to and added or overwritten in the H5 root node,
even if the remaining data is being added to some downstream branch.

	Parameters:

	
	filepath – path where the file will be saved

	data – an EMD data class instance

	mode (str) –
	supported modes and their keys are:
	
	write (‘w’,’write’)

	overwrite (‘o’,’overwrite’)

	append (‘a’,’+’,’append’)

	appendover (‘ao’,’oa’,’o+’,’+o’,’appendover’)

Write mode writes a new file, and raises an exception if a file
of this name already exists. Overwrite mode deletes any file of
this name that already exists and writes a new file. Append and
appendover mode write a new file if no file of this name exists,
or if a file of this name does exist, adds new data to the file.
The specific behavior of append and appendover depend on the
data,`emdpath`, and tree arguments as discussed in more detail
above. Broadly, both modes attempt to detemine the difference
between the data passed and that present in the extent HDF5 file
tree, add any data not already in the H5, and then either skips
or overwrites conflicting nodes in append or appendover mode,
respectively.

	tree – indicates how the object tree nested inside data should
be treated. If True (default), the entire tree is saved.
If False, only this object is saved, without its tree. If
None, saves the entire tree underneath data, but not
the node at data itself.

	emdpath (str or None) – optional parameter used in conjunction with
append or appendover mode; if passed in write or overwrite mode,
this argument is ignored. Indicates where in an existing EMD
file tree to place the data. Must be a ‘/’ delimited string
pointing to an existing EMD file tree node.

	
emdfile.set_author(author)

	Accepts a string, which will be written to the “authoring_user” field in any EMD file headers
written during this Python session

	
emdfile.tqdmnd(*args, **kwargs)

	An N-dimensional extension of tqdm providing an iterator and
progress bar over the product of multiple iterators.

Example Usage:

>>> for x,y in tqdmnd(5,6):
>>> <expression>

is equivalent to

>>> for x in range(5):
>>> for y in range(6):
>>> <expression>

with a tqdmnd-style progress bar printed to standard output.

	Accepts:
	
	*args: Any number of integers or iterators. Each integer N
	is converted to a range(N) iterator. Then a loop is
constructed from the Cartesian product of all iterables.

	**kwargs: keyword arguments passed through directly to tqdm.
	Full details are available at https://tqdm.github.io
A few useful ones:

disable (bool): if True, hide the progress bar
keep (bool): if True, delete the progress bar after completion
unit (str): unit name for the display of iteration speed
unit_scale (bool): whether to scale the displayed units and add

SI prefixes

desc (str): message displayed in front of the progress bar

	Returns:

	At each iteration, a tuple of indices is returned, corresponding to the
values of each input iterator (in the same order as the inputs).

API Index

	py4DSTEM
	IO
	read()

	import_file()

	save()

	print_h5_tree()

	Plotting
	show()

	Utilities
	check_config()

	join()

	tqdmnd()

	Classes
	Array
	Array
	Array.__init__()

	Array.get_dim()

	Array.dim()

	Array.set_dim()

	Array.get_dim_units()

	Array.set_dim_units()

	Array.get_dim_name()

	Array.set_dim_name()

	Array.to_h5()

	Array.add_to_tree()

	Array.cut_from_tree()

	Array.force_add_to_tree()

	Array.from_h5()

	Array.get_from_tree()

	Array.graft()

	Array.newnode()

	Array.show_tree()

	Array.tree()

	BraggVectors
	BraggVectors
	BraggVectors.__init__()

	BraggVectors.set_raw_vectors()

	BraggVectors.raw

	BraggVectors.cal

	BraggVectors.setcal()

	BraggVectors.calibrate()

	BraggVectors.get_vectors()

	BraggVectors.to_h5()

	BraggVectors.add_to_tree()

	BraggVectors.attach()

	BraggVectors.cut_from_tree()

	BraggVectors.fit_origin()

	BraggVectors.fit_p_ellipse()

	BraggVectors.force_add_to_tree()

	BraggVectors.from_h5()

	BraggVectors.get_bragg_vector_map()

	BraggVectors.get_bvm()

	BraggVectors.get_from_tree()

	BraggVectors.get_masked_peaks()

	BraggVectors.get_virtual_image()

	BraggVectors.graft()

	BraggVectors.histogram()

	BraggVectors.mask_in_Q()

	BraggVectors.mask_in_R()

	BraggVectors.measure_origin()

	BraggVectors.measure_origin_beamstop()

	BraggVectors.newnode()

	BraggVectors.show_tree()

	BraggVectors.to_strainmap()

	BraggVectors.tree()

	Calibration
	Calibration
	Calibration.__init__()

	Calibration.attach()

	Calibration.register_target()

	Calibration.unregister_target()

	Calibration.set_origin_meas()

	Calibration.set_probe_param()

	Calibration.to_h5()

	Calibration.from_h5()

	Custom
	Custom
	Custom.__init__()

	Custom.to_h5()

	Custom.add_to_tree()

	Custom.cut_from_tree()

	Custom.force_add_to_tree()

	Custom.from_h5()

	Custom.get_from_tree()

	Custom.graft()

	Custom.newnode()

	Custom.show_tree()

	Custom.tree()

	Data
	Data
	Data.__init__()

	Data.attach()

	DataCube
	DataCube
	DataCube.__init__()

	DataCube.calibrate()

	DataCube.copy()

	DataCube.add()

	DataCube.set_scan_shape()

	DataCube.swap_RQ()

	DataCube.swap_Rxy()

	DataCube.swap_Qxy()

	DataCube.crop_Q()

	DataCube.crop_R()

	DataCube.bin_Q()

	DataCube.pad_Q()

	DataCube.resample_Q()

	DataCube.bin_Q_mmap()

	DataCube.bin_R()

	DataCube.thin_R()

	DataCube.filter_hot_pixels()

	DataCube.get_vacuum_probe()

	DataCube.get_probe_size()

	DataCube.find_Bragg_disks()

	DataCube.get_beamstop_mask()

	DataCube.get_radial_bkgrnd()

	DataCube.get_radial_bksb_dp()

	DataCube.get_local_ave_dp()

	DataCube.get_braggmask()

	DataCube.add_to_tree()

	DataCube.attach()

	DataCube.cut_from_tree()

	DataCube.dim()

	DataCube.force_add_to_tree()

	DataCube.from_h5()

	DataCube.get_calibrated_detector_geometry()

	DataCube.get_dim()

	DataCube.get_dim_name()

	DataCube.get_dim_units()

	DataCube.get_dp_max()

	DataCube.get_dp_mean()

	DataCube.get_dp_median()

	DataCube.get_from_tree()

	DataCube.get_virtual_diffraction()

	DataCube.get_virtual_image()

	DataCube.graft()

	DataCube.make_bragg_mask()

	DataCube.make_detector()

	DataCube.newnode()

	DataCube.position_detector()

	DataCube.set_dim()

	DataCube.set_dim_name()

	DataCube.set_dim_units()

	DataCube.show_tree()

	DataCube.to_h5()

	DataCube.tree()

	DiffractionSlice
	DiffractionSlice
	DiffractionSlice.__init__()

	DiffractionSlice.add_to_tree()

	DiffractionSlice.attach()

	DiffractionSlice.cut_from_tree()

	DiffractionSlice.dim()

	DiffractionSlice.force_add_to_tree()

	DiffractionSlice.from_h5()

	DiffractionSlice.get_dim()

	DiffractionSlice.get_dim_name()

	DiffractionSlice.get_dim_units()

	DiffractionSlice.get_from_tree()

	DiffractionSlice.graft()

	DiffractionSlice.newnode()

	DiffractionSlice.set_dim()

	DiffractionSlice.set_dim_name()

	DiffractionSlice.set_dim_units()

	DiffractionSlice.show_tree()

	DiffractionSlice.to_h5()

	DiffractionSlice.tree()

	Metadata
	Metadata
	Metadata.__init__()

	Metadata.copy()

	Metadata.to_h5()

	Metadata.from_h5()

	Node
	Node
	Node.__init__()

	Node.show_tree()

	Node.add_to_tree()

	Node.force_add_to_tree()

	Node.get_from_tree()

	Node.graft()

	Node.cut_from_tree()

	Node.tree()

	Node.newnode()

	Node.from_h5()

	Node.to_h5()

	PointList
	PointList
	PointList.__init__()

	PointList.add()

	PointList.remove()

	PointList.sort()

	PointList.copy()

	PointList.add_fields()

	PointList.add_data_by_field()

	PointList.add_to_tree()

	PointList.cut_from_tree()

	PointList.force_add_to_tree()

	PointList.from_h5()

	PointList.get_from_tree()

	PointList.graft()

	PointList.newnode()

	PointList.show_tree()

	PointList.tree()

	PointList.to_h5()

	PointListArray
	PointListArray
	PointListArray.__init__()

	PointListArray.get_pointlist()

	PointListArray.copy()

	PointListArray.add_fields()

	PointListArray.to_h5()

	PointListArray.add_to_tree()

	PointListArray.cut_from_tree()

	PointListArray.force_add_to_tree()

	PointListArray.from_h5()

	PointListArray.get_from_tree()

	PointListArray.graft()

	PointListArray.newnode()

	PointListArray.show_tree()

	PointListArray.tree()

	Probe
	Probe
	Probe.__init__()

	Probe.from_vacuum_data()

	Probe.generate_synthetic_probe()

	Probe.measure_disk()

	Probe.get_kernel()

	Probe.get_probe_kernel_flat()

	Probe.get_probe_kernel_edge_gaussian()

	Probe.get_probe_kernel_edge_sigmoid()

	Probe.add_to_tree()

	Probe.attach()

	Probe.cut_from_tree()

	Probe.dim()

	Probe.force_add_to_tree()

	Probe.from_h5()

	Probe.get_dim()

	Probe.get_dim_name()

	Probe.get_dim_units()

	Probe.get_from_tree()

	Probe.graft()

	Probe.newnode()

	Probe.set_dim()

	Probe.set_dim_name()

	Probe.set_dim_units()

	Probe.show_tree()

	Probe.to_h5()

	Probe.tree()

	QPoints
	QPoints
	QPoints.__init__()

	QPoints.add()

	QPoints.add_data_by_field()

	QPoints.add_fields()

	QPoints.add_to_tree()

	QPoints.attach()

	QPoints.copy()

	QPoints.cut_from_tree()

	QPoints.force_add_to_tree()

	QPoints.from_h5()

	QPoints.get_from_tree()

	QPoints.graft()

	QPoints.newnode()

	QPoints.remove()

	QPoints.show_tree()

	QPoints.sort()

	QPoints.to_h5()

	QPoints.tree()

	RealSlice
	RealSlice
	RealSlice.__init__()

	RealSlice.add_to_tree()

	RealSlice.attach()

	RealSlice.cut_from_tree()

	RealSlice.dim()

	RealSlice.force_add_to_tree()

	RealSlice.from_h5()

	RealSlice.get_dim()

	RealSlice.get_dim_name()

	RealSlice.get_dim_units()

	RealSlice.get_from_tree()

	RealSlice.graft()

	RealSlice.newnode()

	RealSlice.set_dim()

	RealSlice.set_dim_name()

	RealSlice.set_dim_units()

	RealSlice.show_tree()

	RealSlice.to_h5()

	RealSlice.tree()

	VirtualDiffraction
	VirtualDiffraction
	VirtualDiffraction.__init__()

	VirtualDiffraction.add_to_tree()

	VirtualDiffraction.attach()

	VirtualDiffraction.cut_from_tree()

	VirtualDiffraction.dim()

	VirtualDiffraction.force_add_to_tree()

	VirtualDiffraction.from_h5()

	VirtualDiffraction.get_dim()

	VirtualDiffraction.get_dim_name()

	VirtualDiffraction.get_dim_units()

	VirtualDiffraction.get_from_tree()

	VirtualDiffraction.graft()

	VirtualDiffraction.newnode()

	VirtualDiffraction.set_dim()

	VirtualDiffraction.set_dim_name()

	VirtualDiffraction.set_dim_units()

	VirtualDiffraction.show_tree()

	VirtualDiffraction.to_h5()

	VirtualDiffraction.tree()

	VirtualImage
	VirtualImage
	VirtualImage.__init__()

	VirtualImage.add_to_tree()

	VirtualImage.attach()

	VirtualImage.cut_from_tree()

	VirtualImage.dim()

	VirtualImage.force_add_to_tree()

	VirtualImage.from_h5()

	VirtualImage.get_dim()

	VirtualImage.get_dim_name()

	VirtualImage.get_dim_units()

	VirtualImage.get_from_tree()

	VirtualImage.graft()

	VirtualImage.newnode()

	VirtualImage.set_dim()

	VirtualImage.set_dim_name()

	VirtualImage.set_dim_units()

	VirtualImage.show_tree()

	VirtualImage.to_h5()

	VirtualImage.tree()

	io
	filereaders
	read_empad()

	read_gatan_K2_bin()

	K2DataArray
	K2DataArray.__init__()

	load_mib()

	manageHeader()

	parse_hdr()

	get_mib_memmap()

	get_mib_depth()

	get_hdr_bits()

	google_drive_downloader
	gdrive_download()

	importfile
	import_file()

	legacy
	read_legacy12()

	read_legacy13()

	print_v13h5_tree()

	print_v13h5pyFile_tree()

	get_py4DSTEM_topgroups()

	is_py4DSTEM_version13()

	is_py4DSTEM_file()

	get_py4DSTEM_version()

	get_UUID()

	version_is_geq()

	get_N_dataobjects()

	parsefiletype

	preprocess
	darkreference
	get_bksbtr_DP()

	get_darkreference()

	get_background_streaks()

	get_background_streaks_x()

	get_background_streaks_y()

	electroncount
	electron_count()

	electron_count_GPU()

	calculate_thresholds()

	torch_bin()

	counted_datacube_to_pointlistarray()

	counted_pointlistarray_to_datacube()

	preprocess
	set_scan_shape()

	swap_RQ()

	swap_Rxy()

	swap_Qxy()

	bin_data_diffraction()

	bin_data_mmap()

	bin_data_real()

	thin_data_real()

	filter_hot_pixels()

	datacube_diffraction_shift()

	resample_data_diffraction()

	pad_data_diffraction()

	radialbkgrd
	get_1D_polar_background()

	get_2D_polar_background()

	utils
	bin2D()

	make_Fourier_coords2D()

	get_shifted_ar()

	get_maxima_2D()

	filter_2D_maxima()

	linear_interpolation_2D()

	process
	calibration
	fit_ellipse_1D()

	ellipse_err()

	fit_ellipse_amorphous_ring()

	double_sided_gaussian_fiterr()

	double_sided_gaussian()

	constrain_degenerate_ellipse()

	fit_origin()

	get_origin_single_dp()

	get_origin()

	get_origin_single_dp_beamstop()

	get_origin_beamstop()

	get_probe_size()

	get_Q_pixel_size()

	get_dq_from_indexed_peaks()

	compare_QR_rotation()

	get_Qvector_from_Rvector()

	get_Rvector_from_Qvector()

	classification
	BraggVectorClassification
	BraggVectorClassification.__init__()

	BraggVectorClassification.R_Nx

	BraggVectorClassification.R_Ny

	BraggVectorClassification.Qx

	BraggVectorClassification.Qy

	BraggVectorClassification.braggpeak_labels

	BraggVectorClassification.N_feat

	BraggVectorClassification.N_meas

	BraggVectorClassification.X

	BraggVectorClassification.get_initial_classes_by_cooccurrence()

	BraggVectorClassification.get_initial_classes_from_images()

	BraggVectorClassification.nmf()

	BraggVectorClassification.split()

	BraggVectorClassification.merge()

	BraggVectorClassification.merge_by_class_index()

	BraggVectorClassification.split_by_class_index()

	BraggVectorClassification.remove_class()

	BraggVectorClassification.merge_iterative()

	BraggVectorClassification.accept()

	BraggVectorClassification.reject()

	BraggVectorClassification.get_class()

	BraggVectorClassification.get_class_BPs()

	BraggVectorClassification.get_class_image()

	BraggVectorClassification.get_candidate_class()

	BraggVectorClassification.get_candidate_class_BPs()

	BraggVectorClassification.get_candidate_class_image()

	get_braggpeak_labels_by_scan_position()

	get_initial_classes()

	get_class_DP()

	get_class_DP_without_Bragg_scattering()

	Featurization
	Featurization.__init__()

	Featurization.from_braggvectors()

	Featurization.concatenate_features()

	Featurization.add_features()

	Featurization.delete_features()

	Featurization.mean_feature()

	Featurization.median_feature()

	Featurization.max_feature()

	Featurization.MinMaxScaler()

	Featurization.RobustScaler()

	Featurization.shift_positive()

	Featurization.PCA()

	Featurization.ICA()

	Featurization.NMF()

	Featurization.GMM()

	Featurization.get_class_DPs()

	Featurization.get_class_ims()

	Featurization.spatial_separation()

	Featurization.consensus()

	diffraction
	compute_WK_factor()

	RIH2()

	Crystal
	Crystal.orientation_plan()

	Crystal.match_orientations()

	Crystal.match_single_pattern()

	Crystal.cluster_grains()

	Crystal.cluster_orientation_map()

	Crystal.calculate_strain()

	Crystal.symmetry_reduce_directions()

	Crystal.save_ang_file()

	Crystal.plot_structure()

	Crystal.plot_structure_factors()

	Crystal.plot_scattering_intensity()

	Crystal.plot_orientation_zones()

	Crystal.plot_orientation_plan()

	Crystal.plot_orientation_maps()

	Crystal.plot_fiber_orientation_maps()

	Crystal.plot_clusters()

	Crystal.plot_cluster_size()

	Crystal.calibrate_pixel_size()

	Crystal.calibrate_unit_cell()

	Crystal.generate_dynamical_diffraction_pattern()

	Crystal.generate_CBED()

	Crystal.calculate_dynamical_structure_factors()

	Crystal.__init__()

	Crystal.positions

	Crystal.get_strained_crystal()

	Crystal.from_CIF()

	Crystal.from_pymatgen_structure()

	Crystal.from_unitcell_parameters()

	Crystal.setup_diffraction()

	Crystal.calculate_structure_factors()

	Crystal.generate_diffraction_pattern()

	Crystal.generate_ring_pattern()

	Crystal.excitation_errors()

	Crystal.calculate_bragg_peak_histogram()

	generate_moire_diffraction_pattern()

	plot_moire_diffraction_pattern()

	orientation_plan()

	match_orientations()

	match_single_pattern()

	cluster_grains()

	cluster_orientation_map()

	calculate_strain()

	save_ang_file()

	symmetry_reduce_directions()

	DynamicalMatrixCache
	DynamicalMatrixCache.__init__()

	calculate_dynamical_structure_factors()

	generate_dynamical_diffraction_pattern()

	generate_CBED()

	calibrate_pixel_size()

	calibrate_unit_cell()

	Crystal_Phase
	Crystal_Phase.__init__()

	Crystal_Phase.plot_all_phase_maps()

	Crystal_Phase.quantify_phase()

	Crystal_Phase.quantify_phase_pointlist()

	plot_structure()

	plot_structure_factors()

	plot_scattering_intensity()

	plot_orientation_zones()

	plot_orientation_plan()

	plot_diffraction_pattern()

	plot_orientation_maps()

	plot_fiber_orientation_maps()

	plot_clusters()

	plot_cluster_size()

	atomic_colors()

	plot_ring_pattern()

	make_orientation_histogram()

	make_flowline_map()

	make_flowline_rainbow_image()

	make_flowline_rainbow_legend()

	make_flowline_combined_image()

	orientation_correlation()

	plot_orientation_correlation()

	Orientation
	Orientation.__init__()

	OrientationMap
	OrientationMap.__init__()

	sort_orientation_maps()

	calc_1D_profile()

	diskdetection

	fit
	fit_1D_gaussian()

	fit_2D()

	fit_2D_polar_gaussian()

	latticevectors

	phase
	PhaseReconstruction
	PhaseReconstruction.attach_datacube()

	PhaseReconstruction.reinitialize_parameters()

	PhaseReconstruction.set_save_defaults()

	PhaseReconstruction.show_complex_CoM()

	PtychographicReconstruction
	PtychographicReconstruction.to_h5()

	PtychographicReconstruction.tune_angle_and_defocus()

	PtychographicReconstruction.plot_position_correction()

	PtychographicReconstruction.show_uncertainty_visualization()

	PtychographicReconstruction.show_fourier_probe()

	PtychographicReconstruction.show_object_fft()

	PtychographicReconstruction.probe_fourier

	PtychographicReconstruction.probe_centered

	PtychographicReconstruction.object_fft

	PtychographicReconstruction.angular_sampling

	PtychographicReconstruction.sampling

	PtychographicReconstruction.positions

	PtychographicReconstruction.object_cropped

	DPCReconstruction
	DPCReconstruction.__init__()

	DPCReconstruction.to_h5()

	DPCReconstruction.preprocess()

	DPCReconstruction.reconstruct()

	DPCReconstruction.visualize()

	DPCReconstruction.sampling

	MixedstatePtychographicReconstruction
	MixedstatePtychographicReconstruction.__init__()

	MixedstatePtychographicReconstruction.preprocess()

	MixedstatePtychographicReconstruction.reconstruct()

	MixedstatePtychographicReconstruction.visualize()

	MixedstatePtychographicReconstruction.show_fourier_probe()

	MultislicePtychographicReconstruction
	MultislicePtychographicReconstruction.__init__()

	MultislicePtychographicReconstruction.preprocess()

	MultislicePtychographicReconstruction.reconstruct()

	MultislicePtychographicReconstruction.visualize()

	MultislicePtychographicReconstruction.show_transmitted_probe()

	MultislicePtychographicReconstruction.show_slices()

	MultislicePtychographicReconstruction.show_depth()

	MultislicePtychographicReconstruction.tune_num_slices_and_thicknesses()

	OverlapTomographicReconstruction
	OverlapTomographicReconstruction.__init__()

	OverlapTomographicReconstruction.preprocess()

	OverlapTomographicReconstruction.reconstruct()

	OverlapTomographicReconstruction.visualize()

	OverlapTomographicReconstruction.show_object_fft()

	OverlapTomographicReconstruction.positions

	OverlapTomographicReconstruction.show_uncertainty_visualization()

	ParallaxReconstruction
	ParallaxReconstruction.__init__()

	ParallaxReconstruction.to_h5()

	ParallaxReconstruction.preprocess()

	ParallaxReconstruction.tune_angle_and_defocus()

	ParallaxReconstruction.reconstruct()

	ParallaxReconstruction.subpixel_alignment()

	ParallaxReconstruction.aberration_fit()

	ParallaxReconstruction.aberration_correct()

	ParallaxReconstruction.depth_section()

	ParallaxReconstruction.show_shifts()

	ParallaxReconstruction.visualize()

	ParallaxReconstruction.object_cropped

	SimultaneousPtychographicReconstruction
	SimultaneousPtychographicReconstruction.__init__()

	SimultaneousPtychographicReconstruction.preprocess()

	SimultaneousPtychographicReconstruction.reconstruct()

	SimultaneousPtychographicReconstruction.visualize()

	SimultaneousPtychographicReconstruction.self_consistency_errors

	SimultaneousPtychographicReconstruction.object_cropped

	polar_symbols

	polar_aliases

	ComplexProbe
	ComplexProbe.__init__()

	ComplexProbe.set_parameters()

	ComplexProbe.polar_coordinates()

	ComplexProbe.build()

	ComplexProbe.visualize()

	spatial_frequencies()

	fourier_translation_operator()

	fft_shift()

	subdivide_into_batches()

	AffineTransform
	AffineTransform.__init__()

	AffineTransform.fromarray()

	AffineTransform.asarray()

	AffineTransform.asarray3()

	AffineTransform.astuple()

	estimate_global_transformation()

	estimate_global_transformation_ransac()

	fourier_ring_correlation()

	return_1D_profile()

	fourier_rotate_real_volume()

	compute_divergence()

	compute_gradient()

	array_slice()

	make_array_rfft_compatible()

	dst_I()

	idst_I()

	preconditioned_laplacian()

	preconditioned_poisson_solver()

	project_vector_field_divergence()

	cartesian_to_polar_transform_2Ddata()

	polar_to_cartesian_transform_2Ddata()

	regularize_probe_amplitude()

	rotate_point()

	probe

	rdf
	fit_stack()

	calculate_coef_strain()

	plot_strains()

	convert_stack_polar()

	compute_polar_stack_symmetries()

	plot_symmetries()

	get_radial_intensity()

	fit_scattering_factor()

	get_phi()

	get_mask()

	get_rdf()

	utils
	get_cross_correlation()

	get_cross_correlation_FT()

	get_shift()

	align_images_fourier()

	align_and_shift_images()

	convert_ellipse_params()

	convert_ellipse_params_r()

	cartesian_to_polarelliptical_transform()

	elliptical_resample_datacube()

	elliptical_resample()

	radial_elliptical_integral()

	radial_integral()

	get_beamstop_mask()

	make_circular_mask()

	upsampled_correlation()

	upsampleFFT()

	dftUpsample()

	radial_reduction()

	sector_mask()

	get_qx_qy_1d()

	make_Fourier_coords2D()

	get_CoM()

	get_maxima_1D()

	linear_interpolation_1D()

	add_to_2D_array_from_floats()

	get_voronoi_vertices()

	get_ewpc_filter_function()

	fourier_resample()

	virtualdiffraction

	virtualimage

	wholepatternfit
	WPFModelType

	WPFModel
	WPFModel.__init__()

	DCBackground
	DCBackground.__init__()

	GaussianBackground
	GaussianBackground.__init__()

	GaussianRing
	GaussianRing.__init__()

	SyntheticDiskLattice
	SyntheticDiskLattice.__init__()

	SyntheticDiskMoire
	SyntheticDiskMoire.__init__()

	ComplexOverlapKernelDiskLattice
	ComplexOverlapKernelDiskLattice.__init__()

	KernelDiskLattice
	KernelDiskLattice.__init__()

	show_lattice_points()

	visualize
	show
	show()

	show_hist()

	show_Q()

	show_rectangles()

	show_circles()

	show_ellipses()

	show_annuli()

	show_points()

	overlay
	add_annuli()

	add_bragg_index_labels()

	add_cartesian_grid()

	add_circles()

	add_ellipses()

	add_grid_overlay()

	add_pointlabels()

	add_points()

	add_polarelliptical_grid()

	add_rectangles()

	add_rtheta_grid()

	add_scalebar()

	add_vector()

	get_nice_spacing()

	is_color_like()

	virtualimage

	vis_RQ
	ax_addaxes()

	ax_addaxes_QtoR()

	ax_addaxes_RtoQ()

	ax_addvector()

	ax_addvector_QtoR()

	ax_addvector_RtoQ()

	show()

	show_RQ()

	show_RQ_axes()

	show_RQ_vector()

	show_RQ_vectors()

	show_points()

	show_selected_dp()

	vis_grid
	_show_grid_overlay()

	add_grid_overlay()

	show()

	show_DP_grid()

	show_grid_overlay()

	show_image_grid()

	show_points()

	vis_special
	Complex2RGB()

	add_bragg_index_labels()

	add_ellipses()

	add_pointlabels()

	add_points()

	add_scalebar()

	add_vector()

	ax_addaxes()

	ax_addaxes_QtoR()

	make_axes_locatable()

	select_point()

	show()

	show_amorphous_ring_fit()

	show_class_BPs()

	show_class_BPs_grid()

	show_complex()

	show_elliptical_fit()

	show_image_grid()

	show_kernel()

	show_max_peak_spacing()

	show_origin_fit()

	show_origin_meas()

	show_pointlabels()

	show_qprofile()

	show_selected_dps()

	show_voronoi()

	emd
	Classes
	Array
	Array.__init__()

	Array.get_dim()

	Array.dim()

	Array.set_dim()

	Array.get_dim_units()

	Array.set_dim_units()

	Array.get_dim_name()

	Array.set_dim_name()

	Array.to_h5()

	Custom
	Custom.__init__()

	Custom.to_h5()

	Metadata
	Metadata.__init__()

	Metadata.copy()

	Metadata.to_h5()

	Metadata.from_h5()

	Node
	Node.__init__()

	Node.show_tree()

	Node.add_to_tree()

	Node.force_add_to_tree()

	Node.get_from_tree()

	Node.graft()

	Node.cut_from_tree()

	Node.tree()

	Node.newnode()

	Node.from_h5()

	Node.to_h5()

	PointList
	PointList.__init__()

	PointList.add()

	PointList.remove()

	PointList.sort()

	PointList.copy()

	PointList.add_fields()

	PointList.add_data_by_field()

	PointList.to_h5()

	PointListArray
	PointListArray.__init__()

	PointListArray.get_pointlist()

	PointListArray.copy()

	PointListArray.add_fields()

	PointListArray.to_h5()

	Root
	Root.__init__()

	Functions
	_get_EMD_version()

	_is_EMD_file()

	_version_is_geq()

	dirname()

	join()

	print_h5_tree()

	read()

	save()

	set_author()

	tqdmnd()

py4DSTEM

There are some shortcuts available for regularly used functions and utilities

Table of Contents

	py4DSTEM

	IO

	Plotting

	Utilities

IO

	
py4DSTEM.read(filepath: str | Path, datapath: str | None = None, tree: bool | str | None = True, verbose: bool | None = False, **kwargs)

	A file reader for native py4DSTEM / EMD files. To read non-native
formats, use py4DSTEM.import_file.

For files written by py4DSTEM version 0.14+, the function arguments
are those listed here - filepath, datapath, and tree. See below for
descriptions.

Files written by py4DSTEM v0.14+ are EMD 1.0 files, an HDF5 based
format. For a description and complete file specification, see
https://emdatasets.com/format/. For the Python implementation of
EMD 1.0 read-write routines which py4DSTEM is build on top of, see
https://github.com/py4dstem/emdfile.

To read file written by older verions of py4DSTEM, different keyword
arguments should be passed. See the docstring for
py4DSTEM.io.native.legacy.read_py4DSTEM_legacy for a complete list.
For example, data_id may need to be specified to select dataset.

	Parameters:

	
	filepath (str or Path) – the file path

	datapath (str or None) – the path within the H5 file to the data
group to read from. If there is a single EMD data tree in the
file, datapath may be left as None, and the path will
be set to the root node of that tree. If datapath is None
and there are multiple EMD trees, this function will issue a
warning a return a list of paths to the root nodes of all
EMD trees it finds. Otherwise, should be a ‘/’ delimited path
to the data node of interest, for example passing
‘rootnode/somedata/someotherdata’ will set the node called
‘someotherdata’ as the point to read from. To print the tree
of data nodes present in a file to the screen, use
py4DSTEM.print_h5_tree(filepath).

	tree (True or False or 'noroot') – indicates what data should be loaded,
relative to the target data group specified with datapath.
Enables reading the target data node only if tree is False,
reading the target node as well as recursively reading the tree
of data underneath it if tree is True, or recursively reading
the tree of data underneath the target node but excluding the
target node itself if tree is to ‘noroot’.

	Returns:

	(the data)

	
py4DSTEM.import_file(filepath: str | Path, mem: str | None = 'RAM', binfactor: int | None = 1, filetype: str | None = None, **kwargs)

	Reader for non-native file formats.
Parses the filetype, and calls the appropriate reader.
Supports Gatan DM3/4, some EMPAD file versions, Gatan K2 bin/gtg, and mib
formats.

	Parameters:

	
	filepath (str or Path) – Path to the file.

	mem (str) – Must be “RAM” or “MEMMAP”. Specifies how the data is
loaded; “RAM” transfer the data from storage to RAM, while “MEMMAP”
leaves the data in storage and creates a memory map which points to
the diffraction patterns, allowing them to be retrieved individually
from storage.

	binfactor (int) – Diffraction space binning factor for bin-on-load.

	filetype (str) – Used to override automatic filetype detection.
options include “dm”, “empad”, “gatan_K2_bin”, “mib”, “arina”, “abTEM”

	**kwargs – any additional kwargs are passed to the downstream reader -
refer to the individual filetype reader function call signatures
and docstrings for more details.

	Returns:

	(DataCube or Array) returns a DataCube if 4D data is found, otherwise
returns an Array

	
py4DSTEM.save(filepath, data, mode='w', emdpath=None, tree=True)

	Saves data to an EMD 1.0 formatted HDF5 file at filepath.

For the full docstring, see py4DSTEM.emdfile.save.

	
py4DSTEM.print_h5_tree(filepath, show_metadata=False)

	Prints the contents of an h5 file from a filepath.

Plotting

	
py4DSTEM.show(ar, figsize=(5, 5), cmap='gray', scaling='none', intensity_range='ordered', clipvals=None, vmin=None, vmax=None, min=None, max=None, power=None, power_offset=True, combine_images=False, ticks=True, bordercolor=None, borderwidth=5, show_image=True, return_ar_scaled=False, return_intensity_range=False, returncax=False, returnfig=False, figax=None, hist=False, n_bins=256, mask=None, mask_color='k', mask_alpha=0.0, masked_intensity_range=False, rectangle=None, circle=None, annulus=None, ellipse=None, points=None, grid_overlay=None, cartesian_grid=None, polarelliptical_grid=None, rtheta_grid=None, scalebar=None, calibration=None, rx=None, ry=None, space='Q', pixelsize=None, pixelunits=None, x0=None, y0=None, a=None, e=None, theta=None, title=None, show_fft=False, show_cbar=False, **kwargs)

	General visualization function for 2D arrays.

The simplest use of this function is:

>>> show(ar)

which will generate and display a matplotlib figure showing the 2D array ar.
Additional functionality includes:

	scaling the image (log scaling, power law scaling)

	displaying the image histogram

	altering the histogram clip values

	masking some subset of the image

	setting the colormap

	adding geometric overlays (e.g. points, circles, rectangles, annuli)

	adding informational overlays (scalebars, coordinate grids, oriented axes or
vectors)

	further customization tools

These are each discussed in turn below.

	Scaling:
	Setting the parameter scaling will scale the display image. Options are
‘none’, ‘auto’, ‘power’, or ‘log’. If ‘power’ is specified, the parameter power must
also be passed. The underlying data is not altered. Values less than or equal to
zero are set to zero. If the image histogram is displayed using hist=True,
the scaled image histogram is shown.

Examples:

>>> show(ar,scaling='log')
>>> show(ar,power=0.5)
>>> show(ar,scaling='power',power=0.5,hist=True)

	Histogram:
	Setting the argument hist=True will display the image histogram, instead of
the image. The displayed histogram will reflect any scaling requested. The number
of bins can be set with n_bins. The upper and lower clip values, indicating
where the image display will be saturated, are shown with dashed lines.

	Intensity range:
	Controlling the lower and upper values at which the display image will be
saturated is accomplished with the intensity_range parameter, or its
(soon deprecated) alias clipvals, in combination with vmin,
and vmax. The method by which the upper and lower clip values
are determined is controlled by intensity_range, and must be a string in
(‘None’,’ordered’,’minmax’,’absolute’,’std’,’centered’). See the argument
description for intensity_range for a description of the behavior for each.
The clip values can be returned with the return_intensity_range parameter.

	Masking:
	If a numpy masked array is passed to show, the function will automatically
mask the appropriate pixels. Alternatively, a boolean array of the same shape as
the data array may be passed to the mask argument, and these pixels will be
masked. Masked pixels are displayed as a single uniform color, black by default,
and which can be specified with the mask_color argument. Masked pixels
are excluded when displaying the histogram or computing clip values. The mask
can also be blended with the hidden data by setting the mask_alpha argument.

	Overlays (geometric):
	The function natively supports overlaying points, circles, rectangles, annuli,
and ellipses. Each is invoked by passing a dictionary to the appropriate input
variable specifying the geometry and features of the requested overlay. For
example:

>>> show(ar, rectangle={'lims':(10,20,10,20),'color':'r'})

will overlay a single red square, and

>>> show(ar, annulus={'center':[(28,68),(92,160)],
 'radii':[(16,24),(12,36)],
 'fill':True,
 'alpha':[0.9,0.3],
 'color':['r',(0,1,1,1)]})

will overlay two annuli with two different centers, radii, colors, and
transparencies. For a description of the accepted dictionary parameters
for each type of overlay, see the visualize functions add_*, where
* = (‘rectangle’,’circle’,’annulus’,’ellipse’,’points’). (These docstrings
are under construction!)

	Overlays (informational):
	Informational overlays supported by this function include coordinate axes
(cartesian, polar-elliptical, or r-theta) and scalebars. These are added
by passing the appropriate input argument a dictionary of the desired
parameters, as with geometric overlays. However, there are two key differences
between these overlays and the geometric overlays. First, informational
overlays (coordinate systems and scalebars) require information about the
plot - e.g. the position of the origin, the pixel sizes, the pixel units,
any elliptical distortions, etc. The easiest way to pass this information
is by pass a Calibration object containing this info to show as the
keyword calibration. Second, once the coordinate information has been
passed, informational overlays can autoselect their own parameters, thus simply
passing an empty dict to one of these parameters will add that overlay.

For example:

>>> show(dp, scalebar={}, calibration=calibration)

will display the diffraction pattern dp with a scalebar overlaid in the
bottom left corner given the pixel size and units described in calibration,
and

>>> show(dp, calibration=calibration, scalebar={'length':0.5,'width':2,
 'position':'ul','label':True'})

will display a more customized scalebar.

When overlaying coordinate grids, it is important to note that some relevant
parameters, e.g. the position of the origin, may change by scan position.
In these cases, the parameters rx,``ry`` must also be passed to show,
to tell the Calibration object where to look for the relevant parameters.
For example:

>>> show(dp, cartesian_grid={}, calibration=calibration, rx=2,ry=5)

will overlay a cartesian coordinate grid on the diffraction pattern at scan
position (2,5). Adding

>>> show(dp, calibration=calibration, rx=2, ry=5, cartesian_grid={'label':True,
 'alpha':0.7,'color':'r'})

will customize the appearance of the grid further. And

>>> show(im, calibration=calibration, cartesian_grid={}, space='R')

displays a cartesian grid over a real space image. For more details, see the
documentation for the visualize functions add_*, where * = (‘scalebar’,
‘cartesian_grid’, ‘polarelliptical_grid’, ‘rtheta_grid’). (Under construction!)

	Further customization:
	Most parameters accepted by a matplotlib axis will be accepted by show.
Pass a valid matplotlib colormap or a known string indicating a colormap
as the argument cmap to specify the colormap. Pass figsize to
specify the figure size. Etc.

Further customization can be accomplished by either (1) returning the figure
generated by show and then manipulating it using the normal matplotlib
functions, or (2) generating a matplotlib Figure with Axes any way you like
(e.g. with plt.subplots) and then using this function to plot inside a
single one of the Axes of your choice.

Option (1) is accomplished by simply passing this function returnfig=True.
Thus:

>>> fig,ax = show(ar, returnfig=True)

will now give you direct access to the figure and axes to continue to alter.
Option (2) is accomplished by passing an existing figure and axis to show
as a 2-tuple to the figax argument. Thus:

>>> fig,(ax1,ax2) = plt.subplots(1,2)
>>> show(ar, figax=(fig,ax1))
>>> show(ar, figax=(fig,ax2), hist=True)

will generate a 2-axis figure, and then plot the array ar as an image on
the left, while plotting its histogram on the right.

	Parameters:

	
	ar (2D array or a list of 2D arrays) – the data to plot. Normally this
is a 2D array of the data. If a list of 2D arrays is passed, plots
a corresponding grid of images.

	figsize (2-tuple) – size of the plot

	cmap (colormap) – any matplotlib cmap; default is gray

	scaling (str) – selects a scaling scheme for the intensity values. Default is
none. Accepted values:

	’none’: do not scale intensity values

	’full’: fill entire color range with sorted intensity values

	’power’: power law scaling

	’log’: values where ar<=0 are set to 0

	intensity_range (str) –
	method for setting clipvalues (min and max intensities).
	The original name “clipvals” is now deprecated.
Default is ‘ordered’. Accepted values:

	’ordered’: vmin/vmax are set to fractions of the
distribution of pixel values in the array, e.g. vmin=0.02
will set the minumum display value to saturate the lower 2% of pixels

	’minmax’: The vmin/vmax values are np.min(ar)/np.max(r)

	’absolute’: The vmin/vmax values are set to the values of
the vmin,vmax arguments received by this function

	
	’std’: The vmin/vmax values are np.median(ar) -/+ N*np.std(ar), and
	N is this functions min,max vals.

	’centered’: The vmin/vmax values are set to c -/+ m, where by default
‘c’ is zero and m is the max(abs(ar-c), or the two params can be user
specified using the kwargs vmin/vmax -> c/m.

	vmin (number) – min intensity, behavior depends on clipvals

	vmax (number) – max intensity, behavior depends on clipvals

	min – alias’ for vmin,vmax, throws deprecation warning

	max – alias’ for vmin,vmax, throws deprecation warning

	power (number) – specifies the scaling power

	power_offset (bool) – If true, image has min value subtracted before power scaling

	ticks (bool) – Turn outer tick marks on or off

	bordercolor (color or None) – if not None, add a border of this color.
The color can be anything matplotlib recognizes as a color.

	borderwidth (number) –

	returnfig (bool) – if True, the function returns the tuple (figure,axis)

	figax (None or 2-tuple) – controls which matplotlib Axes object draws the image.
If None, generates a new figure with a single Axes instance. Otherwise, ax
must be a 2-tuple containing the matplotlib class instances (Figure,Axes),
with ar then plotted in the specified Axes instance.

	hist (bool) – if True, instead of plotting a 2D image in ax, plots a histogram of
the intensity values of ar, after any scaling this function has performed.
Plots the clipvals as dashed vertical lines

	n_bins (int) – number of hist bins

	mask (None or boolean array) – if not None, must have the same shape as ‘ar’.
Wherever mask==True, plot the pixel normally, and where mask==False,
pixel values are set to mask_color. If hist==True, ignore these values in the
histogram. If mask_alpha is specified, the mask is blended with the array
underneath, with 0 yielding an opaque mask and 1 yielding a fully transparent
mask. If mask_color is set to 'empty' instead of a matplotlib.color,
nothing is done to pixels where mask==False, allowing overlaying multiple
arrays in different regions of an image by invoking the ``figax` kwarg over
multiple calls to show

	mask_color (color) – see ‘mask’

	mask_alpha (float) – see ‘mask’

	masked_intensity_range (bool) – controls if masked pixel values are included when
determining the display value range; False indicates that all pixel values
will be used to determine the intensity range, True indicates only unmasked
pixels will be used

	scalebar (None or dict or Bool) – if None, and a DiffractionSlice or RealSlice
with calibrations is passed, adds a scalebar. If scalebar is not displaying the proper
calibration, check .calibration pixel_size and pixel_units. If None and an array is passed,
does not add a scalebar. If a dict is passed, it is propagated to the add_scalebar function
which will attempt to use it to overlay a scalebar. If True, uses calibraiton or pixelsize/pixelunits
for scalebar. If False, no scalebar is added.

	show_fft (bool) – if True, plots 2D-fft of array

	show_cbar (bool) – if True, adds cbar

	**kwargs – any keywords accepted by matplotlib’s ax.matshow()

	Returns:

	if returnfig==False (default), the figure is plotted and nothing is returned.
if returnfig==True, return the figure and the axis.

Utilities

	
py4DSTEM.check_config(verbose: bool = False, gratuitously_verbose: bool = False) → None

	This function checks the state of required imports to run py4DSTEM.

Default behaviour will provide a summary of install dependencies for each module e.g. Base, ACOM etc.

	Parameters:

	
	verbose (bool, optional) – Will provide the status of all possible requriements for py4DSTEM, and perform any additonal checks. Defaults to False.

	gratuitously_verbose (bool, optional) – Provides more indepth analysis. Defaults to False.

	Returns:

	None

	
py4DSTEM.join(a, *p)

	Join two or more pathname components, inserting ‘/’ as needed.
If any component is an absolute path, all previous path components
will be discarded. An empty last part will result in a path that
ends with a separator.

	
py4DSTEM.tqdmnd(*args, **kwargs)

	An N-dimensional extension of tqdm providing an iterator and
progress bar over the product of multiple iterators.

Example Usage:

>>> for x,y in tqdmnd(5,6):
>>> <expression>

is equivalent to

>>> for x in range(5):
>>> for y in range(6):
>>> <expression>

with a tqdmnd-style progress bar printed to standard output.

	Accepts:
	
	*args: Any number of integers or iterators. Each integer N
	is converted to a range(N) iterator. Then a loop is
constructed from the Cartesian product of all iterables.

	**kwargs: keyword arguments passed through directly to tqdm.
	Full details are available at https://tqdm.github.io
A few useful ones:

disable (bool): if True, hide the progress bar
keep (bool): if True, delete the progress bar after completion
unit (str): unit name for the display of iteration speed
unit_scale (bool): whether to scale the displayed units and add

SI prefixes

desc (str): message displayed in front of the progress bar

	Returns:

	At each iteration, a tuple of indices is returned, corresponding to the
values of each input iterator (in the same order as the inputs).

Classes

Table of Contents

	Classes

	Array

	BraggVectors

	Calibration

	Custom

	Data

	DataCube

	DiffractionSlice

	Metadata

	Node

	PointList

	PointListArray

	Probe

	QPoints

	RealSlice

	VirtualDiffraction

	VirtualImage

Array

	
class py4DSTEM.Array(data: ndarray, name: str | None = 'array', units: str | None = '', dims: list | None = None, dim_names: list | None = None, dim_units: list | None = None, slicelabels=None)

	A class which stores any N-dimensional array-like data, plus basic metadata:
a name and units, as well as calibrations for each axis of the array, and names
and units for those axis calibrations.

In the simplest usage, only a data array is passed:

>>> ar = Array(np.ones((20,20,256,256)))

will create an array instance whose data is the numpy array passed, and with
automatically populated dimension calibrations in units of pixels.

Additional arguments may be passed to populate the object metadata:

>>> ar = Array(
>>> np.ones((20,20,256,256)),
>>> name = 'test_array',
>>> units = 'intensity',
>>> dims = [
>>> [0,5],
>>> [0,5],
>>> [0,0.01],
>>> [0,0.01]
>>>],
>>> dim_units = [
>>> 'nm',
>>> 'nm',
>>> 'A^-1',
>>> 'A^-1'
>>>],
>>> dim_names = [
>>> 'rx',
>>> 'ry',
>>> 'qx',
>>> 'qy'
>>>],
>>>)

will create an array with a name and units for its data, where its first two
dimensions are in units of nanometers, have pixel sizes of 5nm, and are
described by the handles ‘rx’ and ‘ry’, and where its last two dimensions
are in units of inverse Angstroms, have pixels sizes of 0.01A^-1, and are
described by the handles ‘qx’ and ‘qy’.

Arrays in which the length of each pixel is non-constant are also
supported. For instance,

>>> x = np.logspace(0,1,100)
>>> y = np.sin(x)
>>> ar = Array(
>>> y,
>>> dims = [
>>> x
>>>]
>>>)

generates an array representing the values of the sine function sampled
100 times along a logarithmic interval from 1 to 10. In this example,
this data could then be plotted with, e.g.

>>> plt.scatter(ar.dims[0], ar.data)

If the slicelabels keyword is passed, the first N-1 dimensions of the
array are treated normally, while the final dimension is used to represent
distinct arrays which share a common shape and set of dim vectors. Thus

>>> ar = Array(
>>> np.ones((50,50,4)),
>>> name = 'test_array_stack',
>>> units = 'intensity',
>>> dims = [
>>> [0,2],
>>> [0,2]
>>>],
>>> dim_units = [
>>> 'nm',
>>> 'nm'
>>>],
>>> dim_names = [
>>> 'rx',
>>> 'ry'
>>>],
>>> slicelabels = [
>>> 'a',
>>> 'b',
>>> 'c',
>>> 'd'
>>>]
>>>)

will generate a single Array instance containing 4 arrays which each have
a shape (50,50) and a common set of dim vectors [‘rx’,’ry’], and which
can be indexed into with the names assigned in slicelabels using

>>> ar.get_slice('a')

which will return a 2D (non-stack-like) Array instance with shape (50,50)
and the dims assigned above. The Array attribute .rank is equal to the
number of dimensions for a non-stack-like Array, and is equal to N-1
for stack-like arrays.

	
__init__(data: ndarray, name: str | None = 'array', units: str | None = '', dims: list | None = None, dim_names: list | None = None, dim_units: list | None = None, slicelabels=None)

	
	Accepts:
	data (np.ndarray): the data
name (str): the name of the Array
units (str): units for the pixel values
dims (variable): calibration vectors for each of the axes of the data

array. Valid values for each element of the list are None,
a number, a 2-element list/array, or an M-element list/array
where M is the data array. If None is passed, the dim will be
populated with integer values starting at 0 and its units will
be set to pixels. If a number is passed, the dim is populated
with a vector beginning at zero and increasing linearly by this
step size. If a 2-element list/array is passed, the dim is
populated with a linear vector with these two numbers as the first
two elements. If a list/array of length M is passed, this is used
as the dim vector, (and must therefore match this dimension’s
length). If dims recieves a list of fewer than N arguments for an
N-dimensional data array, the extra dimensions are populated as if
None were passed, using integer pixel values. If the dims
parameter is not passed, all dim vectors are populated this way.

	dim_units (list): the units for the calibration dim vectors. If
	nothing is passed, dims vectors which have been populated
automatically with integers corresponding to pixel numbers
will be assigned units of ‘pixels’, and any other dim vectors
will be assigned units of ‘unknown’. If a list with length <
the array dimensions, the passed values are assumed to apply
to the first N dimensions, and the remaining values are
populated with ‘pixels’ or ‘unknown’ as above.

	dim_names (list): labels for each axis of the data array. Values
	which are not passed, following the same logic as described
above, will be autopopulated with the name “dim#” where #
is the axis number.

	slicelabels (None or True or list): if not None, must be True or a
	list of strings, indicating a “stack-like” array. In this case,
the first N-1 dimensions of the array are treated normally, in
the sense of populating dims, dim_names, and dim_units, while the
final dimension is treated distinctly: it indexes into
distinct arrays which share a set of dimension attributes, and
can be sliced into using the string labels from the slicelabels
list, with the syntax array[‘label’] or array.get_slice(‘label’).
If slicelabels is True or is a list with length less than the
final dimension length, unassigned dimensions are autopopulated
with labels array{i}. The flag array.is_stack is set to True
and the array.rank attribute is set to N-1.

	Returns:

	A new Array instance

	
get_dim(n)

	Return the n’th dim vector

	
dim(n)

	Return the n’th dim vector

	
set_dim(n: int, dim: list | ndarray, units: str | None = None, name: str | None = None)

	Sets the n’th dim vector, using dim as described in the Array
documentation. If units and/or name are passed, sets these
values for the n’th dim vector.

	Accepts:
	n (int): specifies which dim vector
dim (list or array): length must be either 2, or equal to the

length of the n’th axis of the data array

units (Optional, str):
name: (Optional, str):

	
get_dim_units(n)

	Return the n’th dim vector units

	
set_dim_units(n: int, units: str)

	Sets the n’th dim vector units to units.

	Accepts:
	n (int): specifies which dim vector
units (str): new units

	
get_dim_name(n)

	Get the n’th dim vector name

	
set_dim_name(n: int, name: str)

	Sets the n’th dim vector name to name.

	Accepts:
	n (int): specifies which dim vector
name (str): new name

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this Array, tags indicating its EMD type and Python class,
and the array’s data and metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new array’s Group

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

BraggVectors

	
class py4DSTEM.BraggVectors(Rshape, Qshape, name='braggvectors', verbose=False, calibration=None)

	Stores localized bragg scattering positions and intensities
for a 4D-STEM datacube.

Raw (detector coordinate) vectors are accessible as

>>> braggvectors.raw[scan_x, scan_y]

and calibrated vectors as

>>> braggvectors.cal[scan_x, scan_y]

To set which calibrations are being applied, call

>>> braggvectors.setcal(
>>> center = bool,
>>> ellipse = bool,
>>> pixel = bool,
>>> rotate = bool
>>>)

If .setcal is not called, calibrations will be automatically selected based
based on the contents of the instance’s calibrations property. The
calibrations performed in the last call to braggvectors.cal are exposed as

>>> braggvectors.calstate

After grabbing some vectors

>>> vects = braggvectors.raw[scan_x,scan_y]

the values themselves are accessible as

>>> vects.qx,vects.qy,vects.I
>>> vects['qx'],vects['qy'],vects['intensity']

Alternatively, you can access the centered vectors in pixel units with

>>> vects.get_vectors(
>>> scan_x,
>>> scan_y,
>>> center = bool,
>>> ellipse = bool,
>>> pixel = bool,
>>> rotate = bool
>>>)

which will return the vectors at scan position (scan_x,scan_y) with the
requested calibrations applied.

	
__init__(Rshape, Qshape, name='braggvectors', verbose=False, calibration=None)

	

	
set_raw_vectors(x)

	Given some PointListArray x of the correct shape, sets this to the raw vectors

	
property raw

	Calling

>>> raw[scan_x, scan_y]

returns those bragg vectors.

	
property cal

	Calling

>>> cal[scan_x, scan_y]

retrieves data. Use .setcal to set the calibrations to be applied, or
.calstate to see which calibrations are currently set. Calibrations
are initially all set to False. Call .setcal() (with no arguments)
to automatically detect which calibrations are present and apply those.

	
setcal(center=None, ellipse=None, pixel=None, rotate=None)

	Calling

>>> braggvectors.setcal(
>>> center = bool,
>>> ellipse = bool,
>>> pixel = bool,
>>> rotate = bool,
>>>)

sets the calibrations that will be applied to vectors subsequently
retrieved with

>>> braggvectors.cal[scan_x, scan_y]

Any arguments left as None will be automatically set based on
the calibration measurements available.

	
calibrate()

	Autoupdate the calstate when relevant calibrations are set

	
get_vectors(scan_x, scan_y, center, ellipse, pixel, rotate)

	Returns the bragg vectors at the specified scan position with
the specified calibration state.

	Parameters:

	
	scan_x (int) –

	scan_y (int) –

	center (bool) –

	ellipse (bool) –

	pixel (bool) –

	rotate (bool) –

	Returns:

	vectors

	Return type:

	BVects

	
to_h5(group)

	Constructs the group, adds the bragg vector pointlists,
and adds metadata describing the shape

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
attach(node)

	Attach node to the current object’s tree, attaching calibration and detaching
calibrations as needed.

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
fit_origin(mask=None, fitfunction='plane', robust=False, robust_steps=3, robust_thresh=2, mask_check_data=True, plot=True, plot_range=None, cmap='RdBu_r', returncalc=True, **kwargs)

	Fit origin of bragg vectors.

	Parameters:

	
	mask (2b boolean array, optional) – ignore points where mask=True

	fitfunction (str, optional) – must be ‘plane’ or ‘parabola’ or ‘bezier_two’

	robust (bool, optional) – If set to True, fit will be repeated with outliers
removed.

	robust_steps (int, optional) – Optional parameter. Number of robust iterations
performed after initial fit.

	robust_thresh (int, optional) – Threshold for including points, in units of
root-mean-square (standard deviations) error of the predicted values after
fitting.

	mask_check_data (bool) – Get mask from origin measurements equal to zero. (TODO - replace)

	plot (bool, optional) – plot results

	plot_range (float) – min and max color range for plot (pixels)

	cmap (colormap) – plotting colormap

	Returns:

	Return value depends on returnfitp. If returnfitp==False
(default), returns a 4-tuple containing:

	qx0_fit: (ndarray) the fit origin x-position

	qy0_fit: (ndarray) the fit origin y-position

	qx0_residuals: (ndarray) the x-position fit residuals

	qy0_residuals: (ndarray) the y-position fit residuals

	Return type:

	(variable)

	
fit_p_ellipse(bvm, center, fitradii, mask=None, returncalc=False, **kwargs)

	
	Parameters:

	
	bvm (BraggVectorMap) – a 2D array used for ellipse fitting

	center (2-tuple of floats) – the center (x0,y0) of the annular fitting region

	fitradii (2-tuple of floats) – inner and outer radii (ri,ro) of the fit region

	mask (ar-shaped ndarray of bools) – ignore data wherever mask==True

	Returns:

	p_ellipse if returncal is True

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
get_bragg_vector_map(mode='cal', sampling=1, weights=None, weights_thresh=0.005)

	Returns a 2D histogram of Bragg vector intensities in diffraction space,
aka a Bragg vector map.

	Parameters:

	
	mode (str) – Must be ‘cal’ or ‘raw’. Use the calibrated or raw vector positions.

	sampling (number) – The sampling rate of the histogram, in units of the camera’s sampling.
sampling = 2 upsamples and sampling = 0.5 downsamples, each by a
factor of 2.

	weights (None or array) – If None, use all real space scan positions. Otherwise must be a real
space shaped array representing a weighting factor applied to vector
intensities from each scan position. If weights is boolean uses beam
positions where weights is True. If weights is number-like, scales
by the values, and skips positions where wieghts<weights_thresh.

	weights_thresh (number) – If weights is an array of numbers, pixels where weights>weight_thresh
are skipped.

	Returns:

	An Array with .data representing the data, and .dim[0] and .dim[1]
representing the sampling grid.

	Return type:

	BraggVectorHistogram

	
get_bvm(mode='cal', sampling=1, weights=None, weights_thresh=0.005)

	Returns a 2D histogram of Bragg vector intensities in diffraction space,
aka a Bragg vector map.

	Parameters:

	
	mode (str) – Must be ‘cal’ or ‘raw’. Use the calibrated or raw vector positions.

	sampling (number) – The sampling rate of the histogram, in units of the camera’s sampling.
sampling = 2 upsamples and sampling = 0.5 downsamples, each by a
factor of 2.

	weights (None or array) – If None, use all real space scan positions. Otherwise must be a real
space shaped array representing a weighting factor applied to vector
intensities from each scan position. If weights is boolean uses beam
positions where weights is True. If weights is number-like, scales
by the values, and skips positions where wieghts<weights_thresh.

	weights_thresh (number) – If weights is an array of numbers, pixels where weights>weight_thresh
are skipped.

	Returns:

	An Array with .data representing the data, and .dim[0] and .dim[1]
representing the sampling grid.

	Return type:

	BraggVectorHistogram

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
get_masked_peaks(mask, update_inplace=False, returncalc=True)

	Alias for mask_in_Q.

	
get_virtual_image(mode=None, geometry=None, name='bragg_virtual_image', returncalc=True, center=True, ellipse=True, pixel=True, rotate=True)

	Calculates a virtual image based on the values of the Braggvectors
integrated over some detector function determined by mode and
geometry.

	Parameters:

	
	mode (str) –
	defines the type of detector used. Options:
	
	’circular’, ‘circle’: uses round detector, like bright field

	’annular’, ‘annulus’: uses annular detector, like dark field

	geometry (variable) –
	expected value depends on the value of mode, as follows:
	

	’circle’, ‘circular’: nested 2-tuple, ((qx,qy),radius)

	’annular’ or ‘annulus’: nested 2-tuple,
((qx,qy),(radius_i,radius_o))

Values can be in pixels or calibrated units. Note that (qx,qy)
can be skipped, which assumes peaks centered at (0,0).

	center (bool) – Apply calibration - center coordinate.

	ellipse (bool) – Apply calibration - elliptical correction.

	pixel (bool) – Apply calibration - pixel size.

	rotate (bool) – Apply calibration - QR rotation.

	Returns:

	virtual_im

	Return type:

	VirtualImage

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
histogram(mode='cal', sampling=1, weights=None, weights_thresh=0.005)

	Returns a 2D histogram of Bragg vector intensities in diffraction space,
aka a Bragg vector map.

	Parameters:

	
	mode (str) – Must be ‘cal’ or ‘raw’. Use the calibrated or raw vector positions.

	sampling (number) – The sampling rate of the histogram, in units of the camera’s sampling.
sampling = 2 upsamples and sampling = 0.5 downsamples, each by a
factor of 2.

	weights (None or array) – If None, use all real space scan positions. Otherwise must be a real
space shaped array representing a weighting factor applied to vector
intensities from each scan position. If weights is boolean uses beam
positions where weights is True. If weights is number-like, scales
by the values, and skips positions where wieghts<weights_thresh.

	weights_thresh (number) – If weights is an array of numbers, pixels where weights>weight_thresh
are skipped.

	Returns:

	An Array with .data representing the data, and .dim[0] and .dim[1]
representing the sampling grid.

	Return type:

	BraggVectorHistogram

	
mask_in_Q(mask, update_inplace=False, returncalc=True)

	Remove peaks which fall inside the diffraction shaped boolean array
mask, in raw (uncalibrated) peak positions.

	Parameters:

	
	mask (2d boolean array) – The mask. Must be diffraction space shaped

	update_inplace (bool) – If False (default) copies this BraggVectors instance and
removes peaks from the copied instance. If True, removes
peaks from this instance.

	returncalc (bool) – Toggles returning the answer

	Returns:

	bvects

	Return type:

	BraggVectors

	
mask_in_R(mask, update_inplace=False, returncalc=True)

	Remove peaks which fall inside the real space shaped boolean array
mask.

	Parameters:

	
	mask (2d boolean array) – The mask. Must be real space shaped

	update_inplace (bool) – If False (default) copies this BraggVectors instance and
removes peaks from the copied instance. If True, removes
peaks from this instance.

	returncalc (bool) – Toggles returning the answer

	Returns:

	bvects

	Return type:

	BraggVectors

	
measure_origin(center_guess=None, score_method=None, findcenter='max')

	Finds the diffraction shifts of the center beam using the raw Bragg
vector measurements.

If a center guess is not specified, first, a guess at the unscattered
beam position is determined, either by taking the CoM of the Bragg vector
map, or by taking its maximal pixel. Once a unscattered beam position is
determined, the Bragg peak closest to this position is identified. The
shifts in these peaks positions from their average are returned as the
diffraction shifts.

	Parameters:

	
	center_guess (2-tuple) – initial guess for the center

	score_method (str) –
	Method used to find center peak
	
	’intensity’: finds the most intense Bragg peak near the center

	’distance’: finds the closest Bragg peak to the center

	’intensity weighted distance’: determines center through a
combination of weighting distance and intensity

	(str) (findcenter) – position options: ‘CoM’, or ‘max.’ Only used if center_guess is None.
CoM finds the center of mass of bragg ector map, ‘max’ uses its
brightest pixel.

	Returns – (3-tuple): A 3-tuple comprised of:

	qx0 ((R_Nx,R_Ny)-shaped array): the origin x-coord

	qy0 ((R_Nx,R_Ny)-shaped array): the origin y-coord

	braggvectormap ((R_Nx,R_Ny)-shaped array): the Bragg vector map of only
the Bragg peaks identified with the unscattered beam. Useful for diagnostic
purposes.

	
measure_origin_beamstop(center_guess, radii, max_dist=None, max_iter=1, **kwargs)

	Find the origin from a set of braggpeaks assuming there is a beamstop, by identifying
pairs of conjugate peaks inside an annular region and finding their centers of mass.

	Parameters:

	
	center_guess (2-tuple) – qx0,qy0

	radii (2-tuple) – the inner and outer radii of the specified annular region

	max_dist (number) – the maximum allowed distance between the reflection of two
peaks to consider them conjugate pairs

	max_iter (integer) – for values >1, repeats the algorithm after updating center_guess

	Returns:

	the origins

	Return type:

	(2d masked array)

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
to_strainmap(name: str | None = None)

	Generate a StrainMap object from the BraggVectors
equivalent to py4DSTEM.StrainMap(braggvectors=braggvectors)

	Parameters:

	name (str, optional) – The name of the strainmap. Defaults to None which reverts to default name ‘strainmap’.

	Returns:

	A py4DSTEM StrainMap object generated from the BraggVectors

	Return type:

	py4DSTEM.StrainMap

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

Calibration

	
class py4DSTEM.Calibration(name: str | None = 'calibration', root: Root | None = None)

	Stores calibration measurements.

Usage

For some calibration instance c

>>> c['x'] = y

will set the value of some calibration item called ‘x’ to y, and

>>> _y = c['x']

will return the value currently stored as ‘x’ and assign it to _y.
Additionally, for calibration items in the list l given below,
the syntax

>>> c.set_p(p)
>>> p = c.get_p()

is equivalent to

>>> c.p = p
>>> p = c.p

is equivalent to

>>> c['p'] = p
>>> p = c['p']

where in the first line of each couplet the parameter p is set and in
the second it’s retrieved, for parameters p in the list

	l = [
	Q_pixel_size, *
R_pixel_size, *
Q_pixel_units, *
R_pixel_units, *
qx0,
qy0,
qx0_mean,
qy0_mean,
qx0shift,
qy0shift,
origin, *
origin_meas,
origin_meas_mask,
origin_shift,
a, *
b, *
theta, *
p_ellipse, *
ellipse, *
QR_rotation_degrees, *
QR_flip, *
QR_rotflip, *
probe_semiangle,
probe_param,
probe_center,
probe_convergence_semiangle_pixels,
probe_convergence_semiangle_mrad,

]

There are two advantages to using the getter/setter syntax for parameters
in l (e.g. either c.set_p or c.p) instead of the normal dictionary-like
getter/setter syntax (i.e. c[‘p’]). These are (1) enabling retrieving
parameters by beam scan position, and (2) enabling propagation of any
calibration changes to downstream data objects which are affected by the
altered calibrations. See below.

Get a parameter by beam scan position

Some parameters support retrieval by beam scan position. In these cases,
calling

>>> c.get_p(rx,ry)

will return the value of parameter p at beam position (rx,ry). This works
only for the above syntax. Using either of

>>> c.p
>>> c['p']

will return an R-space shaped array.

Trigger downstream calibrations

Some objects store their own internal calibration state, which depends on
the calibrations stored here. For example, a DataCube stores dimension
vectors which calibrate its 4 dimensions, and which depend on the pixel
sizes and the origin position.

Modifying certain parameters therefore can trigger other objects which
depend on these parameters to re-calibrate themselves by calling their
.calibrate() method, if the object has one. Methods marked with a * in the
list l above have this property. Only objects registered with the
Calibration instance will have their .calibrate method triggered by changing
these parameters. An object data can be registered by calling

>>> c.register_target(data)

and deregistered with

>>> c.deregister_target(data)

If an object without a .calibrate method is registerd when a * method is
called, nothing happens.

The .calibrate methods are triggered by setting some parameter p using
either

>>> c.set_p(val)

or

>>> c.p = val

syntax. Setting the parameter with

>>> c['p'] = val

will not trigger re-calibrations.

Calibration + Data

Data in py4DSTEM is stored in filetree like representations, and
Calibration instances are the top-level objects in these trees,
in that they live here:

	Root
	|–metadata
| |– *—> calibration <—*
|
|–some_object(e.g.datacube)
| |–another_object(e.g.max_dp)
| |–etc.
|–etc.
:

Every py4DSTEM Data object has a tree with a calibration, and calling

>>> data.calibration

will return the that Calibration instance. See also the docstring
for the Data class.

Attaching an object to a different Calibration

To modify the calibration associated with some object data, use

>>> c.attach(data)

where c is the new calibration instance. This (1) moves data into the
top level of c’s data tree, which means the new calibration will now be
accessible normally at

>>> data.calibration

and (2) if and only if data was registered with its old calibration,
de-registers it there and registers it with the new calibration. If
data was not registered with the old calibration and it should be
registered with the new one, c.register_target(data) should be
called.

To attach data to a different location in the calibration instance’s
tree, use node.attach(data). See the Data.attach docstring.

	
__init__(name: str | None = 'calibration', root: Root | None = None)

	
	Parameters:

	name (optional, str) –

	
attach(data)

	Attach data to this calibration instance, placing it in the top
level of the Calibration instance’s tree. If data was in a
different data tree, remove it. If data was registered with
a different calibration instance, de-register it there and
register it here. If data was not previously registerd and it
should be, after attaching it run self.register_target(data).

	
register_target(new_target)

	Register an object to recieve calls to it calibrate
method when certain calibrations get updated

	
unregister_target(target)

	Unlink an object from recieving calls to calibrate when
certain calibration values are changed

	
set_origin_meas(x)

	
	Parameters:

	x (2-tuple or 3 uple of 2D R-shaped arrays) – qx0,qy0,[mask]

	
set_probe_param(x)

	
	Parameters:

	x (3-tuple) – (probe size, x0, y0)

	
to_h5(group)

	Saves the metadata dictionary _params to group, then adds the
calibration’s target’s list

	
classmethod from_h5(group)

	Takes a valid group for an HDF5 file object which is open in
read mode. Determines if it’s a valid Metadata representation, and
if so loads and returns it as a Calibration instance. Otherwise,
raises an exception.

	Accepts:
	group (HDF5 group)

	Returns:

	A Calibration instance

Custom

	
class py4DSTEM.Custom(name='custom')

	
	
__init__(name='custom')

	

	
to_h5(group)

	Constructs an h5 group, adds metadata, and adds all attributes
which point to EMD nodes.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new node’s Group

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

Data

	
class py4DSTEM.Data(calibration=None)

	The purpose of the Data class is to ensure calibrations are linked
to data containing class instances, while allowing multiple objects
to share a single Calibration. The calibrations of a Data instance
data is accessible as

>>> data.calibration

In py4DSTEM, Data containing objects are stored internally in filetree
like representations, defined by the EMD1.0 and emdfile specifications,
e.g.

	Root
	|–metadata
| |–calibration
|
|–some_object(e.g.datacube)
| |–another_object(e.g.max_dp)
| |–etc.
|
|–one_more_object(e.g.crystal)
| |–etc.
:

Calibrations are metadata which always live in the root of such a tree.
Running data.calibration returns the calibrations from the tree root,
and therefore the same calibration instance is referred to be all objects
in the same tree. The root itself is accessible from any Data instance
as

>>> data.root

To examine the tree of a Data instance, in a Python interpreter do

>>> data.tree(True)

to display the whole data tree, and

>>> data.tree()

to display the tree of from the current node on, i.e. the branch
downstream of data.

Calling

>>> data.calibration

will raise a warning and return None if no root calibrations are found.

Some objects should be modified when the calibrations change - these
objects must have .calibrate() method, which is called any time relevant
calibration parameters change if the object has been registered with
the calibrations.

To transfer data from it’s current tree to another existing tree, use

>>> data.attach(some_other_data)

which will move the data to the new tree. If the data was registered with
it’s old calibrations, this will also de-register it there and register
it with the new calibrations such that .calibrate() is called when it
should be.

See also the Calibration docstring.

	
__init__(calibration=None)

	

	
attach(node)

	Attach node to the current object’s tree, attaching calibration and detaching
calibrations as needed.

DataCube

	
class py4DSTEM.DataCube(data: ndarray, name: str | None = 'datacube', slicelabels: bool | list | None = None, calibration: Calibration | None = None)

	Storage and processing methods for 4D-STEM datasets.

	
__init__(data: ndarray, name: str | None = 'datacube', slicelabels: bool | list | None = None, calibration: Calibration | None = None)

	
	Accepts:
	data (np.ndarray): the data
name (str): the name of the datacube
calibration (None or Calibration or ‘pass’): default (None)

creates and attaches a new Calibration instance to root
metadata, or, passing a Calibration instance uses this instead.

	slicelabels (None or list): names for slices if this is a
	stack of datacubes

	Returns:

	A new DataCube instance.

	
calibrate()

	Calibrate the coordinate axes of the datacube. Using the calibrations
at self.calibration, sets the 4 dim vectors (Qx,Qy,Rx,Ry) according
to the pixel size, units and origin positions, then updates the
meshgrids representing Q and R space.

	
copy()

	Copys datacube

	
add(data, name='')

	Adds a block of data to the DataCube’s tree. If data is an instance of
an EMD/py4DSTEM class, add it to the tree. If it’s a numpy array,
turn it into an Array instance, then save to the tree.

	
set_scan_shape(Rshape)

	Reshape the data given the real space scan shape.

	Accepts:
	Rshape (2-tuple)

	
swap_RQ()

	Swaps the first and last two dimensions of the 4D datacube.

	
swap_Rxy()

	Swaps the real space x and y coordinates.

	
swap_Qxy()

	Swaps the diffraction space x and y coordinates.

	
crop_Q(ROI)

	Crops the data in diffraction space about the region specified by ROI.

	Accepts:
	ROI (4-tuple): Specifies (Qx_min,Qx_max,Qy_min,Qy_max)

	
crop_R(ROI)

	Crops the data in real space about the region specified by ROI.

	Accepts:
	ROI (4-tuple): Specifies (Rx_min,Rx_max,Ry_min,Ry_max)

	
bin_Q(N, dtype=None)

	Bins the data in diffraction space by bin factor N

	Parameters:

	
	N (int) – The binning factor

	dtype (a datatype (optional)) – Specify the datatype for the output. If not passed, the datatype
is left unchanged

	Returns:

	datacube

	Return type:

	DataCube

	
pad_Q(N=None, output_size=None)

	Pads the data in diffraction space by pad factor N, or to match output_size.

	Accepts:
	N (float, or Sequence[float]): the padding factor
output_size ((int,int)): the padded output size

	
resample_Q(N=None, output_size=None, method='bilinear')

	Resamples the data in diffraction space by resampling factor N, or to match output_size,
using either ‘fourier’ or ‘bilinear’ interpolation.

	Accepts:
	N (float, or Sequence[float]): the resampling factor
output_size ((int,int)): the resampled output size
method (str): ‘fourier’ or ‘bilinear’ (default)

	
bin_Q_mmap(N, dtype=<class 'numpy.float32'>)

	Bins the data in diffraction space by bin factor N for memory mapped data

	Accepts:
	N (int): the binning factor
dtype: the data type

	
bin_R(N)

	Bins the data in real space by bin factor N

	Accepts:
	N (int): the binning factor

	
thin_R(N)

	Reduces the data in real space by skipping every N patterns in the x and y directions.

	Accepts:
	N (int): the thinning factor

	
filter_hot_pixels(thresh, ind_compare=1, return_mask=False)

	This function performs pixel filtering to remove hot / bright pixels. We first compute a moving local ordering filter,
applied to the mean diffraction image. This ordering filter will return a single value from the local sorted intensity
values, given by ind_compare. ind_compare=0 would be the highest intensity, =1 would be the second hightest, etc.
Next, a mask is generated for all pixels which are least a value thresh higher than the local ordering filter output.
Finally, we loop through all diffraction images, and any pixels defined by mask are replaced by their 3x3 local median.

	Parameters:

	
	datacube (DataCube) –

	thresh (float) – threshold for replacing hot pixels, if pixel value minus local ordering filter exceeds it.

	ind_compare (int) – which median filter value to compare against. 0 = brightest pixel, 1 = next brightest, etc.

	return_mask (bool) – if True, returns the filter mask

	Returns:

	datacube (DataCube)
mask (optional, boolean Array) the bad pixel mask

	
get_vacuum_probe(ROI=None, align=True, mask=None, threshold=0.2, expansion=12, opening=3, verbose=False, returncalc=True)

	Computes a vacuum probe.

Which diffraction patterns are included in the calculation is specified
by the ROI parameter. Diffraction patterns are aligned before averaging
if align is True (default). A global mask is applied to each diffraction
pattern before aligning/averaging if mask is specified. After averaging,
a final masking step is applied according to the parameters threshold,
expansion, and opening.

	Parameters:

	
	ROI (optional, boolean array or len 4 list/tuple) – If unspecified, uses the whole datacube. If a boolean array is
passed must be real-space shaped, and True pixels are used. If a
4-tuple is passed, uses the region inside the limits
(rx_min,rx_max,ry_min,ry_max)

	align (optional, bool) – if True, aligns the probes before averaging

	mask (optional, array) – mask applied to each diffraction pattern before alignment and
averaging

	threshold (float) – in the final masking step, values less than max(probe)*threshold
are considered outside the probe

	expansion (int) – number of pixels by which the final mask is expanded after
thresholding

	opening (int) – size of binary opening applied to the final mask to eliminate stray
bright pixels

	verbose (bool) – toggles verbose output

	returncalc (bool) – if True, returns the answer

	Returns:

	probe – the vacuum probe

	Return type:

	Probe, optional

	
get_probe_size(dp=None, thresh_lower=0.01, thresh_upper=0.99, N=100, plot=False, returncal=True, write_to_cal=True, **kwargs)

	Gets the center and radius of the probe in the diffraction plane.

The algorithm is as follows:
First, create a series of N binary masks, by thresholding the diffraction
pattern DP with a linspace of N thresholds from thresh_lower to
thresh_upper, measured relative to the maximum intensity in DP.
Using the area of each binary mask, calculate the radius r of a circular
probe. Because the central disk is typically very intense relative to
the rest of the DP, r should change very little over a wide range of
intermediate values of the threshold. The range in which r is trustworthy
is found by taking the derivative of r(thresh) and finding identifying
where it is small. The radius is taken to be the mean of these r values.
Using the threshold corresponding to this r, a mask is created and the
CoM of the DP times this mask it taken. This is taken to be the origin
x0,y0.

	Parameters:

	
	dp (str or array) – specifies the diffraction pattern in which to
find the central disk. A position averaged, or shift-corrected
and averaged, DP works best. If mode is None, the diffraction
pattern stored in the tree from ‘get_dp_mean’ is used. If mode
is a string it specifies the name of another virtual diffraction
pattern in the tree. If mode is an array, the array is used to
calculate probe size.

	thresh_lower (float, 0 to 1) – the lower limit of threshold values

	thresh_upper (float, 0 to 1) – the upper limit of threshold values

	N (int) – the number of thresholds / masks to use

	plot (bool) – if True plots results

	plot_params (dict) – dictionary to modify defaults in plot

	return_calc (bool) – if True returns 3-tuple described below

	write_to_cal (bool) – if True, looks for a Calibration instance
and writes the measured probe radius there

	Returns:

	A 3-tuple containing:

	r: (float) the central disk radius, in pixels

	x0: (float) the x position of the central disk center

	y0: (float) the y position of the central disk center

	Return type:

	(3-tuple)

	
find_Bragg_disks(template, data=None, radial_bksb=False, filter_function=None, corrPower=1, sigma=None, sigma_dp=0, sigma_cc=2, subpixel='multicorr', upsample_factor=16, minAbsoluteIntensity=0, minRelativeIntensity=0.005, relativeToPeak=0, minPeakSpacing=60, edgeBoundary=20, maxNumPeaks=70, CUDA=False, CUDA_batched=True, distributed=None, ML=False, ml_model_path=None, ml_num_attempts=1, ml_batch_size=8, name='braggvectors', returncalc=True)

	Finds the Bragg disks in the diffraction patterns represented by data by
cross/phase correlatin with template.

Behavior depends on data. If it is None (default), runs on the whole DataCube,
and stores the output in its tree. Otherwise, nothing is stored in tree,
but some value is returned. Valid entries are:

	
	a 2-tuple of numbers (rx,ry): run on this diffraction image,
	and return a QPoints instance

	
	a 2-tuple of arrays (rx,ry): run on these diffraction images,
	and return a list of QPoints instances

	
	an Rspace shapped 2D boolean array: run on the diffraction images
	specified by the True counts and return a list of QPoints
instances

For disk detection on a full DataCube, the calculation can be performed
on the CPU, GPU or a cluster. By default the CPU is used. If CUDA is set
to True, tries to use the GPU. If CUDA_batched is also set to True,
batches the FFT/IFFT computations on the GPU. For distribution to a cluster,
distributed must be set to a dictionary, with contents describing how
distributed processing should be performed - see below for details.

For each diffraction pattern, the algorithm works in 4 steps:

	any pre-processing is performed to the diffraction image. This is
accomplished by passing a callable function to the argument
filter_function, a bool to the argument radial_bksb, or a value >0
to sigma_dp. If none of these are passed, this step is skipped.

	the diffraction image is cross correlated with the template.
Phase/hybrid correlations can be used instead by setting the
corrPower argument. Cross correlation can be skipped entirely,
and the subsequent steps performed directly on the diffraction
image instead of the cross correlation, by passing None to
template.

	the maxima of the cross correlation are located and their
positions and intensities stored. The cross correlation may be
passed through a gaussian filter first by passing the sigma_cc
argument. The method for maximum detection can be set with
the subpixel parameter. Options, from something like fastest/least
precise to slowest/most precise are ‘pixel’, ‘poly’, and ‘multicorr’.

	filtering is applied to remove untrusted or undesired positive counts,
based on their intensity (minRelativeIntensity,`relativeToPeak`,
minAbsoluteIntensity) their proximity to one another or the
image edge (minPeakSpacing, edgeBoundary), and the total
number of peaks per pattern (maxNumPeaks).

	Parameters:

	
	template (2D array) – the vacuum probe template, in real space. For Probe instances,
this is probe.kernel. If None, does not perform a cross
correlation.

	data (variable) – see above

	radial_bksb (bool) – if True, computes a radial background given by the median of the
(circular) polar transform of each each diffraction pattern, and
subtracts this background from the pattern before applying any
filter function and computing the cross correlation. The origin
position must be set in the datacube’s calibrations. Currently
only supported for full datacubes on the CPU.

	filter_function (callable) – filtering function to apply to each diffraction pattern before
peak finding. Must be a function of only one argument (the
diffraction pattern) and return the filtered diffraction pattern.
The shape of the returned DP must match the shape of the probe
kernel (but does not need to match the shape of the input
diffraction pattern, e.g. the filter can be used to bin the
diffraction pattern). If using distributed disk detection, the
function must be able to be pickled with by dill.

	corrPower (float between 0 and 1, inclusive) – the cross correlation power. A value of 1 corresponds to a cross
correlation, 0 corresponds to a phase correlation, and intermediate
values correspond to hybrid correlations.

	sigma (float) – alias for sigma_cc

	sigma_dp (float) – if >0, a gaussian smoothing filter with this standard deviation
is applied to the diffraction pattern before maxima are detected

	sigma_cc (float) – if >0, a gaussian smoothing filter with this standard deviation
is applied to the cross correlation before maxima are detected

	subpixel (str) – Whether to use subpixel fitting, and which algorithm to use.
Must be in (‘none’,’poly’,’multicorr’).

	’none’: performs no subpixel fitting

	’poly’: polynomial interpolation of correlogram peaks (default)

	’multicorr’: uses the multicorr algorithm with DFT upsampling

	upsample_factor (int) – upsampling factor for subpixel fitting (only used when
subpixel=’multicorr’)

	minAbsoluteIntensity (float) – the minimum acceptable correlation peak intensity, on an absolute scale

	minRelativeIntensity (float) – the minimum acceptable correlation peak intensity, relative to the
intensity of the brightest peak

	relativeToPeak (int) – specifies the peak against which the minimum relative intensity is
measured – 0=brightest maximum. 1=next brightest, etc.

	minPeakSpacing (float) – the minimum acceptable spacing between detected peaks

	(int) (edgeBoundary) – the diffraction image edge, in pixels.

	maxNumPeaks (int) – the maximum number of peaks to return

	CUDA (bool) – If True, import cupy and use an NVIDIA GPU to perform disk detection

	CUDA_batched (bool) – If True, and CUDA is selected, the FFT and IFFT steps of disk detection
are performed in batches to better utilize GPU resources.

	distributed (dict) – contains information for parallel processing using an IPyParallel or
Dask distributed cluster. Valid keys are:

	ipyparallel (dict):

	
	client_file (str): path to client json for connecting to your
	existing IPyParallel cluster

	
	dask (dict): client (object): a dask client that connects to
	your existing Dask cluster

	
	data_file (str): the absolute path to your original data
	file containing the datacube

	
	cluster_path (str): defaults to the working directory during
	processing

if distributed is None, which is the default, processing will be in
serial

	name (str) – name for the output BraggVectors

	returncalc (bool) – if True, returns the answer

	Returns:

	See above.

	Return type:

	variable

	
get_beamstop_mask(threshold=0.25, distance_edge=2.0, include_edges=True, sigma=0, use_max_dp=False, scale_radial=None, name='mask_beamstop', returncalc=True)

	This function uses the mean diffraction pattern plus a threshold to
create a beamstop mask.

	Parameters:

	
	threshold (float) – Value from 0 to 1 defining initial threshold for
beamstop mask, taken from the sorted intensity values - 0 is the
dimmest pixel, while 1 uses the brighted pixels.

	distance_edge (float) – How many pixels to expand the mask.

	include_edges (bool) – If set to True, edge pixels will be included
in the mask.

	sigma (float) – Gaussain blur std to apply to image before thresholding.

	use_max_dp (bool) – Use the max DP instead of the mean DP.

	scale_radial (float) – Scale from center of image by this factor (can help with edge)

	name (string) – Name of the output array.

	returncalc (bool) – Set to true to return the result.

	Returns:

	if returncalc is True, returns the beamstop mask

	Return type:

	(Optional)

	
get_radial_bkgrnd(rx, ry, sigma=2)

	Computes and returns a background image for the diffraction
pattern at (rx,ry), populated by radial rings of constant intensity
about the origin, with the value of each ring given by the median
value of the diffraction pattern at that radial distance.

	Parameters:

	
	rx (int) – The x-coord of the beam position

	ry (int) – The y-coord of the beam position

	sigma (number) – If >0, applying a gaussian smoothing in the radial direction
before returning

	Returns:

	background – The radial background

	Return type:

	ndarray

	
get_radial_bksb_dp(rx, ry, sigma=2)

	Computes and returns the diffraction pattern at beam position (rx,ry)
with a radial background subtracted. See the docstring for
datacube.get_radial_background for more info.

	Parameters:

	
	rx (int) – The x-coord of the beam position

	ry (int) – The y-coord of the beam position

	sigma (number) – If >0, applying a gaussian smoothing in the radial direction
before returning

	Returns:

	data – The radial background subtracted diffraction image

	Return type:

	ndarray

	
get_local_ave_dp(rx, ry, radial_bksb=False, sigma=2, braggmask=False, braggvectors=None, braggmask_radius=None)

	Computes and returns the diffraction pattern at beam position (rx,ry)
after weighted local averaging with its nearest-neighbor patterns,
using a 3x3 gaussian kernel for the weightings.

	Parameters:

	
	rx (int) – The x-coord of the beam position

	ry (int) – The y-coord of the beam position

	radial_bksb (bool) – It True, apply a radial background subtraction to each pattern
before averaging

	sigma (number) – If radial_bksb is True, use this sigma for radial smoothing of
the background

	braggmask (bool) – If True, masks bragg scattering at each scan position before
averaging. braggvectors and braggmask_radius must be
specified.

	braggvectors (BraggVectors) – The Bragg vectors to use for masking

	braggmask_radius (number) – The radius about each Bragg point to mask

	Returns:

	data – The radial background subtracted diffraction image

	Return type:

	ndarray

	
get_braggmask(braggvectors, rx, ry, radius)

	Returns a boolean mask which is False in a radius of radius around
each bragg scattering vector at scan position (rx,ry).

	Parameters:

	
	braggvectors (BraggVectors) – The bragg vectors

	rx (int) – The x-coord of the beam position

	ry (int) – The y-coord of the beam position

	radius (number) – mask pixels about each bragg vector to this radial distance

	Returns:

	mask

	Return type:

	boolean ndarray

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
attach(node)

	Attach node to the current object’s tree, attaching calibration and detaching
calibrations as needed.

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
dim(n)

	Return the n’th dim vector

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
static get_calibrated_detector_geometry(calibration, mode, geometry, centered, calibrated)

	Determine the detector geometry in pixels, given some mode and geometry
in calibrated units, where the calibration state is specified by {
centered, calibrated}

	Parameters:

	
	calibration (Calibration) – Used to retrieve the center positions. If None, confirms that
centered and calibrated are False then passes, otherwise raises
an exception

	mode (str) – see the DataCube.get_virtual_image docstring

	geometry (variable) – see the DataCube.get_virtual_image docstring

	centered (bool) – see the DataCube.get_virtual_image docstring

	calibrated (bool) – see the DataCube.get_virtual_image docstring

	Returns:

	geo – the geometry in detector pixels

	Return type:

	tuple

	
get_dim(n)

	Return the n’th dim vector

	
get_dim_name(n)

	Get the n’th dim vector name

	
get_dim_units(n)

	Return the n’th dim vector units

	
get_dp_max(returncalc=True)

	Calculates the max diffraction pattern.

Calls DataCube.get_virtual_diffraction - see that method’s docstring
for more custimizable virtual diffraction.

	Parameters:

	returncalc (bool) – toggles returning the answer

	Returns:

	max_dp

	Return type:

	VirtualDiffraction

	
get_dp_mean(returncalc=True)

	Calculates the mean diffraction pattern.

Calls DataCube.get_virtual_diffraction - see that method’s docstring
for more custimizable virtual diffraction.

	Parameters:

	returncalc (bool) – toggles returning the answer

	Returns:

	mean_dp

	Return type:

	VirtualDiffraction

	
get_dp_median(returncalc=True)

	Calculates the max diffraction pattern.

Calls DataCube.get_virtual_diffraction - see that method’s docstring
for more custimizable virtual diffraction.

	Parameters:

	returncalc (bool) – toggles returning the answer

	Returns:

	max_dp

	Return type:

	VirtualDiffraction

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
get_virtual_diffraction(method, mask=None, shift_center=False, subpixel=False, verbose=True, name='virtual_diffraction', returncalc=True)

	Function to calculate virtual diffraction images.

	Parameters:

	
	method (str) – defines method used for averaging/combining diffraction patterns.
Options are (‘mean’, ‘median’, ‘max’)

	mask (None or 2D array) – if None (default), all pixels are used. Otherwise, must be a boolean
or floating point or complex array with the same shape as real space.
For bool arrays, only True pixels are used in the computation.
Otherwise a weighted average is performed.

	shift_center (bool) – toggles shifting the diffraction patterns to account for beam shift.
Currently only supported for ‘max’ and ‘mean’ modes. Default is
False.

	subpixel (bool) – if shift_center is True, toggles subpixel shifts via Fourier
interpolation. Ignored if shift_center is False.

	verbose (bool) – toggles progress bar

	name (string) – name for the output DiffractionImage instance

	returncalc (bool) – toggles returning the output

	Returns:

	diff_im

	Return type:

	DiffractionImage

	
get_virtual_image(mode, geometry, centered=False, calibrated=False, shift_center=False, subpixel=False, verbose=True, dask=False, return_mask=False, name='virtual_image', returncalc=True, test_config=False)

	Calculate a virtual image.

The detector is determined by the combination of the mode and
geometry arguments, supporting point, circular, rectangular,
annular, and custom mask detectors. The values passed to geometry
may be given with respect to an origin at the corner of the detector
array or with respect to the calibrated center position, and in units of
pixels or real calibrated units, depending on the values of the
centered and calibrated arguments, respectively. The mask may be
shifted pattern-by-pattern to account for diffraction scan shifts using
the shift_center argument.

The computed virtual image is stored in the datacube’s tree, and is
also returned by default.

	Parameters:

	
	mode (str) – defines geometry mode for calculating virtual image, and the
expected input for the geometry argument. options:

	’point’: uses a single pixel detector

	’circle’, ‘circular’: uses a round detector, like bright
field

	’annular’, ‘annulus’: uses an annular detector, like dark
field

	’rectangle’, ‘square’, ‘rectangular’: uses rectangular
detector

	’mask’: any diffraction-space shaped 2D array, representing
a flexible detector

	geometry (variable) – the expected value of this argument is determined by mode as
follows:

	’point’: 2-tuple, (qx,qy), ints

	’circle’, ‘circular’: nested 2-tuple, ((qx,qy),radius),

	’annular’, ‘annulus’: nested 2-tuple,
((qx,qy),(radius_i,radius_o)),

	’rectangle’, ‘square’, ‘rectangular’: 4-tuple,
(xmin,xmax,ymin,ymax)

	
	mask: any boolean or floating point 2D array with the same
	size as datacube.Qshape

	centered (bool) – if False, the origin is in the upper left corner. If True, the origin
is set to the mean origin in the datacube calibrations, so that a
bright-field image could be specified with, e.g., geometry=((0,0),R).
The origin can set with datacube.calibration.set_origin(). For
mode=”mask”, has no effect. Default is False.

	calibrated (bool) – if True, geometry is specified in units of ‘A^-1’ instead of pixels.
The datacube’s calibrations must have its “Q_pixel_units” parameter
set to “A^-1”. For mode=”mask”, has no effect. Default is False.

	shift_center (bool) – if True, the mask is shifted at each real space position to account
for any shifting of the origin of the diffraction images. The
datacube’s calibration[‘origin’] parameter must be set. The shift
applied to each pattern is the difference between the local origin
position and the mean origin position over all patterns, rounded to
the nearest integer for speed. Default is False. If shift_center is
True, centered is automatically set to True.

	subpixel (bool) – if True, applies subpixel shifts to virtual image

	verbose (bool) – toggles a progress bar

	dask (bool) – if True, use dask to distribute the calculation

	return_mask (bool) – if False (default) returns a virtual image as usual. Otherwise does
not compute or return a virtual image, instead finding and
returning the mask that will be used in subsequent calls to this
function using these same parameters. In this case, must be either
True or a 2-tuple of integers corresponding to (rx,ry). If True
is passed, returns the mask used if shift_center is set to False.
If a 2-tuple is passed, returns the mask used at scan position
(rx,ry) if shift_center is set to True. Nothing is added to the
datacube’s tree.

	name (str) – the output object’s name

	returncalc (bool) – if True, returns the output

	test_config (bool) – if True, prints the Boolean values of
(centered,`calibrated`,`shift_center`). Does not compute the
virtual image.

	Returns:

	virt_im

	Return type:

	VirtualImage (optional, if returncalc is True)

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
make_bragg_mask(Qshape, g1, g2, radius, origin, max_q, return_sum=True, **kwargs)

	Creates and returns a mask consisting of circular disks
about the points of a 2D lattice.

	Parameters:

	
	Qshape (2 tuple) – the shape of diffraction space

	g1 (len 2 array or tuple) – the lattice vectors

	g2 (len 2 array or tuple) – the lattice vectors

	radius (number) – the disk radius

	origin (len 2 array or tuple) – the origin

	max_q (nuumber) – the maxima distance to tile to

	return_sum (bool) – if False, return a 3D array, where each
slice contains a single disk; if False, return a single
2D masks of all disks

	Returns:

	(2 or 3D array) the mask

	
static make_detector(shape, mode, geometry)

	Generate a 2D mask representing a detector function.

	Parameters:

	
	shape (2-tuple) – defines shape of mask. Should be the shape of diffraction space.

	mode (str) – defines geometry mode for calculating virtual image. See the
docstring for DataCube.get_virtual_image

	geometry (variable) – defines geometry for calculating virtual image. See the
docstring for DataCube.get_virtual_image

	Returns:

	detector_mask

	Return type:

	2d array

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
position_detector(mode, geometry, data=None, centered=None, calibrated=None, shift_center=False, subpixel=True, scan_position=None, invert=False, color='r', alpha=0.7, **kwargs)

	Position a virtual detector by displaying a mask over a diffraction
space image. Calling .get_virtual_image() using the same mode
and geometry parameters will compute a virtual image using this
detector.

	Parameters:

	
	mode (str) – see the DataCube.get_virtual_image docstring

	geometry (variable) – see the DataCube.get_virtual_image docstring

	data (None or 2d-array or 2-tuple of ints) – The diffraction image to overlay the mask on. If None (default),
looks for a max or mean or median diffraction image in this order
and if found, uses it, otherwise, uses the diffraction pattern at
scan position (0,0). If a 2d array is passed, must be diffraction
space shaped array. If a 2-tuple is passed, uses the diffraction
pattern at scan position (rx,ry).

	centered (bool) – see the DataCube.get_virtual_image docstring

	calibrated (bool) – see the DataCube.get_virtual_image docstring

	shift_center (None or bool or 2-tuple of ints) – If None (default) and data is either None or an array, the mask
is not shifted. If None and data is a 2-tuple, shifts the mask
according to the origin at the scan position (rx,ry) specified in
data. If False, does not shift the mask. If True and data is
a 2-tuple, shifts the mask accordingly, and if True and data is
any other value, raises an error. If shift_center is a 2-tuple,
shifts the mask according to the origin value at this 2-tuple
regardless of the value of data (enabling e.g. overlaying the
mask for a specific scan position on a max or mean diffraction
image.)

	subpixel (bool) – if True, applies subpixel shifts to virtual image

	invert (bool) – if True, invert the masked pixel (i.e. pixels outside the detector
are overlaid with a mask)

	color (any matplotlib color specification) – the mask color

	alpha (number) – the mask transparency

	kwargs (dict) – Any additional arguments are passed on to the show() function

	
set_dim(n: int, dim: list | ndarray, units: str | None = None, name: str | None = None)

	Sets the n’th dim vector, using dim as described in the Array
documentation. If units and/or name are passed, sets these
values for the n’th dim vector.

	Accepts:
	n (int): specifies which dim vector
dim (list or array): length must be either 2, or equal to the

length of the n’th axis of the data array

units (Optional, str):
name: (Optional, str):

	
set_dim_name(n: int, name: str)

	Sets the n’th dim vector name to name.

	Accepts:
	n (int): specifies which dim vector
name (str): new name

	
set_dim_units(n: int, units: str)

	Sets the n’th dim vector units to units.

	Accepts:
	n (int): specifies which dim vector
units (str): new units

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this Array, tags indicating its EMD type and Python class,
and the array’s data and metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new array’s Group

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

DiffractionSlice

	
class py4DSTEM.DiffractionSlice(data: ndarray, name: str | None = 'diffractionslice', units: str | None = 'intensity', slicelabels: bool | list | None = None, calibration=None)

	Stores a diffraction-space shaped 2D data array.

	
__init__(data: ndarray, name: str | None = 'diffractionslice', units: str | None = 'intensity', slicelabels: bool | list | None = None, calibration=None)

	
	Accepts:
	data (np.ndarray): the data
name (str): the name of the diffslice
units (str): units of the pixel values
slicelabels(None or list): names for slices if this is a 3D stack

	Returns:

	(DiffractionSlice instance)

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
attach(node)

	Attach node to the current object’s tree, attaching calibration and detaching
calibrations as needed.

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
dim(n)

	Return the n’th dim vector

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
get_dim(n)

	Return the n’th dim vector

	
get_dim_name(n)

	Get the n’th dim vector name

	
get_dim_units(n)

	Return the n’th dim vector units

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
set_dim(n: int, dim: list | ndarray, units: str | None = None, name: str | None = None)

	Sets the n’th dim vector, using dim as described in the Array
documentation. If units and/or name are passed, sets these
values for the n’th dim vector.

	Accepts:
	n (int): specifies which dim vector
dim (list or array): length must be either 2, or equal to the

length of the n’th axis of the data array

units (Optional, str):
name: (Optional, str):

	
set_dim_name(n: int, name: str)

	Sets the n’th dim vector name to name.

	Accepts:
	n (int): specifies which dim vector
name (str): new name

	
set_dim_units(n: int, units: str)

	Sets the n’th dim vector units to units.

	Accepts:
	n (int): specifies which dim vector
units (str): new units

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this Array, tags indicating its EMD type and Python class,
and the array’s data and metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new array’s Group

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

Metadata

	
class py4DSTEM.Metadata(name: str | None = 'metadata', data: dict | None = None)

	Stores metadata in the form of a flat (non-nested) dictionary.
Keys are arbitrary strings. Values may be strings, numbers, arrays,
or lists of the above types.

Usage:

>>> meta = Metadata()
>>> meta['param'] = value
>>> val = meta['param']

If the parameter has not been set, the getter methods return None.

	
__init__(name: str | None = 'metadata', data: dict | None = None)

	
	Parameters:

	name (Optional, string) –

	
copy(name=None)

	

	
to_h5(group)

	Accepts an h5py Group which is open in write or append mode. Writes
a new group with this object’s name and saves its metadata in it.

	Accepts:
	group (h5py Group)

	
classmethod from_h5(group)

	Accepts an h5py Group which is open in read mode, confirms that
it represents an EMD MetadataDict group, then loads and returns it
as a Metadata instance.

	Accepts:
	group (HDF5 group)

	Returns:

	(Metadata)

Node

	
class py4DSTEM.Node(name: str | None = 'node')

	Nodes contain attributes and methods paralleling
the EMD 1.0 file specification in Python runtime objects.

EMD 1.0 is a singly-rooted file format. That is to say:
An EMD data object can and must exist in one and only one
EMD tree. An EMD file can contain any number of EMD trees, each
containing data and metadata which is, within the limits of
the EMD group specifications, of some arbitrary complexity.
An EMD 1.0 file thus represents, stores, and enables
access to some arbitrary data in long term storage on a file
system in the form of an HDF5 file. The Node class provides
machinery for building trees of data and metadata which mirror
the EMD tree format but which exist in a live Python instance,
rather than on the file system. This facilitates ease of
transfer between Python and the file system.

Nodes are intended to be used a base class on which other, more
complex classes can be biult. Nodes themselves contain the
machinery for managing a tree heirarchy of other Nodes and
Metadata instances, and for reading and writing those trees.
They do not contain any particular data. Classes storing data
and analysis methods which inherit from Node will inherit its
tree management and EMD i/o functionality.

Below, the 4 elements of the node class are each described in turn:
roots, trees, metadata, and i/o.

ROOTS

EMD data objects can and must exist in one and only one EMD tree,
each of which must have a single, named root node. To parallel this in
our runtime objects, each Node has a root property, which can be found
by calling self.root.

By default new nodes have their root set to None. If a node
with .root == None is saved to file, it is placed inside a
new root with the same name as the object itself, and this
is then saved to the file as a new (minimal) EMD tree.

A new root node can be instantiated by calling

>>> rootnode = Root(name=some_name).

Objects added to an existing rooted tree (including a new root node)
automatically have their root assigned to the root of that tree.
Adding objects to trees is discussed below.

TREES

The tree associated with a node can be manipulated with the .tree
method. If we have some rooted node node1 and some unrooted node
node2, the unrooted node can be added to the existing tree as a
child of the rooted node with

>>> node1.tree(node2)

If we have a rooted node node1 and another rooted node node2,
we can’t simply add node2 with the code above, as this would
create a conflict between the two roots. In this case, we can
move node2 from its current tree to the new tree using

>>> node1.tree(graft=node2)

The .tree method has various additional functionalities, including
printing the tree, retrieving objects from the tree, and cutting
branches from the tree. These are summarized below:

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keep root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string), i.e.
in most cases, the keyword can be dropped. So

>>> .tree()
>>> .tree(node)
>>> .tree(True)
>>> .tree('some/node')

will, respectively, print the tree from the current node to screen,
add the node node to the tree, pring the tree from the root node
to screen, and return the node at the emdpath ‘some/node’.

If a node needs to be added to a tree and it may or may not
already have its own root, calling

>>> .tree(add=node, force=True)

or

>>> .tree(node, force=True)

will add the node to the tree, using a simple add if node has no
root, and grafting it if it does have a root.

METADATA

Nodes can contain any number of Metadata instances, each of which
wraps a Python dictionary of some arbitrary complexity (to within
the limits of the Metadata group EMD specification, which limits
permissible values somewhat).

The code:

>>> md1 = Metadata(name='md1')
>>> md2 = Metadata(name='md2')
>>> <<< some code populating md1 + md2 >>>
>>> node.metadata = md1
>>> node.metadata = md2

will create two Metadata objects, populate them with data, then
add them to the node. Note that Node.metadata is not a Python
attribute, it is specially defined property, such that the last
line of code does not overwrite the line before it - rather,
assigning to the .metadata property adds the new metadata object
to a running dictionary of arbitrarily many metadata objects.
Both of these two metadata instances can therefore still be
retrieved, using:

>>> x = node.metadata['md1']
>>> y = node.metadata['md2']

Note, however, that if the second metadata instance has an identical
name to the first instance, then in will overwrite the old instance.

I/O

TODO

	
__init__(name: str | None = 'node')

	

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this node, tags indicating the groups EMD type and Python class,
and any metadata in this node.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new node’s Group

PointList

	
class py4DSTEM.PointList(data: ndarray, name: str | None = 'pointlist')

	A wrapper around structured numpy arrays, with read/write functionality in/out of
EMD formatted HDF5 files.

	
__init__(data: ndarray, name: str | None = 'pointlist')

	
Instantiate a PointList.

	Parameters:

	
	data (structured numpy ndarray) – the data; the dtype of this array will
specify the fields of the PointList.

	name (str) – name for the PointList

	Returns:

	a PointList instance

	
add(data)

	Appends a numpy structured array. Its dtypes must agree with the existing data.

	
remove(mask)

	Removes points wherever mask==True

	
sort(field, order='ascending')

	Sorts the point list according to field,
which must be a field in self.dtype.
order should be ‘descending’ or ‘ascending’.

	
copy(name=None)

	Returns a copy of the PointList. If name=None, sets to {name}_copy

	
add_fields(new_fields, name='')

	Creates a copy of the PointList, but with additional fields given by new_fields.

	Parameters:

	
	new_fields – a list of 2-tuples, (‘name’, dtype)

	name – a name for the new pointlist

	
add_data_by_field(data, fields=None)

	Add a list of data arrays to the PointList, in the fields
given by fields. If fields is not specified, assumes the data
arrays are in the same order as self.fields

	Parameters:

	data (list) – arrays of data to add to each field

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this PointList, tags indicating its EMD type and Python class,
and the pointlist’s data and metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new pointlist’s group

PointListArray

	
class py4DSTEM.PointListArray(dtype, shape, name: str | None = 'pointlistarray')

	An 2D array of PointLists which share common coordinates.

	
__init__(dtype, shape, name: str | None = 'pointlistarray')

	
Creates an empty PointListArray.

	Parameters:

	
	dtype – the dtype of the numpy structured arrays which will comprise
the data of each PointList

	shape (2-tuple of ints) – the shape of the array of PointLists

	name (str) – a name for the PointListArray

	Returns:

	a PointListArray instance

	
get_pointlist(i, j, name=None)

	Returns the pointlist at i,j

	
copy(name='')

	Returns a copy of itself.

	
add_fields(new_fields, name='')

	Creates a copy of the PointListArray, but with additional fields given
by new_fields.

	Parameters:

	
	new_fields – a list of 2-tuples, (‘name’, dtype)

	name – a name for the new pointlist

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this PointListArray, tags indicating its EMD type and Python class,
and the pointlistarray’s data and metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new pointlistarray’s group

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

Probe

	
class py4DSTEM.Probe(data: ndarray, name: str | None = 'probe')

	Stores a vacuum probe.

Both a vacuum probe and a kernel for cross-correlative template matching
derived from that probe are stored and can be accessed at

>>> p.probe
>>> p.kernel

respectively, for some Probe instance p. If a kernel has not been computed
the latter expression returns None.

	
__init__(data: ndarray, name: str | None = 'probe')

	
	Accepts:
	
	data (2D or 3D np.ndarray): the vacuum probe, or
	the vacuum probe + kernel

name (str): a name

	Returns:

	(Probe)

	
classmethod from_vacuum_data(data, mask=None, threshold=0.2, expansion=12, opening=3)

	Generates and returns a vacuum probe Probe instance from either a
2D vacuum image or a 3D stack of vacuum diffraction patterns.

The probe is multiplied by mask, if it’s passed. An additional
masking step zeros values outside of a mask determined by threshold,
expansion, and opening, generated by first computing the binary image
probe < max(probe)*threshold, then applying a binary expansion and
then opening to this image. No alignment is performed - i.e. it is assumed
that the beam was stationary during acquisition of the stack. To align
the images, use the DataCube .get_vacuum_probe method.

	Parameters:

	
	data (2D or 3D array) – the vacuum diffraction data. For 3D stacks, use shape (N,Q_Nx,Q_Ny)

	mask (boolean array, optional) – mask applied to the probe

	threshold (float) – threshold determining mask which zeros values outside of probe

	expansion (int) – number of pixels by which the zeroing mask is expanded to capture
the full probe

	opening (int) – size of binary opening used to eliminate stray bright pixels

	Returns:

	probe – the vacuum probe

	Return type:

	Probe

	
classmethod generate_synthetic_probe(radius, width, Qshape)

	Makes a synthetic probe, with the functional form of a disk blurred by a
sigmoid (a logistic function).

	Parameters:

	
	radius (float) – the probe radius

	width (float) – the blurring of the probe edge. width represents the
full width of the blur, with x=-w/2 to x=+w/2 about the edge
spanning values of ~0.12 to 0.88

	Qshape (2 tuple) – the diffraction plane dimensions

	Returns:

	probe – the probe

	Return type:

	Probe

	
measure_disk(thresh_lower=0.01, thresh_upper=0.99, N=100, returncalc=True, data=None)

	Finds the center and radius of an average probe image.

A naive algorithm. Creates a series of N binary masks by thresholding
the probe image a linspace of N thresholds from thresh_lower to
thresh_upper, relative to the image max/min. For each mask, we find the
square root of the number of True valued pixels divided by pi to
estimate a radius. Because the central disk is intense relative to the
remainder of the image, the computed radii are expected to vary very
little over a wider range threshold values. A range of r values
considered trustworthy is estimated by taking the derivative
r(thresh)/dthresh identifying where it is small, and the mean of this
range is returned as the radius. A center is estimated using a binary
thresholded image in combination with the center of mass operator.

	Parameters:

	
	thresh_lower (float, 0 to 1) – the lower limit of threshold values

	thresh_upper (float, 0 to 1)) – the upper limit of threshold values

	N (int) – the number of thresholds / masks to use

	returncalc (True) – toggles returning the answer

	data (2d array, optional) – if passed, uses this 2D array in place of the probe image when
performing the computation. This also supresses storing the
results in the Probe’s calibration metadata

	Returns:

	r, x0, y0 – the radius and origin

	Return type:

	(3-tuple)

	
get_kernel(mode='flat', origin=None, data=None, returncalc=True, **kwargs)

	Creates a cross-correlation kernel from the vacuum probe.

Specific behavior and valid keyword arguments depend on the mode
specified. In each case, the center of the probe is shifted to the
origin and the kernel normalized such that it sums to 1. This is the
only processing performed if mode is ‘flat’. Otherwise, a centrosymmetric
region of negative intensity is added around the probe intended to promote
edge-filtering-like behavior during cross correlation, with the
functional form of the subtracted region defined by mode and the
relevant **kwargs. For normalization, flat probes integrate to 1, and the
remaining probes integrate to 1 before subtraction and 0 after. Required
keyword arguments are:

	‘flat’: No required arguments. This mode is recommended for bullseye
or other structured probes

	‘gaussian’: Required arg sigma (number), the width (standard
deviation) of a centered gaussian to be subtracted.

	‘sigmoid’: Required arg radii (2-tuple), the inner and outer radii
(ri,ro) of an annular region with a sine-squared sigmoidal radial
profile to be subtracted.

	‘sigmoid_log’: Required arg radii (2-tuple), the inner and outer radii
(ri,ro) of an annular region with a logistic sigmoidal radial
profile to be subtracted.

	Parameters:

	
	mode (str) – must be in ‘flat’,’gaussian’,’sigmoid’,’sigmoid_log’

	origin (2-tuple, optional) – specify the origin. If not passed, looks for a value for the probe
origin in metadata. If not found there, calls .measure_disk.

	data (2d array, optional) – if specified, uses this array instead of the probe image to compute
the kernel

	**kwargs – see descriptions above

	Returns:

	kernel

	Return type:

	2D array

	
static get_probe_kernel_flat(probe, origin=None, bilinear=False)

	Creates a cross-correlation kernel from the vacuum probe by normalizing
and shifting the center.

	Parameters:

	
	probe (2d array) – the vacuum probe

	origin (2-tuple (optional)) – the origin of diffraction space. If not specified, finds the origin
using get_probe_radius.

	bilinear (bool (optional)) – By default probe is shifted via a Fourier transform. Setting this to
True overrides it and uses bilinear shifting. Not recommended!

	Returns:

	kernel – the cross-correlation kernel corresponding to the probe, in real
space

	Return type:

	ndarray

	
static get_probe_kernel_edge_gaussian(probe, sigma, origin=None, bilinear=True)

	Creates a cross-correlation kernel from the probe, subtracting a
gaussian from the normalized probe such that the kernel integrates to
zero, then shifting the center of the probe to the array corners.

	Parameters:

	
	probe (ndarray) – the diffraction pattern corresponding to the probe over vacuum

	sigma (float) – the width of the gaussian to subtract, relative to the standard
deviation of the probe

	origin (2-tuple (optional)) – the origin of diffraction space. If not specified, finds the origin
using get_probe_radius.

	bilinear (bool) – By default probe is shifted via a Fourier transform. Setting this to
True overrides it and uses bilinear shifting. Not recommended!

	Returns:

	kernel – the cross-correlation kernel

	Return type:

	ndarray

	
static get_probe_kernel_edge_sigmoid(probe, radii, origin=None, type='sine_squared', bilinear=True)

	Creates a convolution kernel from an average probe, subtracting an annular
trench about the probe such that the kernel integrates to zero, then
shifting the center of the probe to the array corners.

	Parameters:

	
	probe (ndarray) – the diffraction pattern corresponding to the probe over vacuum

	radii (2-tuple) – the sigmoid inner and outer radii

	origin (2-tuple (optional)) – the origin of diffraction space. If not specified, finds the origin
using get_probe_radius.

	type (string) – must be ‘logistic’ or ‘sine_squared’

	bilinear (bool) – By default probe is shifted via a Fourier transform. Setting this to
True overrides it and uses bilinear shifting. Not recommended!

	Returns:

	kernel – the cross-correlation kernel

	Return type:

	2d array

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
attach(node)

	Attach node to the current object’s tree, attaching calibration and detaching
calibrations as needed.

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
dim(n)

	Return the n’th dim vector

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
get_dim(n)

	Return the n’th dim vector

	
get_dim_name(n)

	Get the n’th dim vector name

	
get_dim_units(n)

	Return the n’th dim vector units

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
set_dim(n: int, dim: list | ndarray, units: str | None = None, name: str | None = None)

	Sets the n’th dim vector, using dim as described in the Array
documentation. If units and/or name are passed, sets these
values for the n’th dim vector.

	Accepts:
	n (int): specifies which dim vector
dim (list or array): length must be either 2, or equal to the

length of the n’th axis of the data array

units (Optional, str):
name: (Optional, str):

	
set_dim_name(n: int, name: str)

	Sets the n’th dim vector name to name.

	Accepts:
	n (int): specifies which dim vector
name (str): new name

	
set_dim_units(n: int, units: str)

	Sets the n’th dim vector units to units.

	Accepts:
	n (int): specifies which dim vector
units (str): new units

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this Array, tags indicating its EMD type and Python class,
and the array’s data and metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new array’s Group

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

QPoints

	
class py4DSTEM.QPoints(data: ndarray, name: str | None = 'qpoints')

	Stores a set of diffraction space points,
with fields ‘qx’, ‘qy’ and ‘intensity’

	
__init__(data: ndarray, name: str | None = 'qpoints')

	
	Accepts:
	
	data (structured numpy ndarray): should have three fields, which
	will be renamed ‘qx’,’qy’,’intensity’

name (str): the name of the QPoints instance

	Returns:

	A new QPoints instance

	
add(data)

	Appends a numpy structured array. Its dtypes must agree with the existing data.

	
add_data_by_field(data, fields=None)

	Add a list of data arrays to the PointList, in the fields
given by fields. If fields is not specified, assumes the data
arrays are in the same order as self.fields

	Parameters:

	data (list) – arrays of data to add to each field

	
add_fields(new_fields, name='')

	Creates a copy of the PointList, but with additional fields given by new_fields.

	Parameters:

	
	new_fields – a list of 2-tuples, (‘name’, dtype)

	name – a name for the new pointlist

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
attach(node)

	Attach node to the current object’s tree, attaching calibration and detaching
calibrations as needed.

	
copy(name=None)

	Returns a copy of the PointList. If name=None, sets to {name}_copy

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
remove(mask)

	Removes points wherever mask==True

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
sort(field, order='ascending')

	Sorts the point list according to field,
which must be a field in self.dtype.
order should be ‘descending’ or ‘ascending’.

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this PointList, tags indicating its EMD type and Python class,
and the pointlist’s data and metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new pointlist’s group

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

RealSlice

	
class py4DSTEM.RealSlice(data: ndarray, name: str | None = 'realslice', units: str | None = 'intensity', slicelabels: bool | list | None = None, calibration=None)

	Stores a real-space shaped 2D data array.

	
__init__(data: ndarray, name: str | None = 'realslice', units: str | None = 'intensity', slicelabels: bool | list | None = None, calibration=None)

	
	Accepts:
	data (np.ndarray): the data
name (str): the name of the realslice
slicelabels(None or list): names for slices if this is a stack of

realslices

	Returns:

	A new RealSlice instance

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
attach(node)

	Attach node to the current object’s tree, attaching calibration and detaching
calibrations as needed.

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
dim(n)

	Return the n’th dim vector

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
get_dim(n)

	Return the n’th dim vector

	
get_dim_name(n)

	Get the n’th dim vector name

	
get_dim_units(n)

	Return the n’th dim vector units

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
set_dim(n: int, dim: list | ndarray, units: str | None = None, name: str | None = None)

	Sets the n’th dim vector, using dim as described in the Array
documentation. If units and/or name are passed, sets these
values for the n’th dim vector.

	Accepts:
	n (int): specifies which dim vector
dim (list or array): length must be either 2, or equal to the

length of the n’th axis of the data array

units (Optional, str):
name: (Optional, str):

	
set_dim_name(n: int, name: str)

	Sets the n’th dim vector name to name.

	Accepts:
	n (int): specifies which dim vector
name (str): new name

	
set_dim_units(n: int, units: str)

	Sets the n’th dim vector units to units.

	Accepts:
	n (int): specifies which dim vector
units (str): new units

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this Array, tags indicating its EMD type and Python class,
and the array’s data and metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new array’s Group

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

VirtualDiffraction

	
class py4DSTEM.VirtualDiffraction(data: ndarray, name: str | None = 'virtualdiffraction')

	Stores a diffraction-space shaped 2D image with metadata
indicating how this image was generated from a self.

	
__init__(data: ndarray, name: str | None = 'virtualdiffraction')

	
	Parameters:

	
	data (np.ndarray) – the 2D data

	name (str) – the name

	Returns:

	A new VirtualDiffraction instance

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
attach(node)

	Attach node to the current object’s tree, attaching calibration and detaching
calibrations as needed.

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
dim(n)

	Return the n’th dim vector

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
get_dim(n)

	Return the n’th dim vector

	
get_dim_name(n)

	Get the n’th dim vector name

	
get_dim_units(n)

	Return the n’th dim vector units

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
set_dim(n: int, dim: list | ndarray, units: str | None = None, name: str | None = None)

	Sets the n’th dim vector, using dim as described in the Array
documentation. If units and/or name are passed, sets these
values for the n’th dim vector.

	Accepts:
	n (int): specifies which dim vector
dim (list or array): length must be either 2, or equal to the

length of the n’th axis of the data array

units (Optional, str):
name: (Optional, str):

	
set_dim_name(n: int, name: str)

	Sets the n’th dim vector name to name.

	Accepts:
	n (int): specifies which dim vector
name (str): new name

	
set_dim_units(n: int, units: str)

	Sets the n’th dim vector units to units.

	Accepts:
	n (int): specifies which dim vector
units (str): new units

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this Array, tags indicating its EMD type and Python class,
and the array’s data and metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new array’s Group

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

VirtualImage

	
class py4DSTEM.VirtualImage(data: ndarray, name: str | None = 'virtualimage')

	A container for storing virtual image data and metadata,
including the real-space shaped 2D image and metadata
indicating how this image was generated from a datacube.

	
__init__(data: ndarray, name: str | None = 'virtualimage')

	
	Parameters:

	
	data (np.ndarray) – the 2D data

	name (str) – the name

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
attach(node)

	Attach node to the current object’s tree, attaching calibration and detaching
calibrations as needed.

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
dim(n)

	Return the n’th dim vector

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
get_dim(n)

	Return the n’th dim vector

	
get_dim_name(n)

	Get the n’th dim vector name

	
get_dim_units(n)

	Return the n’th dim vector units

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
set_dim(n: int, dim: list | ndarray, units: str | None = None, name: str | None = None)

	Sets the n’th dim vector, using dim as described in the Array
documentation. If units and/or name are passed, sets these
values for the n’th dim vector.

	Accepts:
	n (int): specifies which dim vector
dim (list or array): length must be either 2, or equal to the

length of the n’th axis of the data array

units (Optional, str):
name: (Optional, str):

	
set_dim_name(n: int, name: str)

	Sets the n’th dim vector name to name.

	Accepts:
	n (int): specifies which dim vector
name (str): new name

	
set_dim_units(n: int, units: str)

	Sets the n’th dim vector units to units.

	Accepts:
	n (int): specifies which dim vector
units (str): new units

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this Array, tags indicating its EMD type and Python class,
and the array’s data and metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new array’s Group

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

io

Table of Contents

	io

	filereaders

	google_drive_downloader

	importfile

	legacy

	parsefiletype

filereaders

	
py4DSTEM.io.filereaders.empad.read_empad(filename, mem='RAM', binfactor=1, metadata=False, **kwargs)

	Reads the EMPAD file at filename, returning a DataCube.

EMPAD files are shaped as 130x128 arrays, consisting of 128x128 arrays of data followed by
two rows of metadata. For each frame, its position in the scan is embedded in the metadata.
By extracting the scan position of the first and last frames, the function determines the scan
size. Then, the full dataset is loaded and cropped to the 128x128 valid region.

	Accepts:
	filename (str) path to the EMPAD file
EMPAD_shape (kwarg, tuple) Manually specify the shape of the data for files that do not

	contain metadata in the .raw file. This will typically be:
	(# scan pixels x, # scan pixels y, 130, 128)

	Returns:

	data (DataCube) the 4D datacube, excluding the metadata rows.

	
py4DSTEM.io.filereaders.read_K2.read_gatan_K2_bin(fp, mem='MEMMAP', binfactor=1, metadata=False, **kwargs)

	Read a K2 binary 4D-STEM file.

	Parameters:

	
	fp – str Path to the file

	mem (str, optional) – Specifies how the data should be stored; must be “RAM”
or “MEMMAP”. See docstring for py4DSTEM.file.io.read. Default is “MEMMAP”.

	binfactor – (int, optional): Bin the data, in diffraction space, as it’s loaded.
See docstring for py4DSTEM.file.io.read. Must be 1, retained only for
compatibility.

	metadata (bool, optional) – if True, returns the file metadata as a Metadata
instance.

	Returns:

	The return value depends on usage:

	if metadata==False, returns the 4D-STEM dataset as a DataCube

	if metadata==True, returns the metadata as a Metadata instance

Note that metadata is read either way - in the latter case ONLY
metadata is read and returned, in the former case a DataCube
is returned with the metadata attached at datacube.metadata

	Return type:

	(variable)

	
class py4DSTEM.io.filereaders.read_K2.K2DataArray(filepath, sync_block_IDs=True, hidden_stripe_noise_reduction=True)

	K2DataArray provides an interface to a set of Gatan K2IS binary output files.
This object behaves similar to a numpy memmap into the data, and supports 4-D indexing
and slicing. Slices into this object return np.ndarray objects.

The object is created by passing the path to any of: (i) the folder containing the
raw data, (ii) the *.gtg metadata file, or (iii) one of the raw data *.bin files.
In any case, there should be only one dataset (8 *.bin’s and a *.gtg) in the folder.

===== Filtering and Noise Reduction =====
This object is read-only—you cannot edit the data on disk, which means that some
DataCube functions like swap_RQ() will not work.

The K2IS has a “resolution” of 1920x1792, but actually saves hidden stripes in the raw data.
By setting the hidden_stripe_noise_reduction flag to True, the electronic noise in these
stripes is used to reduce the readout noise. (This is on by default.)

If you want to take a separate background to subtract, set dark_reference to specify this
background. This is then subtracted from the frames as they are called out (no matter where
the object is referenced! So, for instance, Bragg disk detection will operate on the background-
subtracted diffraction patterns!). However, mixing the auto-background and specified background
is potentially dangerous and (currently!) not allowed. To switch back from user-background to
auto-background, just delete the user background, i.e. del(dc.data4D.dark_reference)

Note

If you call dc.data4D[:,:,:,:] on a DataCube with a K2DataArray this will read the entire stack
into memory. To reduce RAM pressure, only call small slices or loop over each diffraction pattern.

	
__init__(filepath, sync_block_IDs=True, hidden_stripe_noise_reduction=True)

	

	
py4DSTEM.io.filereaders.read_mib.load_mib(file_path, mem='MEMMAP', binfactor=1, reshape=True, flip=True, scan=(256, 256), **kwargs)

	Read a MIB file and return as py4DSTEM DataCube.

The scan size is not encoded in the MIB metadata - by default it is
set to (256,256), and can be modified by passing the keyword scan.

	
py4DSTEM.io.filereaders.read_mib.manageHeader(fname)

	Get necessary information from the header of the .mib file.
:param fname: Filename for header file.
:type fname: str

	Returns:

	hdr – (DataOffset,NChips,PixelDepthInFile,sensorLayout,Timestamp,shuttertime,bitdepth)

	Return type:

	tuple

Examples

#Output for 6bit 256*256 data:
#(768, 4, ‘R64’, ‘2x2’, ‘2019-06-14 11:46:12.607836’, 0.0002, 6)
#Output for 12bit single frame nor RAW:
#(768, 4, ‘U16’, ‘2x2’, ‘2019-06-06 11:12:42.001309’, 0.001, 12)

	
py4DSTEM.io.filereaders.read_mib.parse_hdr(fp)

	Parse information from mib file header info from _manageHeader function.
:param fp: Filepath to .mib file.
:type fp: str

	Returns:

	hdr_info – Dictionary containing header info extracted from .mib file.
The entries of the dictionary are as follows:
‘width’: int

pixels, detector number of pixels in x direction,

	’height’: int
	pixels detector number of pixels in y direction,

	’Assembly Size’: str
	configuration of the detector chips, e.g. ‘2x2’ for quad,

	’offset’: int
	number of characters in the header before the first frame starts,

	’data-type’: str
	always ‘unsigned’,

	’data-length’: str
	identifying dtype,

	’Counter Depth (number)’: int
	counter bit depth,

	’raw’: str
	regular binary ‘MIB’ or raw binary ‘R64’,

	’byte-order’: str
	always ‘dont-care’,

	’record-by’: str
	’image’ or ‘vector’ - only ‘image’ encountered,

	’title’: str
	path of the mib file without extension, e.g. ‘/dls/e02/data/2020/cm26481-1/Merlin/testing/20200204 115306/test’,

	’date’: str
	date created, e.g. ‘20200204’,

	’time’: str
	time created, e.g. ‘11:53:32.295336’,

	’data offset’: int
	number of characters at the header.

	Return type:

	dict

	
py4DSTEM.io.filereaders.read_mib.get_mib_memmap(fp, mmap_mode='r')

	Reads the binary mib file into a numpy memmap object and returns as dask array object.
:param fp: MIB file name / path
:type fp: str
:param mmap_mode: memmpap read mode - default is ‘r’
:type mmap_mode: str

	Returns:

	data_da – data as a dask array object

	Return type:

	dask array

	
py4DSTEM.io.filereaders.read_mib.get_mib_depth(hdr_info, fp)

	Determine the total number of frames based on .mib file size.
:param hdr_info: Dictionary containing header info extracted from .mib file.
:type hdr_info: dict
:param fp: Path to .mib file.
:type fp: filepath

	Returns:

	depth – Number of frames in the stack

	Return type:

	int

	
py4DSTEM.io.filereaders.read_mib.get_hdr_bits(hdr_info)

	Gets the number of character bits for the header for each frame given the data type.
:param hdr_info: output of the parse_hdr function
:type hdr_info: dict

	Returns:

	hdr_bits – number of characters in the header

	Return type:

	int

google_drive_downloader

	
py4DSTEM.io.google_drive_downloader.gdrive_download(id_, destination=None, overwrite=False, filename=None, verbose=True)

	Downloads a file or collection of files from google drive.

	Parameters:

	
	id (str) – File ID for the desired file. May be either a key from the list
of files and collections of files accessible at get_sample_file_ids(),
or a complete url, or the portions of a google drive link specifying
it’s google file ID, i.e. for the address
https://drive.google.com/file/d/1bHv3u61Cr-y_GkdWHrJGh1lw2VKmt3UM/,
the id string ‘1bHv3u61Cr-y_GkdWHrJGh1lw2VKmt3UM’.

	destination (None or str) – The location files are downloaded to. If a collection of files has been
specified, creates a new directory at the specified destination and
downloads the collection there. If None, downloads to the current
working directory. Otherwise must be a string or Path pointint to
a valid location on the filesystem.

	overwrite (bool) – Turns overwrite protection on/off.

	filename (None or str) – Used only if id_ is a url or gdrive id. In these cases, specifies
the name of the output file. If left as None, saves to
‘gdrivedownload.file’. If id_ is a key from the sample file id list,
this parameter is ignored.

	verbose (bool) – Toggles verbose output

importfile

	
py4DSTEM.io.importfile.import_file(filepath: str | Path, mem: str | None = 'RAM', binfactor: int | None = 1, filetype: str | None = None, **kwargs)

	Reader for non-native file formats.
Parses the filetype, and calls the appropriate reader.
Supports Gatan DM3/4, some EMPAD file versions, Gatan K2 bin/gtg, and mib
formats.

	Parameters:

	
	filepath (str or Path) – Path to the file.

	mem (str) – Must be “RAM” or “MEMMAP”. Specifies how the data is
loaded; “RAM” transfer the data from storage to RAM, while “MEMMAP”
leaves the data in storage and creates a memory map which points to
the diffraction patterns, allowing them to be retrieved individually
from storage.

	binfactor (int) – Diffraction space binning factor for bin-on-load.

	filetype (str) – Used to override automatic filetype detection.
options include “dm”, “empad”, “gatan_K2_bin”, “mib”, “arina”, “abTEM”

	**kwargs – any additional kwargs are passed to the downstream reader -
refer to the individual filetype reader function call signatures
and docstrings for more details.

	Returns:

	(DataCube or Array) returns a DataCube if 4D data is found, otherwise
returns an Array

legacy

This is the h5py package, a Python interface to the HDF5
scientific data format.

	
py4DSTEM.io.legacy.read_legacy_12.read_legacy12(filepath, **kwargs)

	File reader for older legacy py4DSTEM (v<0.13) formated HDF5 files.

Different file versions Precise behavior is
detemined by which arguments are passed – see below.

	Parameters:

	
	filepath (str or pathlib.Path) – When passed a filepath only, this function checks
if the path points to a valid py4DSTEM file, then prints its contents to
screen.

	data_id (int/str/list, optional) – Specifies which data to load. Use integers to
specify the data index, or strings to specify data names. A list or tuple
returns a list of DataObjects. Returns the specified data.

	topgroup (str, optional) – Stricty, a py4DSTEM file is considered to be everything
inside a toplevel subdirectory within the HDF5 file, so that if desired one
can place many py4DSTEM files inside a single H5. In this case, when loading
data, the topgroup argument is passed to indicate which py4DSTEM file to
load. If an H5 containing multiple py4DSTEM files is passed without a
topgroup specified, the topgroup names are printed to screen.

	mem (str, optional) – Only used if a single DataCube is loaded. In this case,
mem specifies how the data should be stored; must be “RAM” or “MEMMAP”. See
docstring for py4DSTEM.file.io.read. Default is “RAM”.

	binfactor (int, optional) – Only used if a single DataCube is loaded. In this
case, a binfactor of > 1 causes the data to be binned by this amount as it’s
loaded.

	dtype (dtype, optional) – Used when binning data, ignored otherwise. Defaults to
whatever the type of the raw data is, to avoid enlarging data size. May be
useful to avoid ‘wraparound’ errors.

	Returns:

	The output depends on usage:

	If no input arguments with return values (i.e. data_id or metadata) are
passed, nothing is returned.

	Otherwise, a single DataObject or list of DataObjects are returned, based
on the value of the argument data_id.

	Return type:

	(variable)

	
py4DSTEM.io.legacy.read_legacy_13.read_legacy13(filepath, root: str | None = None, tree: bool | str | None = True)

	File reader for legacy py4DSTEM (v=0.13.x) formated HDF5 files.

	Parameters:

	
	filepath (str or Path) – the file path

	root (str) – the path to the data group in the HDF5 file
to read from. To examine an HDF5 file written by py4DSTEM
in order to determine this path, call
py4DSTEM.print_h5_tree(filepath). If left unspecified,
looks in the file and if it finds a single top-level
object, loads it. If it finds multiple top-level objects,
prints a warning and returns a list of root paths to the
top-level object found.

	tree (bool or str) – indicates what data should be loaded,
relative to the root group specified above. Must be in
(True or False or noroot). If set to False, the
only the data in the root group is loaded, plus any
associated calibrations. If set to True, loads the root
group, and all other data groups nested underneath it
in the file tree. If set to ‘noroot’, loads all other
data groups nested under the root group in the file tree,
but does not load the data inside the root group (allowing,
e.g., loading all the data nested under a DataCube13 without
loading the whole datacube).

	Returns:

	(the data)

	
py4DSTEM.io.legacy.read_legacy_13.print_v13h5_tree(filepath, show_metadata=False)

	Prints the contents of an h5 file from a filepath.

	
py4DSTEM.io.legacy.read_legacy_13.print_v13h5pyFile_tree(f, tablevel=0, linelevels=[], show_metadata=False)

	Prints the contents of an h5 file from an open h5py File instance.

	
py4DSTEM.io.legacy.read_utils.get_py4DSTEM_topgroups(filepath)

	Returns a list of toplevel groups in an HDF5 file which are valid py4DSTEM file trees.

	
py4DSTEM.io.legacy.read_utils.is_py4DSTEM_version13(filepath)

	Returns True for data written by a py4DSTEM v0.13.x release.

	
py4DSTEM.io.legacy.read_utils.is_py4DSTEM_file(filepath)

	Returns True iff filepath points to a py4DSTEM formatted (EMD type 2) file.

	
py4DSTEM.io.legacy.read_utils.get_py4DSTEM_version(filepath, topgroup='4DSTEM_experiment')

	Returns the version (major,minor,release) of a py4DSTEM file.

	
py4DSTEM.io.legacy.read_utils.get_UUID(filepath, topgroup='4DSTEM_experiment')

	Returns the UUID of a py4DSTEM file, or if unavailable returns -1.

	
py4DSTEM.io.legacy.read_utils.version_is_geq(current, minimum)

	Returns True iff current version (major,minor,release) is greater than or equal to minimum.”

	
py4DSTEM.io.legacy.read_utils.get_N_dataobjects(filepath, topgroup='4DSTEM_experiment')

	Returns a 7-tuple of ints with the numbers of: DataCubes, CountedDataCubes,
DiffractionSlices, RealSlices, PointLists, PointListArrays, total DataObjects.

parsefiletype

preprocess

Table of Contents

	preprocess

	darkreference

	electroncount

	preprocess

	radialbkgrd

	utils

darkreference

	
py4DSTEM.preprocess.darkreference.get_bksbtr_DP(datacube, darkref, Rx, Ry)

	Returns a background subtracted diffraction pattern.

	Parameters:

	
	datacube (DataCube) – data to background subtract

	darkref (ndarray) – dark reference. must have shape (datacube.Q_Nx, datacube.Q_Ny)

	Rx (int) – the scan position of the diffraction pattern of interest

	Ry (int) – the scan position of the diffraction pattern of interest

	Returns:

	(ndarray) the background subtracted diffraction pattern

	
py4DSTEM.preprocess.darkreference.get_darkreference(datacube, N_frames, width_x=0, width_y=0, side_x='end', side_y='end')

	Gets a dark reference image.

Select N_frames random frames (DPs) from datacube. Find streaking noise in the
horizontal and vertical directions, by finding the average values along a thin strip
of width_x/width_y pixels along the detector edges. Which edges are used is
controlled by side_x/side_y, which must be ‘start’ or ‘end’. Streaks along only one
direction can be used by setting width_x or width_y to 0, which disables correcting
streaks in this direction.

Note that the data is cast to float before computing the background, and should
similarly be cast to float before performing a subtraction. This avoids integer
clipping and wraparound errors.

	Parameters:

	
	datacube (DataCube) – data to background subtract

	N_frames (int) – number of random diffraction patterns to use

	width_x (int) – width of the ROI strip for finding streaking in x

	width_y (int) – see above

	side_x (str) – use a strip from the start or end of the array. Must be ‘start’ or
‘end’, defaults to ‘end’

	side_y (str) – see above

	Returns:

	a 2D ndarray of shape (datacube.Q_Nx, datacube.Ny) giving the
background.

	Return type:

	(ndarray)

	
py4DSTEM.preprocess.darkreference.get_background_streaks(datacube, N_frames, width, side='end', direction='x')

	Gets background streaking in either the x- or y-direction, by finding the average of
a strip of pixels along the edge of the detector over a random selection of
diffraction patterns, and returns a dark reference array.

Note that the data is cast to float before computing the background, and should
similarly be cast to float before performing a subtraction. This avoids integer
clipping and wraparound errors.

	Parameters:

	
	datacube (DataCube) – data to background subtract

	N_frames (int) – number of random frames to use

	width (int) – width of the ROI strip for background identification

	side (str, optional) – use a strip from the start or end of the array. Must be
‘start’ or ‘end’, defaults to ‘end’

	directions (str) – the direction of background streaks to find. Must be either
‘x’ or ‘y’ defaults to ‘x’

	Returns:

	a 2D ndarray of shape (datacube.Q_Nx,datacube.Q_Ny), giving the
the x- or y-direction background streaking.

	Return type:

	(ndarray)

	
py4DSTEM.preprocess.darkreference.get_background_streaks_x(datacube, width, N_frames, side='start')

	Gets background streaking, by finding the average of a strip of pixels along the
y-edge of the detector over a random selection of diffraction patterns.

See docstring for get_background_streaks() for more info.

	
py4DSTEM.preprocess.darkreference.get_background_streaks_y(datacube, N_frames, width, side='start')

	Gets background streaking, by finding the average of a strip of pixels along the
x-edge of the detector over a random selection of diffraction patterns.

See docstring for get_background_streaks_1D() for more info.

electroncount

	
py4DSTEM.preprocess.electroncount.electron_count(datacube, darkreference, Nsamples=40, thresh_bkgrnd_Nsigma=4, thresh_xray_Nsigma=10, binfactor=1, sub_pixel=True, output='pointlist')

	Performs electron counting.

The algorithm is as follows:
From a random sampling of frames, calculate an x-ray and background threshold value.
In each frame, subtract the dark reference, then apply the two thresholds. Find all
local maxima with respect to the nearest neighbor pixels. These are considered
electron strike events.

Thresholds are specified in units of standard deviations, either of a gaussian fit to
the histogram background noise (for thresh_bkgrnd) or of the histogram itself (for
thresh_xray). The background (lower) threshold is more important; we will always be
missing some real electron counts and incorrectly counting some noise as electron
strikes - this threshold controls their relative balance. The x-ray threshold may be
set fairly high.

	Parameters:

	
	datacube – a 4D numpy.ndarray pointing to the datacube. Note: the R/Q axes are
flipped with respect to py4DSTEM DataCube objects

	darkreference – a 2D numpy.ndarray with the dark reference

	Nsamples – the number of frames to use in dark reference and threshold
calculation.

	thresh_bkgrnd_Nsigma – the background threshold is
mean(guassian fit) + (this #)*std(gaussian fit)
where the gaussian fit is to the background noise.

	thresh_xray_Nsigma – the X-ray threshold is
mean(hist) +/- (this #)*std(hist)
where hist is the histogram of all pixel values in the Nsamples random frames

	binfactor – the binnning factor

	sub_pixel (bool) – controls whether subpixel refinement is performed

	output (str) – controls output format; must be ‘datacube’ or ‘pointlist’

	Returns:

	(variable) if output==’pointlist’, returns a PointListArray of all electron
counts in each frame. If output==’datacube’, returns a 4D array of bools, with
True indicating electron strikes

	
py4DSTEM.preprocess.electroncount.electron_count_GPU(datacube, darkreference, Nsamples=40, thresh_bkgrnd_Nsigma=4, thresh_xray_Nsigma=10, binfactor=1, sub_pixel=True, output='pointlist')

	Performs electron counting on the GPU.

Uses pytorch to interface between numpy and cuda. Requires cuda and pytorch.
This function expects datacube to be a np.memmap object.
See electron_count() for additional documentation.

	
py4DSTEM.preprocess.electroncount.calculate_thresholds(datacube, darkreference, Nsamples=20, thresh_bkgrnd_Nsigma=4, thresh_xray_Nsigma=10, return_params=False)

	Calculate the upper and lower thresholds for thresholding what to register as
an electron count.

Both thresholds are determined from the histogram of detector pixel values summed
over Nsamples frames. The thresholds are set to:

thresh_xray_Nsigma = mean(histogram) + thresh_upper * std(histogram)
thresh_bkgrnd_N_sigma = mean(guassian fit) + thresh_lower * std(gaussian fit)

For more info, see the electron_count docstring.

	Parameters:

	
	datacube – a 4D numpy.ndarrau pointing to the datacube

	darkreference – a 2D numpy.ndarray with the dark reference

	Nsamples – the number of frames to use in dark reference and threshold
calculation.

	thresh_bkgrnd_Nsigma – the background threshold is
mean(guassian fit) + (this #)*std(gaussian fit)
where the gaussian fit is to the background noise.

	thresh_xray_Nsigma – the X-ray threshold is
mean(hist) + (this #)*std(hist)
where hist is the histogram of all pixel values in the Nsamples random frames

	return_params – bool, if True return n,hist of the histogram and popt of the
gaussian fit

	Returns:

	A 5-tuple containing:

	thresh_bkgrnd: the background threshold

	thresh_xray: the X-ray threshold

	n: returned iff return_params==True. The histogram values

	hist: returned iff return_params==True. The histogram bin edges

	popt: returned iff return_params==True. The fit gaussian parameters,
(A, mu, sigma).

	Return type:

	(5-tuple)

	
py4DSTEM.preprocess.electroncount.torch_bin(array, device, factor=2)

	Bin data on the GPU using torch.

	Parameters:

	
	array – a 2D numpy array

	device – a torch device class instance

	factor (int) – the binning factor

	Returns:

	the binned array

	Return type:

	(array)

	
py4DSTEM.preprocess.electroncount.counted_datacube_to_pointlistarray(counted_datacube, subpixel=False)

	Converts an electron counted datacube to PointListArray.

	Parameters:

	
	counted_datacube – a 4D array of bools, with true indicating an electron strike.

	subpixel (bool) – controls if subpixel electron strike positions are expected

	Returns:

	a PointListArray of electron strike events

	Return type:

	(PointListArray)

	
py4DSTEM.preprocess.electroncount.counted_pointlistarray_to_datacube(counted_pointlistarray, shape, subpixel=False)

	Converts an electron counted PointListArray to a datacube.

	Parameters:

	
	counted_pointlistarray (PointListArray) – a PointListArray of electron strike
events

	shape (4-tuple) – a length 4 tuple of ints containing (R_Nx,R_Ny,Q_Nx,Q_Ny)

	subpixel (bool) – controls if subpixel electron strike positions are expected

	Returns:

	a 4D array of bools, with true indicating an electron strike.

	Return type:

	(4D array of bools)

preprocess

	
py4DSTEM.preprocess.preprocess.set_scan_shape(datacube, R_Nx, R_Ny)

	Reshape the data given the real space scan shape.

	
py4DSTEM.preprocess.preprocess.swap_RQ(datacube)

	Swaps real and reciprocal space coordinates, so that if

>>> datacube.data.shape
(Rx,Ry,Qx,Qy)

Then

>>> swap_RQ(datacube).data.shape
(Qx,Qy,Rx,Ry)

	
py4DSTEM.preprocess.preprocess.swap_Rxy(datacube)

	Swaps real space x and y coordinates, so that if

>>> datacube.data.shape
(Ry,Rx,Qx,Qy)

Then

>>> swap_Rxy(datacube).data.shape
(Rx,Ry,Qx,Qy)

	
py4DSTEM.preprocess.preprocess.swap_Qxy(datacube)

	Swaps reciprocal space x and y coordinates, so that if

>>> datacube.data.shape
(Rx,Ry,Qy,Qx)

Then

>>> swap_Qxy(datacube).data.shape
(Rx,Ry,Qx,Qy)

	
py4DSTEM.preprocess.preprocess.bin_data_diffraction(datacube, bin_factor, dtype=None)

	Performs diffraction space binning of data by bin_factor.

	Parameters:

	
	N (int) – The binning factor

	dtype (a datatype (optional)) – Specify the datatype for the output. If not passed, the datatype
is left unchanged

	
py4DSTEM.preprocess.preprocess.bin_data_mmap(datacube, bin_factor, dtype=<class 'numpy.float32'>)

	Performs diffraction space binning of data by bin_factor.

	
py4DSTEM.preprocess.preprocess.bin_data_real(datacube, bin_factor)

	Performs diffraction space binning of data by bin_factor.

	
py4DSTEM.preprocess.preprocess.thin_data_real(datacube, thinning_factor)

	Reduces data size by a factor of thinning_factor`^2 by skipping every `thinning_factor beam positions in both x and y.

	
py4DSTEM.preprocess.preprocess.filter_hot_pixels(datacube, thresh, ind_compare=1, return_mask=False)

	This function performs pixel filtering to remove hot / bright pixels.
A mean diffraction pattern is calculated, then a moving local ordering filter
is applied to it, finding and sorting the intensities of the 21 pixels nearest
each pixel (where 21 = (the pixel itself) + (nearest neighbors) + (next
nearest neighbors) = (1) + (8) + (12) = 21; the next nearest neighbors
exclude the corners of the NNN square of pixels). This filter then returns
a single value at each pixel given by the N’th highest value of these 21
sorted values, where N is specified by ind_compare. ind_compare=0
specifies the highest intensity, =1 is the second hightest, etc. Next, a mask
is generated which is True for all pixels which are least a value thresh
higher than the local ordering filter output. Thus for the default
ind_compare value of 1, the mask will be True wherever the mean diffraction
pattern is higher than the second brightest pixel in it’s local window by
at least a value of thresh. Finally, we loop through all diffraction
images, and any pixels defined by mask are replaced by their 3x3 local
median.

	Parameters:

	
	datacube (DataCube) – The 4D atacube

	thresh (float) – Threshold for replacing hot pixels, if pixel value minus local ordering
filter exceeds it.

	ind_compare (int) – Which median filter value to compare against. 0 = brightest pixel,
1 = next brightest, etc.

	return_mask (bool) – If True, returns the filter mask

	Returns:

	
	datacube (Datacube)

	mask (bool) – (optional) the bad pixel mask

	
py4DSTEM.preprocess.preprocess.datacube_diffraction_shift(datacube, xshifts, yshifts, periodic=True, bilinear=False)

	This function shifts each 2D diffraction image by the values defined by
(xshifts,yshifts). The shift values can be scalars (same shift for all
images) or arrays with the same dimensions as the probe positions in
datacube.

	Parameters:

	
	datacube (DataCube) – py4DSTEM DataCube

	xshifts (float) – Array or scalar value for the x dim shifts

	yshifts (float) – Array or scalar value for the y dim shifts

	periodic (bool) – Flag for periodic boundary conditions. If set to false, boundaries are assumed to be periodic.

	bilinear – Flag for bilinear image shifts. If set to False, Fourier shifting is used.

	
py4DSTEM.preprocess.preprocess.resample_data_diffraction(datacube, resampling_factor=None, output_size=None, method='bilinear')

	Performs diffraction space resampling of data by resampling_factor or to match output_size.

	
py4DSTEM.preprocess.preprocess.pad_data_diffraction(datacube, pad_factor=None, output_size=None)

	Performs diffraction space padding of data by pad_factor or to match output_size.

radialbkgrd

Functions for generating radially averaged backgrounds

	
py4DSTEM.preprocess.radialbkgrd.get_1D_polar_background(data, p_ellipse, center=None, maskUpdateIter=3, min_relative_threshold=4, smoothing=False, smoothingWindowSize=3, smoothingPolyOrder=4, smoothing_log=True, min_background_value=0.001, return_polararr=False)

	Gets the median polar background for a diffraction pattern

	Parameters:

	
	data (ndarray) – the data for which to find the polar eliptical background,
usually a diffraction pattern

	p_ellipse (5-tuple) – the ellipse parameters (qx0,qy0,a,b,theta)

	center (2-tuple or None) – if None, the center point from p_ellipse is used. Otherwise,
the center point in p_ellipse is ignored, and this argument
is used as (qx0,qy0) instead.

	maskUpdate_iter (integer) –

	min_relative_threshold (float) –

	smoothing (bool) – if true, applies a Savitzky-Golay smoothing filter

	smoothingWindowSize (integer) – size of the smoothing window, must be odd number

	smoothingPolyOrder (number) – order of the polynomial smoothing to be applied

	smoothing_log (bool) – if true log smoothing is performed

	min_background_value (float) – if log smoothing is true, a zero value will be replaced with a
small nonzero float

	return_polar_arr (bool) – if True the polar transform with the masked high intensity peaks
will be returned

	Returns:

	
	background1D: 1D polar elliptical background

	r_bins: the elliptically transformed radius associated with
background1D

	polarData (optional): the masked polar transform from which the
background is computed, returned iff return_polar_arr==True

	Return type:

	2- or 3-tuple of ndarrays

	
py4DSTEM.preprocess.radialbkgrd.get_2D_polar_background(data, background1D, r_bins, p_ellipse, center=None)

	Gets 2D polar elliptical background from linear 1D background

	Parameters:

	
	data (ndarray) – the data for which to find the polar eliptical background,
usually a diffraction pattern

	background1D (ndarray) – a vector representing the radial elliptical background

	r_bins (ndarray) – a vector of the elliptically transformed radius associated with
background1D

	p_ellipse (5-tuple) – the ellipse parameters (qx0,qy0,a,b,theta)

	center (2-tuple or None) – if None, the center point from p_ellipse is used. Otherwise,
the center point in p_ellipse is ignored, and this argument
is used as (qx0,qy0) instead.

	Returns:

	2D polar elliptical median background image

	Return type:

	ndarray

utils

	
py4DSTEM.preprocess.utils.bin2D(array, factor, dtype=<class 'numpy.float64'>)

	Bin a 2D ndarray by binfactor.

	Parameters:

	
	array (2D numpy array) –

	factor (int) – the binning factor

	dtype (numpy dtype) – datatype for binned array. default is numpy default for
np.zeros()

	Returns:

	the binned array

	
py4DSTEM.preprocess.utils.make_Fourier_coords2D(Nx, Ny, pixelSize=1)

	
	Generates Fourier coordinates for a (Nx,Ny)-shaped 2D array.
	Specifying the pixelSize argument sets a unit size.

	
py4DSTEM.preprocess.utils.get_shifted_ar(ar, xshift, yshift, periodic=True, bilinear=False, device='cpu')

	
Shifts array ar by the shift vector (xshift,yshift), using the either

the Fourier shift theorem (i.e. with sinc interpolation), or bilinear
resampling. Boundary conditions can be periodic or not.

	Parameters:

	
	ar (float) – input array

	xshift (float) – shift along axis 0 (x) in pixels

	yshift (float) – shift along axis 1 (y) in pixels

	periodic (bool) – flag for periodic boundary conditions

	bilinear (bool) – flag for bilinear image shifts

	device – calculation device will be perfomed on. Must be ‘cpu’ or ‘gpu’

	
py4DSTEM.preprocess.utils.get_maxima_2D(ar, subpixel='poly', upsample_factor=16, sigma=0, minAbsoluteIntensity=0, minRelativeIntensity=0, relativeToPeak=0, minSpacing=0, edgeBoundary=1, maxNumPeaks=1, _ar_FT=None)

	Finds the maximal points of a 2D array.

	Parameters:

	
	ar (array) –

	subpixel (str) – specifies the subpixel resolution algorithm to use.
must be in (‘pixel’,’poly’,’multicorr’), which correspond
to pixel resolution, subpixel resolution by fitting a
parabola, and subpixel resultion by Fourier upsampling.

	upsample_factor – the upsampling factor for the ‘multicorr’
algorithm

	sigma – if >0, applies a gaussian filter

	maxNumPeaks – the maximum number of maxima to return

	minAbsoluteIntensity – minSpacing, edgeBoundary, maxNumPeaks: filtering applied
after maximum detection and before subpixel refinement

	minRelativeIntensity – minSpacing, edgeBoundary, maxNumPeaks: filtering applied
after maximum detection and before subpixel refinement

	relativeToPeak – minSpacing, edgeBoundary, maxNumPeaks: filtering applied
after maximum detection and before subpixel refinement

	:paramminSpacing, edgeBoundary, maxNumPeaks: filtering applied
	after maximum detection and before subpixel refinement

	Parameters:

	_ar_FT (complex array) – None, uses this argument as the Fourier transform of ar,
instead of recomputing it

	Returns:

	a structured array with fields ‘x’,’y’,’intensity’

	
py4DSTEM.preprocess.utils.filter_2D_maxima(maxima, minAbsoluteIntensity=0, minRelativeIntensity=0, relativeToPeak=0, minSpacing=0, edgeBoundary=1, maxNumPeaks=1)

	
	Parameters:

	
	maxima – a numpy structured array with fields ‘x’, ‘y’, ‘intensity’

	minAbsoluteIntensity – delete counts with intensity below this value

	minRelativeIntensity – delete counts with intensity below this value times
the intensity of the i’th peak, where i is given by relativeToPeak

	relativeToPeak – see above

	minSpacing – if two peaks are within this euclidean distance from one
another, delete the less intense of the two

	edgeBoundary – delete peaks within this distance of the image edge

	maxNumPeaks – an integer. defaults to 1

	Returns:

	a numpy structured array with fields ‘x’, ‘y’, ‘intensity’

	
py4DSTEM.preprocess.utils.linear_interpolation_2D(ar, x, y)

	Calculates the 2D linear interpolation of array ar at position x,y using the four
nearest array elements.

process

Table of Contents

	process

	calibration

	classification

	diffraction

	diskdetection

	fit

	latticevectors

	phase

	probe

	rdf

	utils

	virtualdiffraction

	virtualimage

	wholepatternfit

calibration

Functions related to elliptical calibration, such as fitting elliptical
distortions.

The user-facing representation of ellipses is in terms of the following 5
:param x0:
:param y0 the center of the ellipse:
:param a the semimajor axis length:
:param b the semiminor axis length:
:param theta the: to the x-axis, in radians
:type theta the: positive, right handed

More details about the elliptical parameterization used can be found in
the module docstring for process/utils/elliptical_coords.py.

	
py4DSTEM.process.calibration.ellipse.fit_ellipse_1D(ar, center=None, fitradii=None, mask=None)

	For a 2d array ar, fits a 1d elliptical curve to the data inside an annulus centered
at center with inner and outer radii at fitradii. The data to fit make optionally
be additionally masked with the boolean array mask. See module docstring for more info.

	Parameters:

	
	ar (ndarray) – array containing the data to fit

	center (2-tuple of floats) – the center (x0,y0) of the annular fitting region

	fitradii (2-tuple of floats) – inner and outer radii (ri,ro) of the fit region

	mask (ar-shaped ndarray of bools) – ignore data wherever mask==True

	Returns:

	
	A 5-tuple containing the ellipse parameters:
	
	x0: the center x-position

	y0: the center y-position

	a: the semimajor axis length

	b: the semiminor axis length

	theta: the tilt of the ellipse semimajor axis with respect to the
x-axis, in radians

	Return type:

	(5-tuple of floats)

	
py4DSTEM.process.calibration.ellipse.ellipse_err(p, x, y, val)

	For a point (x,y) in a 2d cartesian space, and a function taking the value
val at point (x,y), and some 1d ellipse in this space given by

A(x-x0)^2 + B(x-x0)(y-y0) + C(y-y0)^2 = 1

this function computes the error associated with the function’s value at (x,y)
given by its deviation from the ellipse times val.

Note that this function is for internal use, and uses ellipse parameters p
given in canonical form (x0,y0,A,B,C), which is different from the ellipse
parameterization used in all the user-facing functions, for reasons of
numerical stability.

	
py4DSTEM.process.calibration.ellipse.fit_ellipse_amorphous_ring(data, center, fitradii, p0=None, mask=None)

	Fit the amorphous halo of a diffraction pattern, including any elliptical distortion.

The fit function is:

f(x,y; I0,I1,sigma0,sigma1,sigma2,c_bkgd,x0,y0,A,B,C) =
 Norm(r; I0,sigma0,0) +
 Norm(r; I1,sigma1,R)*Theta(r-R)
 Norm(r; I1,sigma2,R)*Theta(R-r) + c_bkgd

where

	(x,y) are cartesian coordinates,

	r is the radial coordinate,

	(I0,I1,sigma0,sigma1,sigma2,c_bkgd,x0,y0,R,B,C) are parameters,

	Norm(x;I,s,u) is a gaussian in the variable x with maximum amplitude I,
standard deviation s, and mean u

	Theta(x) is a Heavyside step function

	R is the radial center of the double sided gaussian, derived from (A,B,C)
and set to the mean of the semiaxis lengths

The function thus contains a pair of gaussian-shaped peaks along the radial
direction of a polar-elliptical parametrization of a 2D plane. The first gaussian is
centered at the origin. The second gaussian is centered about some finite R, and is
‘two-faced’: it’s comprised of two half-gaussians of different standard deviations,
stitched together at their mean value of R. This Janus (two-faced ;p) gaussian thus
comprises an elliptical ring with different inner and outer widths.

The parameters of the fit function are

	I0: the intensity of the first gaussian function

	I1: the intensity of the Janus gaussian

	sigma0: std of first gaussian

	sigma1: inner std of Janus gaussian

	sigma2: outer std of Janus gaussian

	c_bkgd: a constant offset

	x0,y0: the origin

	A,B,C: The ellipse parameters, in the form Ax^2 + Bxy + Cy^2 = 1

	Parameters:

	
	data (2d array) – the data

	center (2-tuple of numbers) – the center (x0,y0)

	fitradii (2-tuple of numbers) – the inner and outer radii of the fitting annulus

	p0 (11-tuple) – initial guess parameters. If p0 is None, the function will compute
a guess at all parameters. If p0 is a 11-tuple it must be populated by some
mix of numbers and None; any parameters which are set to None will be guessed
by the function. The parameters are the 11 parameters of the fit function
described above, p0 = (I0,I1,sigma0,sigma1,sigma2,c_bkgd,x0,y0,A,B,C).
Note that x0,y0 are redundant; their guess values are the x0,y0 values passed
to the main function, but if they are passed as elements of p0 these will
take precendence.

	mask (2d array of bools) – only fit to datapoints where mask is True

	Returns:

	Returns a 2-tuple.

The first element is the ellipse parameters need to elliptically parametrize
diffraction space, and is itself a 5-tuple:

	x0: x center

	y0: y center,

	a: the semimajor axis length

	b: the semiminor axis length

	theta: tilt of a-axis w.r.t x-axis, in radians

The second element is the full set of fit parameters to the double sided gaussian
function, described above, and is an 11-tuple

	Return type:

	(2-tuple comprised of a 5-tuple and an 11-tuple)

	
py4DSTEM.process.calibration.ellipse.double_sided_gaussian_fiterr(p, x, y, val)

	Returns the fit error associated with a point (x,y) with value val, given parameters p.

	
py4DSTEM.process.calibration.ellipse.double_sided_gaussian(p, x, y)

	Return the value of the double-sided gaussian function at point (x,y) given
parameters p, described in detail in the fit_ellipse_amorphous_ring docstring.

	
py4DSTEM.process.calibration.ellipse.constrain_degenerate_ellipse(data, p_ellipse, r_inner, r_outer, phi_known, fitrad=6)

	When fitting an ellipse to data containing 4 diffraction spots in a narrow annulus
about the central beam, the answer is degenerate: an infinite number of ellipses
correctly fit this data. Starting from one ellipse in the degenerate family of
ellipses, this function selects the ellipse which will yield a final angle of
phi_known between a pair of the diffraction peaks after performing elliptical
distortion correction.

Note that there are two possible angles which phi_known might refer to, because the
angle of interest is well defined up to a complementary angle. This function is
written such that phi_known should be the smaller of these two angles.

	Parameters:

	
	data (ndarray) –

	p_ellipse (5-tuple) – the ellipse parameters (x0,y0,a,b,theta)

	r_inner (float) – the fitting annulus inner radius

	r_outer (float) – the fitting annulus outer radius

	phi_known (float) – the known angle between a pair of diffraction peaks, in
radians

	fitrad (float) – the region about the fixed data point used to refine its position

	Returns:

	A 2-tuple containing:

	a_constrained: (float) the first semiaxis of the selected ellipse

	b_constrained: (float) the second semiaxis of the selected ellipse

	Return type:

	(2-tuple)

	
py4DSTEM.process.calibration.origin.fit_origin(data, mask=None, fitfunction='plane', returnfitp=False, robust=False, robust_steps=3, robust_thresh=2)

	Fits the position of the origin of diffraction space to a plane or parabola,
given some 2D arrays (qx0_meas,qy0_meas) of measured center positions,
optionally masked by the Boolean array mask. The 2D data arrays may be
passed directly as a 2-tuple to the arg data, or, if data is either a
DataCube or Calibration instance, they will be retreived automatically. If a
DataCube or Calibration are passed, fitted origin and residuals are stored
there directly.

	Parameters:

	
	data (2-tuple of 2d arrays) – the measured origin position (qx0,qy0)

	mask (2b boolean array, optional) – ignore points where mask=False

	fitfunction (str, optional) – must be ‘plane’ or ‘parabola’ or ‘bezier_two’
or ‘constant’

	returnfitp (bool, optional) – if True, returns the fit parameters

	robust (bool, optional) – If set to True, fit will be repeated with outliers
removed.

	robust_steps (int, optional) – Optional parameter. Number of robust iterations
performed after initial fit.

	robust_thresh (int, optional) – Threshold for including points, in units of
root-mean-square (standard deviations) error of the predicted values after
fitting.

	Returns:

	Return value depends on returnfitp. If returnfitp==False
(default), returns a 4-tuple containing:

	qx0_fit: (ndarray) the fit origin x-position

	qy0_fit: (ndarray) the fit origin y-position

	qx0_residuals: (ndarray) the x-position fit residuals

	qy0_residuals: (ndarray) the y-position fit residuals

If returnfitp==True, returns a 2-tuple. The first element is the 4-tuple
described above. The second element is a 4-tuple (popt_x,popt_y,pcov_x,pcov_y)
giving fit parameters and covariance matrices with respect to the chosen
fitting function.

	Return type:

	(variable)

	
py4DSTEM.process.calibration.origin.get_origin_single_dp(dp, r, rscale=1.2)

	Find the origin for a single diffraction pattern, assuming (a) there is no beam stop,
and (b) the center beam contains the highest intensity.

	Parameters:

	
	dp (ndarray) – the diffraction pattern

	r (number) – the approximate disk radius

	rscale (number) – factor by which r is scaled to generate a mask

	Returns:

	The origin

	Return type:

	(2-tuple)

	
py4DSTEM.process.calibration.origin.get_origin(datacube, r=None, rscale=1.2, dp_max=None, mask=None, fast_center=False)

	Find the origin for all diffraction patterns in a datacube, assuming (a) there is no
beam stop, and (b) the center beam contains the highest intensity. Stores the origin
positions in the Calibration associated with datacube, and optionally also returns
them.

	Parameters:

	
	datacube (DataCube) – the data

	r (number or None) – the approximate radius of the center disk. If None (default),
tries to compute r using the get_probe_size method. The data used for this
is controlled by dp_max.

	rscale (number) – expand ‘r’ by this amount to form a mask about the center disk
when taking its center of mass

	dp_max (ndarray or None) – the diffraction pattern or dp-shaped array used to
compute the center disk radius, if r is left unspecified. Behavior depends
on type:

	if dp_max==None (default), computes and uses the maximal
diffraction pattern. Note that for a large datacube, this may be a
slow operation.

	otherwise, this should be a (Q_Nx,Q_Ny) shaped array

	mask (ndarray or None) – if not None, should be an (R_Nx,R_Ny) shaped
boolean array. Origin is found only where mask==True, and masked
arrays are returned for qx0,qy0

	fast_center – (bool)
Skip the center of mass refinement step.

	Returns:

	the origin, (x,y) at each scan position

	Return type:

	(2-tuple of (R_Nx,R_Ny)-shaped ndarrays)

	
py4DSTEM.process.calibration.origin.get_origin_single_dp_beamstop(DP: ndarray, mask: ndarray, **kwargs)

	Find the origin for a single diffraction pattern, assuming there is a beam stop.

	Parameters:

	
	DP (np array) – diffraction pattern

	mask (np array) – boolean mask which is False under the beamstop and True
in the diffraction pattern. One approach to generating this mask
is to apply a suitable threshold on the average diffraction pattern
and use binary opening/closing to remove and holes

	Returns:

	qx0, qy0 (tuple) measured center position of diffraction pattern

	
py4DSTEM.process.calibration.origin.get_origin_beamstop(datacube: DataCube, mask: ndarray, **kwargs)

	Find the origin for each diffraction pattern, assuming there is a beam stop.

	Parameters:

	
	datacube (DataCube) –

	mask (np array) – boolean mask which is False under the beamstop and True
in the diffraction pattern. One approach to generating this mask
is to apply a suitable threshold on the average diffraction pattern
and use binary opening/closing to remove any holes

	Returns:

	qx0, qy0 (tuple of np arrays) measured center position of each diffraction pattern

	
py4DSTEM.process.calibration.probe.get_probe_size(DP, thresh_lower=0.01, thresh_upper=0.99, N=100)

	Gets the center and radius of the probe in the diffraction plane.

The algorithm is as follows:
First, create a series of N binary masks, by thresholding the diffraction pattern
DP with a linspace of N thresholds from thresh_lower to thresh_upper, measured
relative to the maximum intensity in DP.
Using the area of each binary mask, calculate the radius r of a circular probe.
Because the central disk is typically very intense relative to the rest of the DP, r
should change very little over a wide range of intermediate values of the threshold.
The range in which r is trustworthy is found by taking the derivative of r(thresh)
and finding identifying where it is small. The radius is taken to be the mean of
these r values. Using the threshold corresponding to this r, a mask is created and
the CoM of the DP times this mask it taken. This is taken to be the origin x0,y0.

	Parameters:

	
	DP (2D array) – the diffraction pattern in which to find the central disk.
A position averaged, or shift-corrected and averaged, DP works best.

	thresh_lower (float, 0 to 1) – the lower limit of threshold values

	thresh_upper (float, 0 to 1) – the upper limit of threshold values

	N (int) – the number of thresholds / masks to use

	Returns:

	A 3-tuple containing:

	r: (float) the central disk radius, in pixels

	x0: (float) the x position of the central disk center

	y0: (float) the y position of the central disk center

	Return type:

	(3-tuple)

	
py4DSTEM.process.calibration.qpixelsize.get_Q_pixel_size(q_meas, q_known, units='A')

	Computes the size of the Q-space pixels.

	Parameters:

	
	q_meas (number) – a measured distance in q-space in pixels

	q_known (number) – the corresponding known real space distance

	unit (str) – the units of the real space value of q_known

	Returns:

	the detector pixel size, the associated units

	Return type:

	(number,str)

	
py4DSTEM.process.calibration.qpixelsize.get_dq_from_indexed_peaks(qs, hkl, a)

	Get dq, the size of the detector pixels in the diffraction plane, in inverse length
units, using a set of measured peak distances from the optic axis, their Miller
indices, and the known unit cell size.

	Parameters:

	
	qs (array) – the measured peak positions

	hkl (list/tuple of length-3 tuples) – the Miller indices of the peak positions qs.
The length of qs and hkl must be the same. To ignore any peaks, for this
peak set (h,k,l)=(0,0,0).

	a (number) – the unit cell size

	Returns:

	A 4-tuple containing:

	dq: (number) the detector pixel size

	qs_fit: (array) the fit positions of the peaks

	hkl_fit: (list/tuple of length-3 tuples) the Miller indices of the
fit peaks

	mask: (array of bools) False wherever hkl[i]==(0,0,0)

	Return type:

	(4-tuple)

	
py4DSTEM.process.calibration.rotation.compare_QR_rotation(im_R, im_Q, QR_rotation, R_rotation=0, R_position=None, Q_position=None, R_pos_anchor='center', Q_pos_anchor='center', R_length=0.33, Q_length=0.33, R_width=0.001, Q_width=0.001, R_head_length_adjust=1, Q_head_length_adjust=1, R_head_width_adjust=1, Q_head_width_adjust=1, R_color='r', Q_color='r', figsize=(10, 5), returnfig=False)

	Visualize a rotational offset between an image in real space, e.g. a STEM
virtual image, and an image in diffraction space, e.g. a defocused CBED
shadow image of the same region, by displaying an arrow overlaid over each
of these two images with the specified QR rotation applied. The QR rotation
is defined as the counter-clockwise rotation from real space to diffraction
space, in degrees.

	Parameters:

	
	im_R (numpy array or other 2D image-like object (e.g. a VirtualImage)) – A real space image, e.g. a STEM virtual image

	im_Q (numpy array or other 2D image-like object) – A diffraction space image, e.g. a defocused CBED image

	QR_rotation (number) – The counterclockwise rotation from real space to diffraction space,
in degrees

	R_rotation (number) – The orientation of the arrow drawn in real space, in degrees

	R_position (None or 2-tuple) – The position of the anchor point for the R-space arrow. If None, defaults
to the center of the image

	Q_position (None or 2-tuple) – The position of the anchor point for the Q-space arrow. If None, defaults
to the center of the image

	R_pos_anchor ('center' or 'tail' or 'head') – The anchor point for the R-space arrow, i.e. the point being specified by
the R_position parameter

	Q_pos_anchor ('center' or 'tail' or 'head') – The anchor point for the Q-space arrow, i.e. the point being specified by
the Q_position parameter

	R_length (number or None) – The length of the R-space arrow, as a fraction of the mean size of the
image

	Q_length (number or None) – The length of the Q-space arrow, as a fraction of the mean size of the
image

	R_width (number) – The width of the R-space arrow

	Q_width (number) – The width of the R-space arrow

	R_head_length_adjust (number) – Scaling factor for the R-space arrow head length

	Q_head_length_adjust (number) – Scaling factor for the Q-space arrow head length

	R_head_width_adjust (number) – Scaling factor for the R-space arrow head width

	Q_head_width_adjust (number) – Scaling factor for the Q-space arrow head width

	R_color (color) – Color of the R-space arrow

	Q_color (color) – Color of the Q-space arrow

	figsize (2-tuple) – The figure size

	returnfig (bool) – Toggles returning the figure and axes

	
py4DSTEM.process.calibration.rotation.get_Qvector_from_Rvector(vx, vy, QR_rotation)

	For some vector (vx,vy) in real space, and some rotation QR between real and
reciprocal space, determine the corresponding orientation in diffraction space.
Returns both R and Q vectors, normalized.

	Parameters:

	
	vx (numbers) – the (x,y) components of a real space vector

	vy (numbers) – the (x,y) components of a real space vector

	QR_rotation (number) – the offset angle between real and reciprocal space.

	Specifically –

	to (the counterclockwise rotation of real space with respect) –

	degrees. (diffraction space. In) –

	Returns:

	4-tuple consisting of:

	vx_R: the x component of the normalized real space vector

	vy_R: the y component of the normalized real space vector

	vx_Q: the x component of the normalized reciprocal space vector

	vy_Q: the y component of the normalized reciprocal space vector

	Return type:

	(4-tuple)

	
py4DSTEM.process.calibration.rotation.get_Rvector_from_Qvector(vx, vy, QR_rotation)

	For some vector (vx,vy) in diffraction space, and some rotation QR between real and
reciprocal space, determine the corresponding orientation in diffraction space.
Returns both R and Q vectors, normalized.

	Parameters:

	
	vx (numbers) – the (x,y) components of a reciprocal space vector

	vy (numbers) – the (x,y) components of a reciprocal space vector

	QR_rotation (number) – the offset angle between real and reciprocal space.
Specifically, the counterclockwise rotation of real space with respect to
diffraction space. In degrees.

	Returns:

	4-tuple consisting of:

	vx_R: the x component of the normalized real space vector

	vy_R: the y component of the normalized real space vector

	vx_Q: the x component of the normalized reciprocal space vector

	vy_Q: the y component of the normalized reciprocal space vector

	Return type:

	(4-tuple)

classification

	
class py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification(braggpeaks, Qx, Qy, X_is_boolean=True, max_dist=None)

	A class for classifying 4D-STEM data based on which Bragg peaks are found at each
diffraction pattern.

A BraggVectorClassification instance enables classification using several methods; a brief
overview is provided here, with more details in each individual method’s documentation.

Initialization methods:

	__init__:
	Determine the initial classes. The approach here involves first segmenting diffraction
space, using maxima of a Bragg vector map.

get_initial_classes_by_cooccurrence:

Class refinement methods:
Each of these methods creates a new set of candidate classes, but does not yet overwrite the
old classes. This enables the new classes to be viewed and compared to the old classes before
deciding whether to accept or reject them. Thus running two of these methods in succession,
without accepting changes in between, simply discards the first set of candidate classes.

	nmf:
	Nonnegative matrix factorization (X = WH) to refine the classes. Briefly, after
constructing a matrix X which describes which Bragg peaks were observed in each
diffraction pattern, we factor X into two smaller matrices, W and H. Physically, W and H
describe a small set of classes, each of which corresponds to some subset of (or, more
strictly, weights for) the Bragg peaks and the scan positions. We additionally impose
the contraint that, on physical grounds, all the elements of X, W, and H must be
nonnegative.

	split:
	If any classes contain multiple non-contiguous segments in real space, divide these into
distinct classes.

	merge:
	If any classes contain sufficient overlap in both scan positions and BPs, merge them
into a single class.

Accepting/rejecting changes:

	accept:
	Updates classes (the W and H matrices) with the current candidate classes.

	reject:
	Discard the current candidate classes.

Class examination methods:

	get_class:
	get a single class, returning both its BP weights and scan position weights

	get_class_BPs:
	get the BP weights for a single class

	get_class_image:
	get the image, i.e. scan position weights, associated with a single class

	get_candidate_class:
	as above, for the current candidate class

	get_candidate_class_BPs:
	as above, for the current candidate class

	get_candidate_class_image:
	as above, for the current candidate class

	Parameters:

	
	braggpeaks (PointListArray) – Bragg peaks; must have coords ‘qx’ and ‘qy’

	Qx (ndarray of floats) – x-coords of the voronoi points

	Qy (ndarray of floats) – y-coords of the voronoi points

	X_is_boolean (bool) – if True, populate X with bools (BP is or is not present).
if False, populate X with floats (BP c.c. intensities)

	max_dist (None or number) – maximum distance from a given voronoi point a peak
can be and still be associated with this label

	
__init__(braggpeaks, Qx, Qy, X_is_boolean=True, max_dist=None)

	Initializes a BraggVectorClassification instance.

This method:
1. Gets integer labels for all of the detected Bragg peaks, according to which

(Qx,Qy) is closest, then generating a corresponding set of integers for each scan
position. See get_braggpeak_labels_by_scan_position() docstring for more info.

	Generates the data matrix X. See the nmf() method docstring for more info.

This method should be followed by one of the methods which populates the initial classes -
currently, either get_initial_classes_by_cooccurrence() or get_initial_classes_from_images.
These methods generate the W and H matrices – i.e. the decompositions of the X matrix in
terms of scan positions and Bragg peaks – which are necessary for any subsequent
processing.

	Parameters:

	
	braggpeaks (PointListArray) – Bragg peaks; must have coords ‘qx’ and ‘qy’

	Qx (ndarray of floats) – x-coords of the voronoi points

	Qy (ndarray of floats) – y-coords of the voronoi points

	X_is_boolean (bool) – if True, populate X with bools (BP is or is not present).
if False, populate X with floats (BP c.c. intensities)

	max_dist (None or number) – maximum distance from a given voronoi point a peak
can be and still be associated with this label

	
R_Nx

	shape of real space (x)

	
R_Ny

	shape of real space (y)

	
Qx

	x-coordinates of the voronoi points

	
Qy

	y-coordinates of the voronoi points

	
braggpeak_labels

	the sets of Bragg peaks present at each scan position

	
N_feat

	first dimension of the data matrix; the number of bragg peaks

	
N_meas

	second dimension of the data matrix; the number of scan positions

	
X

	the data matrix

	
get_initial_classes_by_cooccurrence(thresh=0.3, BP_fraction_thresh=0.1, max_iterations=200, X_is_boolean=True, n_corr_init=2)

	Populate the initial classes by finding sets of Bragg peaks that tend to co-occur
in the
same diffraction patterns.

Beginning from the sets of Bragg peaks labels for each scan position (determined
in __init__), this method gets initial classes by determining which labels are
most likely to co-occur with each other – see get_initial_classes() docstring
for more info. Then the matrices W and H are generated – see nmf() doscstring
for discussion.

	Parameters:

	
	thresh (float in [0,1]) – threshold for adding new BPs to a class

	BP_fraction_thresh (float in [0,1]) – algorithm terminates if fewer than this
fraction of the BPs have not been assigned to a class

	max_iterations (int) – algorithm terminates after this many iterations

	n_corr_init (int) – seed new classes by finding maxima of the n-point joint
probability function. Must be 2 or 3.

	
get_initial_classes_from_images(class_images)

	Populate the initial classes using a set of user-defined class images.

	Parameters:

	class_images (ndarray) – must have shape (R_Nx,R_Ny,N_c), where N_c is the
number of classes, and class_images[:,:,i] is the image of class i.

	
nmf(max_iterations=1)

	Nonnegative matrix factorization to refine the classes.

The data matrix X is factored into two smaller matrices, W and H:

X = WH

Here,

	``X``is the data matrix. It has shape (N_feat,N_meas), where N_feat is the
number of Bragg peak integer labels (i.e. len(Qx)) and N_meas is the number
of diffraction patterns (i.e. R_Nx*R_Ny). Element X[i,j] represents the
value of the i’th BP in the j’th DP. The values depend on the flag
datamatrix_is_boolean: if True, X[i,j] is 1 if this BP was present in this
DP, or 0 if not; if False, X[i,j] is the cross correlation intensity of
this BP in this DP.

	W is the class matrix. It has shape (N_feat,N_c), where N_c is the
number of classes. The i’th column vector, w_i = W[:,i], describes the
weight of each Bragg peak in the i’th class. w_i has length N_feat, and
w_i[j] describes how strongly the j’th BP is associated with the i’th
class.

	H is the coefficient matrix. It has shape (N_c,N_meas). The i’th
column vector H[:,i] describes the contribution of each class to scan
position i.

Alternatively, we can completely equivalently think of H as a class matrix,
and W as a coeffient matrix. In this picture, the i’th row vector of H,
h_i = H[i,:], describes the weight of each scan position in the i’th class.
h_i has length N_meas, and h_i[j] describes how strongly the j’th scan
position is associated with the i’th class. The row vector W[i,:] is then
a coefficient vector, which gives the contributions each of the (H) classes
to the measured values of the i’th BP. These pictures are related by a
transpose: X = WH is equivalent to X.T = (H.T)(W.T).

In nonnegative matrix factorization we impose the constrain, here on
physical grounds, that all elements of X, W, and H should be nonnegative.

The computation itself is performed using the sklearn nmf class. When this method
is called, the three relevant matrices should already be defined. This method
refines W and H, with up to max_iterations NMF steps.

	Parameters:

	max_iterations (int) – the maximum number of NMF steps to take

	
split(sigma=2, threshold_split=0.25, expand_mask=1, minimum_pixels=1)

	If any classes contain multiple non-contiguous segments in real space, divide
these regions into distinct classes.

Algorithm is as follows:
First, an image of each class is obtained from its scan position weights.
Then, the image is convolved with a gaussian of std sigma.
This is then turned into a binary mask, by thresholding with threshold_split.
Stray pixels are eliminated by performing a one pixel binary closing, then binary
opening.
The mask is then expanded by expand_mask pixels.
Finally, the contiguous regions of the resulting mask are found. These become the
new class components by scan position.

The splitting itself involves creating two classes - i.e. adding a column to W
and a row to H. The new BP classes (W columns) have exactly the same values as
the old BP class. The two new scan position classes (H rows) divide up the
non-zero entries of the old scan position class into two or more non-intersecting
subsets, each of which becomes its own new class.

	Parameters:

	
	sigma (float) – std of gaussian kernel used to smooth the class images before
thresholding and splitting.

	threshold_split (float) – used to threshold the class image to create a binary mask.

	expand_mask (int) – number of pixels by which to expand the mask before separating
into contiguous regions.

	minimum_pixels (int) – if, after splitting, a potential new class contains fewer than
this number of pixels, ignore it

	
merge(threshBPs=0.1, threshScanPosition=0.1, return_params=True)

	If any classes contain sufficient overlap in both scan positions and BPs, merge
them into a single class.

The algorithm is as follows:
First, the Pearson correlation coefficient matrix is calculated for the classes
according to both their diffraction space, Bragg peak representations (i.e. the
correlations of the columns of W) and according to their real space, scan
position representations (i.e. the correlations of the rows of H). Class pairs
whose BP correlation coefficient exceeds threshBPs and whose scan position
correlation coefficient exceed threshScanPosition are deemed ‘sufficiently
overlapped’, and are marked as merge candidates. To account for intransitivity
issues (e.g. class pairs 1/2 and 2/3 are merge candidates, but class pair 1/3 is
not), merging is then performed beginning with candidate pairs with the greatest
product of the two correlation coefficients, skipping later merge candidate pairs
if one of the two classes has already been merged.

The algorithm can be looped until no more merge candidates satisfying the
specified thresholds remain with the merge_iterative method.

The merging itself involves turning two classes into one by combining a pair of
W columns (i.e. the BP representations of the classes) and the corresponding pair
of H rows (i.e. the scan position representation of the class) into a single W
column / H row. In terms of scan positions, the new row of H is generated by
simply adding the two old H rows. In terms of Bragg peaks, the new column of W is
generated by adding the two old columns of W, while weighting each by its total
intensity in real space (i.e. the sum of its H row).

	Parameters:

	
	threshBPs (float) – the threshold for the bragg peaks correlation coefficient,
above which the two classes are considered candidates for merging

	threshScanPosition (float) – the threshold for the scan position correlation
coefficient, above which two classes are considered candidates for
merging

	return_params (bool) – if True, returns W_corr, H_corr, and merge_candidates.
Otherwise, returns nothing. Incompatible with iterative=True.

	
merge_by_class_index(i, j)

	Merge classes i and j into a single class.

Columns i and j of W pair of W (i.e. the BP representations of the classes) and
the corresponding pair of H rows (i.e. the scan position representation of the
class) are mergedinto a single W column / H row. In terms of scan positions, the
new row of H is generated by simply adding the two old H rows. In terms of Bragg
peaks, the new column of W is generated by adding the two old columns of W, while
weighting each by its total intensity in real space (i.e. the sum of its H row).

	Parameters:

	
	i (int) – index of the first class to merge

	j (int) – index of the second class to merge

	
split_by_class_index(i, sigma=2, threshold_split=0.25, expand_mask=1, minimum_pixels=1)

	If class i contains multiple non-contiguous segments in real space, divide these
regions into distinct classes.

Algorithm is as described in the docstring for self.split.

	Parameters:

	
	i (int) – index of the class to split

	sigma (float) – std of gaussian kernel used to smooth the class images before
thresholding and splitting.

	threshold_split (float) – used to threshold the class image to create a binary
mask.

	expand_mask (int) – number of pixels by which to expand the mask before
separating into contiguous regions.

	minimum_pixels (int) – if, after splitting, a potential new class contains
fewer than this number of pixels, ignore it

	
remove_class(i)

	Remove class i.

	Parameters:

	i (int) – index of the class to remove

	
merge_iterative(threshBPs=0.1, threshScanPosition=0.1)

	If any classes contain sufficient overlap in both scan positions and BPs, merge
them into a single class.

Identical to the merge method, with the addition of iterating until no new merge
pairs are found.

	Parameters:

	
	threshBPs (float) – the threshold for the bragg peaks correlation coefficient,
above which the two classes are considered candidates for merging

	threshScanPosition (float) – the threshold for the scan position correlation
coefficient, above which two classes are considered candidates for
merging

	
accept()

	Updates classes (the W and H matrices) with the current candidate classes.

	
reject()

	Discard the current candidate classes.

	
get_class(i)

	Get a single class, returning both its BP weights and scan position weights.

	Parameters:

	i (int) – the class index

	Returns:

	A 2-tuple containing:

	class_BPs: (length N_feat array of floats) the weights of the
N_feat Bragg peaks for this class

	class_image: (shape (R_Nx,R_Ny) array of floats) the weights of
each scan position in this class

	Return type:

	(2-tuple)

	
get_class_BPs(i)

	Get a single class, returning its BP weights.

	Parameters:

	i (int) – the class index

	Returns:

	the weights of the N_feat Bragg peaks for
this class

	Return type:

	(length N_feat array of floats)

	
get_class_image(i)

	Get a single class, returning its scan position weights.

	Parameters:

	i (int) – the class index

	Returns:

	the weights of each scan position in
this class

	Return type:

	(shape (R_Nx,R_Ny) array of floats)

	
get_candidate_class(i)

	Get a single candidate class, returning both its BP weights and scan position weights.

	Parameters:

	i (int) –

	Returns:

	A 2-tuple containing:

	class_BPs: (length N_feat array of floats) the weights of the
N_feat Bragg peaks for this class

	class_image: (shape (R_Nx,R_Ny) array of floats) the weights of
each scan position in this class

	Return type:

	(2-tuple)

	
get_candidate_class_BPs(i)

	Get a single candidate class, returning its BP weights.

	Accepts:
	i (int) the class index

	Returns:

	
	class_BPs (length N_feat array of floats) the weights of the N_feat Bragg peaks for
	this class

	
get_candidate_class_image(i)

	Get a single candidate class, returning its scan position weights.

	Parameters:

	i (int) – the class index

	Returns:

	the weights of each scan position in
this class

	Return type:

	(shape (R_Nx,R_Ny) array of floats)

	
py4DSTEM.process.classification.braggvectorclassification.get_braggpeak_labels_by_scan_position(braggpeaks, Qx, Qy, max_dist=None)

	For each scan position, gets a set of integers, specifying the bragg peaks at this
scan position.

From a set of positions in diffraction space (Qx,Qy), assign each detected bragg peak
in the PointListArray braggpeaks a label corresponding to the index of the closest
position; thus for a bragg peak at (qx,qy), if the closest position in (Qx,Qy) is
(Qx[i],Qy[i]), assign this peak the label i. This is equivalent to assigning each
bragg peak (qx,qy) a label according to the Voronoi region it lives in, given a
voronoi tesselation seeded from the points (Qx,Qy).

For each scan position, get the set of all indices i for all bragg peaks found at
this scan position.

	Parameters:

	
	braggpeaks (PointListArray) – Bragg peaks; must have coords ‘qx’ and ‘qy’

	Qx (ndarray of floats) – x-coords of the voronoi points

	Qy (ndarray of floats) – y-coords of the voronoi points

	max_dist (None or number) – maximum distance from a given voronoi point a peak
can be and still be associated with this label

	Returns:

	(list of lists of sets) the labels found at each scan position. Scan position
(Rx,Ry) is accessed via braggpeak_labels[Rx][Ry]

	
py4DSTEM.process.classification.braggvectorclassification.get_initial_classes(braggpeak_labels, N, thresh=0.3, BP_fraction_thresh=0.1, max_iterations=200, n_corr_init=2)

	From the sets of Bragg peaks present at each scan position, get an initial guess
classes at which Bragg peaks should be grouped together into classes.

The algorithm is as follows:
1. Calculate an n-point correlation function, i.e. the joint probability of any given
n BPs coexisting in a diffraction pattern. n is controlled by n_corr_init, and must
be 2 or 3. peaks i, j, and k are all in the same DP.
2. Find the BP triplet maximizing the 3-point function; include these three BPs in a
class.
3. Get all DPs containing the class BPs. From these, find the next most likely BP to
also be present. If its probability of coexisting with the known class BPs is
greater than thresh, add it to the class and repeat this step. Otherwise, proceed to
the next step.
4. Check: if the new class is the same as a class that has already been found, OR if
the fraction of BPs which have not yet been placed in a class is less than
BP_fraction_thresh, or more than max_iterations have been attempted, finish,
returning all classes. Otherwise, set all slices of the 3-point function containing
the BPs in the new class to zero, and begin a new iteration, starting at step 2 using
the new, altered 3-point function.

	Parameters:

	
	N (int) – the total number of indexed Bragg peaks in the 4D-STEM dataset

	braggpeak_labels (list of lists of sets) – the Bragg peak labels found at each
scan position; see get_braggpeak_labels_by_scan_position().

	thresh (float in [0,1]) – threshold for adding new BPs to a class

	BP_fraction_thresh (float in [0,1]) – algorithm terminates if fewer than this
fraction of the BPs have not been assigned to a class

	max_iterations (int) – algorithm terminates after this many iterations

	n_corr_init (int) – seed new classes by finding maxima of the n-point joint
probability function. Must be 2 or 3.

	Returns:

	the sets of Bragg peaks constituting the classes

	Return type:

	(list of sets)

	
py4DSTEM.process.classification.classutils.get_class_DP(datacube, class_image, thresh=0.01, xshifts=None, yshifts=None, darkref=None, intshifts=True)

	Get the average diffraction pattern for the class described in real space by
class_image.

	Parameters:

	
	datacube (DataCube) – a datacube

	class_image (2D array) – the weight of the class at each position in real space

	thresh (float) – only include diffraction patterns for scan positions with a value
greater than or equal to thresh in class_image

	xshifts (2D array, or None) – the x diffraction shifts at each real space pixel.
If None, no shifting is performed.

	yshifts (2D array, or None) – the y diffraction shifts at each real space pixel.
If None, no shifting is performed.

	darkref (2D array, or None) – background to remove from each diffraction pattern

	intshifts (bool) – if True, round shifts to the nearest integer to speed up
computation

	Returns:

	the average diffraction pattern for the class

	Return type:

	(2D array)

	
py4DSTEM.process.classification.classutils.get_class_DP_without_Bragg_scattering(datacube, class_image, braggpeaks, radius, x0, y0, thresh=0.01, xshifts=None, yshifts=None, darkref=None, intshifts=True)

	Get the average diffraction pattern, removing any Bragg scattering, for the class
described in real space by class_image.

Bragg scattering is eliminated by masking circles of size radius about each of the
detected peaks in braggpeaks in each diffraction pattern before adding to the average
image. Importantly, braggpeaks refers to the peak positions in the raw data - i.e.
BEFORE any shift correction is applied. Passing shifted Bragg peaks will yield
incorrect results. For speed, the Bragg peaks are removed with a binary mask, rather
than a continuous sigmoid, so selecting a radius that is slightly (~1 pix) larger
than the disk size is recommended.

	Parameters:

	
	datacube (DataCube) – a datacube

	class_image (2D array) – the weight of the class at each position in real space

	braggpeaks (PointListArray) – the detected Bragg peak positions, with respect to
the raw data (i.e. not diffraction shift or ellipse corrected)

	radius (number) – the radius to mask about each detected Bragg peak - should be
slightly larger than the disk radius

	x0 (number) – x-position of the optic axis

	y0 (number) – y-position of the optic axis

	thresh (float) – only include diffraction patterns for scan positions with a value
greater than or equal to thresh in class_image

	xshifts (2D array, or None) – the x diffraction shifts at each real space pixel.
If None, no shifting is performed.

	yshifts (2D array, or None) – the y diffraction shifts at each real space pixel.
If None, no shifting is performed.

	darkref (2D array, or None) – background to remove from each diffraction pattern

	intshifts (bool) – if True, round shifts to the nearest integer to speed up
computation

	Returns:

	class_DP (2D array) the average diffraction pattern for the class

	
class py4DSTEM.process.classification.featurization.Featurization(features, R_Nx, R_Ny, name)

	A class for feature selection, modification, and classification of 4D-STEM data based on a user defined
array of input features for each pattern. Features are stored under Featurization. Features and can be
used for a variety of unsupervised classification tasks.

	Initialization methods:
	
	__init__:
	Creates instance of featurization

	concatenate_features:
	Creates instance of featurization from a list of featurization instances

	from_braggvectors:
	Creates instance of featurization from a BraggVectors instance

	Feature Dictionary Modification Methods
	
	add_feature:
	Adds features to the features array

	remove_feature:
	Removes features to the features array

	Feature Preprocessing Methods
	
	MinMaxScaler:
	Performs sklearn MinMaxScaler operation on features stored at a key

	RobustScaler:
	Performs sklearn RobustScaler operation on features stored at a key

	mean_feature:
	Takes the rowwise average of a matrix stored at a key, such that only one column is left,
reducing a set of n features down to 1 feature per pattern.

	median_feature:
	Takes the rowwise median of a matrix stored at a key, such that only one column is left,
reducing a set of n features down to 1 feature per pattern.

	max_feature:
	Takes the rowwise max of a matrix stored at a key, such that only one column is left,
reducing a set of n features down to 1 feature per pattern.

	Classification Methods
	
	PCA:
	Principal Component Analysis to refine features.

	ICA:
	Independent Component Analysis to refine features.

	NMF:
	Performs either traditional or iterative Nonnegative Matrix Factorization (NMF) to refine features.

	GMM:
	Gaussian mixture model to predict class labels. Fits a gaussian based on covariance of features.

	Class Examination Methods
	
	get_class_DPs:
	Gets weighted class diffraction patterns (DPs) for an NMF or GMM operation

	get_class_ims:
	Gets weighted class images (ims) for an NMF or GMM operation

	
__init__(features, R_Nx, R_Ny, name)

	Initializes classification instance.

This method:
1. Generates key:value pair to access input features
2. Initializes the empty dictionaries for feature modification and classification

	Parameters:

	
	features (list) – A list of ndarrays which will each be associated with value stored at the key in the same index within the list

	R_Nx (int) – The real space x dimension of the dataset

	R_Ny (int) – The real space y dimension of the dataset

	name (str) – The name of the featurization object

	Returns:

	New Featurization instance

	Return type:

	new_instance

	
from_braggvectors(bins_x, bins_y, intensity_scale, name, mask=None)

	Initialize a featurization instance from a BraggVectors instance

	Parameters:

	
	braggvectors (BraggVectors) – BraggVectors instance containing calibrations

	bins_x (int) – Number of pixels per bin in x direction

	bins_y (int) – Number of pixels per bin in y direction

	intensity_scale (float) – Value to scale intensity of detected disks by

	name (str) – Name of featurization instance

	mask (bool) – Mask to remove disks in unwanted positions in diffraction space

	Returns:

	Featurization instance

	Return type:

	new_instance

	Details:
	Transforms the calibrated pointlistarray in BraggVectors instance into a numpy array
that can be clustered using the methods in featurization.

	
concatenate_features(name)

	Concatenates featurization instances (features) and outputs a new Featurization instance
containing the concatenated features from each featurization instance. R_Nx, R_Ny will be
inherited from the featurization instances and must be consistent across objects.

	Parameters:

	
	features (list) – A list of keys to be concatenated into one array

	name (str) – The name of the featurization instance

	Returns:

	Featurization instance

	Return type:

	new_instance

	
add_features(feature)

	Add a feature to the end of the features array

	Parameters:

	
	key (int, float, str) – A key in which a feature can be accessed from

	feature (ndarray) – The feature associated with the key

	
delete_features(index)

	Deletes feature columns from the feature array

	Parameters:

	index (int, list) – A key which will be removed

	
mean_feature(index)

	Takes columnwise mean and replaces features in ‘index’.

	Parameters:

	index (list of int) – Indices of features to take the mean of. New feature array is placed in self.features.

	
median_feature(index)

	Takes columnwise median and replaces features in ‘index’. New feature array is placed in self.features.

	Parameters:

	index (list of int) – Indices of features to take the median of.

	
max_feature(index)

	Takes columnwise max and replaces features in ‘index’. New feature array is placed in self.features.

	Parameters:

	index (list of int) – Indices of features to take the max of.

	
MinMaxScaler(return_scaled=True)

	Uses sklearn MinMaxScaler to scale a subset of the input features.
Replaces a feature with the positive shifted array.

	Parameters:

	return_scaled (bool) – returns the scaled array

	
RobustScaler(return_scaled=True)

	Uses sklearn RobustScaler to scale a subset of the input features.
Replaces a feature with the positive shifted array.

	Parameters:

	return_scaled (bool) – returns the scaled array

	
shift_positive(return_scaled=True)

	Replaces a feature with the positive shifted array.

	Parameters:

	return_scaled (bool) – returns the scaled array

	
PCA(components, return_results=False)

	Performs PCA on features

	Parameters:

	components (list) – A list of ints for each key. This will be the output number of features

	
ICA(components, return_results=True)

	Performs ICA on features

	Parameters:

	components (list) – A list of ints for each key. This will be the output number of features

	
NMF(max_components, num_models, merge_thresh=1, max_iterations=1, random_seed=None, save_all_models=True, return_results=False)

	Performs either traditional Nonnegative Matrix Factoriation (NMF) or iteratively on input features.
For Traditional NMF:

set either merge_threshold = 1, max_iterations = 1, or both. Default is to set

	Parameters:

	
	max_components (int) – Number of initial components to start the first NMF iteration

	merge_thresh (float) – Correlation threshold to merge features

	num_models (int) – Number of independent models to run (number of learners that will be combined in consensus).

	max_iterations (int) – Number of iterations. Default 1, which runs traditional NMF

	random_seed (int) – Random seed.

	save_all_models (bool) – Whether or not to return all of the models - default is to return all outputs for consensus clustering.
if False, will only return the model with the lowest NMF reconstruction error.

	return_results (bool) – Whether or not to return the final class weights

	Details:
	This method may require trial and error for proper selection of parameters. To perform traditional NMF, the
defaults should be used:

merge_thresh = 1
max_iterations = 1

Note that the max_components in this case will be equivalent to the number of classes the NMF model identifies.

Iterative NMF calculates the correlation between all of the output columns from an NMF iteration, merges the
features correlated above the merge_thresh, and performs NMF until either max_iterations is reached or until
no more columns are correlated above merge_thresh.

	
GMM(cv, components, num_models, random_seed=None, return_results=False)

	Performs gaussian mixture model on input features

	Parameters:

	
	cv (str) – Covariance type - must be ‘spherical’, ‘tied’, ‘diag’, or ‘full’

	components (int) – Number of components

	num_models (int) – Number of models to run

	random_seed (int) – Random seed

	
get_class_DPs(datacube, method, thresh)

	Returns weighted class patterns based on classification instance
datacube must be vectorized in real space (shape = (R_Nx * R_Ny, 1, Q_Nx, Q_Ny)

	Parameters:

	
	classification_method (str) – Either ‘nmf’ or ‘gmm’ - finds location of clusters

	datacube (py4DSTEM datacube) – Vectorized in real space, with shape (R_Nx * R_Ny, Q_Nx, Q_Ny)

	
get_class_ims(classification_method)

	Returns weighted class maps based on classification instance

	Parameters:

	classification_method (str) – Location to retrieve class images from - NMF, GMM, PCA, or ICA

	
spatial_separation(size, threshold=0, method=None, clean=True)

	Identify spatially distinct regions from class images and separate based on a threshold and size.

	Parameters:

	
	size (int) – Number of pixels which is the minimum to keep a class - all spatially distinct regions with
less than ‘size’ pixels will be removed

	threshold (float) – Intensity weight of a component to keep

	method (str) – (Optional) Filter method, default None. Accepts options ‘yen’ and ‘otsu’.

	clean (bool) – Whether or not to ‘clean’ cluster sets based on overlap, i.e. remove clusters that do not have
any unique components

	
consensus(threshold=0, location='spatially_separated_ims', split=0, method='mean', drop_bins=0)

	Consensus Clustering takes the outcome of a prepared set of 2D images from each cluster and averages the outcomes.

	Parameters:

	
	threshold (float) – Threshold weights, default 0

	location (str) – Where to get the consensus from - after spatial separation = ‘spatially_separated_ims’

	split_value (float) – Threshold in which to separate classes during label correspondence (Default 0). This should be
proportional to the expected class weights- the sum of the weights in the current class image
that match nonzero values in each bin are calculated and then checked for splitting.

	method (str) – Method in which to combine the consensus clusters - either mean or median.

	drop_bins (int) – Number of clusters needed in each class to keep cluster set in the consensus. Default 0, meaning

	Details:
	This method involves 2 steps: Label correspondence and consensus clustering.

Label correspondence sorts the classes found by the independent models into bins based on class overlap in real space.
Arguments related to label correspondence are the threshold and split_value. The threshold is related
to the weights of the independent classes. If the weight of the observation in the class is less than the threshold, it
will be set to 0. The split_value indicates the extent of similarity the independent classes must have before intializing
a new bin. The default is 0 - this means if the class of interest has 0 overlap with the identified bins, a new bin will
be created. The value is based on the sum of the weights in the current class image that match the nonzero values in the
current bins.

Consensus clustering combines these sorted bin into 1 class based on the selected method (either ‘mean’ which takes
the average of the bin, or ‘median’ which takes the median of the bin). Bins with less than the drop_bins value will
not be included in the final results.

diffraction

	
py4DSTEM.process.diffraction.WK_scattering_factors.compute_WK_factor(g: ndarray, Z: int, accelerating_voltage: float, thermal_sigma: float | None = None, include_core: bool = True, include_phonon: bool = True, verbose=False) → complex128

	Compute the Weickenmeier-Kohl atomic scattering factors, using the parameterization
of the elastic part and computation of the inelastic part found in EMsoftLib/others.f90.
Return value should be in Å.

This implementation always returns the absorptive, relativistically corrected factors.

Currently this is mostly a direct translation of the Fortran code, along with
the accompanying comments from the original in quotation marks. Colin Ophus
vectorized it around v0.13.17. Currently it is only vectorized over g (i.e.
Z and all other args must be a single value.)

This method uses an 8-parameter fit to the elastic form factors, and then computes the
absorptive form factors using an analytic solution based on that fitting function.

	Args: (note that these values cannot be arrays: the code is not vectorized)
	
	g (float/ndarray): Scattering vector magnitude in the crystallographic/py4DSTEM
	convention, 1/d_hkl in units of 1/Å

Z (int): Atomic number. Data are available for H thru Cf (1 thru 98)
accelerating_voltage (float): Accelerating voltage in eV.
thermal_sigma (float): RMS atomic displacement for TDS, in Å

(This is often written as 〈u〉in papers)

	include_core (bool): If True, include the core loss contribution to the absorptive
	form factors.

	include_phonon (bool): If True, include the phonon/TDS contribution to the
	absorptive form factors.

	Returns:

	The computed atomic form factor

	Return type:

	Fscatt (np.complex128)

	
py4DSTEM.process.diffraction.WK_scattering_factors.RIH2(X)

	WERTET X*EXP(-X)*EI(X) AUS FUER GROSSE X
DURCH INTERPOLATION DER TABELLE … AUS ABRAMOWITZ

	
class py4DSTEM.process.diffraction.crystal.Crystal(positions, numbers, cell)

	A class storing a single crystal structure, and associated diffraction data.

	
orientation_plan(zone_axis_range: ndarray = array([[0, 1, 1], [1, 1, 1]]), angle_step_zone_axis: float = 2.0, angle_coarse_zone_axis: float | None = None, angle_refine_range: float | None = None, angle_step_in_plane: float = 2.0, accel_voltage: float = 300000.0, corr_kernel_size: float = 0.08, radial_power: float = 1.0, intensity_power: float = 0.25, calculate_correlation_array=True, tol_peak_delete=None, tol_distance: float = 0.01, fiber_axis=None, fiber_angles=None, figsize: list | tuple | ndarray = (6, 6), CUDA: bool = False, progress_bar: bool = True)

	Calculate the rotation basis arrays for an SO(3) rotation correlogram.

	Parameters:

	
	zone_axis_range (float) – Row vectors give the range for zone axis orientations.
If user specifies 2 vectors (2x3 array), we start at [0,0,1]

to make z-x-z rotation work.

If user specifies 3 vectors (3x3 array), plan will span these vectors.
Setting to ‘full’ as a string will use a hemispherical range.
Setting to ‘half’ as a string will use a quarter sphere range.
Setting to ‘fiber’ as a string will make a spherical cap around a given vector.
Setting to ‘auto’ will use pymatgen to determine the point group symmetry

of the structure and choose an appropriate zone_axis_range

	angle_step_zone_axis (float) – Approximate angular step size for zone axis search [degrees]

	angle_coarse_zone_axis (float) – Coarse step size for zone axis search [degrees]. Setting to
None uses the same value as angle_step_zone_axis.

	angle_refine_range (float) – Range of angles to use for zone axis refinement. Setting to
None uses same value as angle_coarse_zone_axis.

	angle_step_in_plane (float) – Approximate angular step size for in-plane rotation [degrees]

	accel_voltage (float) – Accelerating voltage for electrons [Volts]

	corr_kernel_size (float) – Correlation kernel size length in Angstroms

	radial_power (float) – Power for scaling the correlation intensity as a function of the peak radius

	intensity_power (float) – Power for scaling the correlation intensity as a function of the peak intensity

	calculate_correlation_array (bool) – Set to false to skip calculating the correlation array.
This is useful when we only want the angular range / rotation matrices.

	tol_peak_delete (float) – Distance to delete peaks for multiple matches.
Default is kernel_size * 0.5

	tol_distance (float) – Distance tolerance for radial shell assignment [1/Angstroms]

	fiber_axis (float) – (3,) vector specifying the fiber axis

	fiber_angles (float) – (2,) vector specifying angle range from fiber axis, and in-plane angular range [degrees]

	cartesian_directions (bool) – When set to true, all zone axes and projection directions
are specified in Cartesian directions.

	figsize (float) – (2,) vector giving the figure size

	CUDA (bool) – Use CUDA for the Fourier operations.

	progress_bar (bool) – If false no progress bar is displayed

	
match_orientations(bragg_peaks_array: PointListArray, num_matches_return: int = 1, min_angle_between_matches_deg=None, min_number_peaks: int = 3, inversion_symmetry: bool = True, multiple_corr_reset: bool = True, return_orientation: bool = True, progress_bar: bool = True)

	
	Parameters:

	
	bragg_peaks_array (PointListArray) – PointListArray containing the Bragg peaks and intensities, with calibrations applied

	num_matches_return (int) – return these many matches as 3th dim of orient (matrix)

	min_angle_between_matches_deg (int) – Minimum angle between zone axis of multiple matches, in degrees.
Note that I haven’t thought how to handle in-plane rotations, since multiple matches are possible.

	min_number_peaks (int) – Minimum number of peaks required to perform ACOM matching

	inversion_symmetry (bool) – check for inversion symmetry in the matches

	multiple_corr_reset (bool) – keep original correlation score for multiple matches

	return_orientation (bool) – Return orientation map from function for inspection.
The map is always stored in the Crystal object.

	progress_bar (bool) – Show or hide the progress bar

	
match_single_pattern(bragg_peaks: PointList, num_matches_return: int = 1, min_angle_between_matches_deg=None, min_number_peaks=3, inversion_symmetry=True, multiple_corr_reset=True, plot_polar: bool = False, plot_corr: bool = False, returnfig: bool = False, figsize: list | tuple | ndarray = (12, 4), verbose: bool = False)

	Solve for the best fit orientation of a single diffraction pattern.

	Parameters:

	
	bragg_peaks (PointList) – numpy array containing the Bragg positions and intensities (‘qx’, ‘qy’, ‘intensity’)

	num_matches_return (int) – return these many matches as 3th dim of orient (matrix)

	min_angle_between_matches_deg (int) – Minimum angle between zone axis of multiple matches, in degrees.
Note that I haven’t thought how to handle in-plane rotations, since multiple matches are possible.

	min_number_peaks (int) – Minimum number of peaks required to perform ACOM matching

	bool (multiple_corr_reset) – check for inversion symmetry in the matches

	bool – keep original correlation score for multiple matches

	subpixel_tilt (bool) – set to false for faster matching, returning the nearest corr point

	plot_polar (bool) – set to true to plot the polar transform of the diffraction pattern

	plot_corr (bool) – set to true to plot the resulting correlogram

	returnfig (bool) – return figure handles

	figsize (list) – size of figure

	verbose (bool) – Print the fitted zone axes, correlation scores

	CUDA (bool) – Enable CUDA for the FFT steps

	Returns:

	
	orientation (Orientation) – Orientation class containing all outputs

	fig, ax (handles) – Figure handles for the plotting output

	
cluster_grains(threshold_add=1.0, threshold_grow=0.1, angle_tolerance_deg=5.0, progress_bar=True)

	Cluster grains using rotation criterion, and correlation values.

	Parameters:

	
	threshold_add (float) – Minimum signal required for a probe position to initialize a cluster.

	threshold_grow (float) – Minimum signal required for a probe position to be added to a cluster.

	angle_tolerance_deg (float) – Rotation rolerance for clustering grains.

	progress_bar (bool) – Turns on the progress bar for the polar transformation

	
cluster_orientation_map(stripe_width=(2, 2), area_min=2)

	Produce a new orientation map from the clustered grains.
Use a stripe pattern for the overlapping grains.

	Parameters:

	
	stripe_width ((int,int)) – Width of stripes for plotting maps with overlapping grains

	area_min ((int)) – Minimum size of grains to include

	Returns:

	The clustered orientation map

	Return type:

	orientation_map

	
calculate_strain(bragg_peaks_array: PointListArray, orientation_map: OrientationMap, corr_kernel_size=None, sigma_excitation_error=0.02, tol_excitation_error_mult: float = 3, tol_intensity: float = 0.0001, k_max: float | None = None, min_num_peaks=5, rotation_range=None, mask_from_corr=True, corr_range=(0, 2), corr_normalize=True, progress_bar=True)

	This function takes in both a PointListArray containing Bragg peaks, and a
corresponding OrientationMap, and uses least squares to compute the
deformation tensor which transforms the simulated diffraction pattern
into the experimental pattern, for all probe positons.

TODO: add robust fitting?

	Parameters:

	
	bragg_peaks_array (PointListArray) – All Bragg peaks

	orientation_map (OrientationMap) – Orientation map generated from ACOM

	corr_kernel_size (float) – Correlation kernel size - if user does
not specify, uses self.corr_kernel_size.

	sigma_excitation_error (float) – sigma value for envelope applied to s_g (excitation errors) in units of inverse Angstroms

	tol_excitation_error_mult (float) – tolerance in units of sigma for s_g inclusion

	tol_intensity (np float) – tolerance in intensity units for inclusion of diffraction spots

	k_max (float) – Maximum scattering vector

	min_num_peaks (int) – Minimum number of peaks required.

	rotation_range (float) – Maximum rotation range in radians (for symmetry reduction).

	progress_bar (bool) – Show progress bar

	mask_from_corr (bool) – Use ACOM correlation signal for mask

	corr_range (np.ndarray) – Range of correlation signals for mask

	corr_normalize (bool) – Normalize correlation signal before masking

	Returns:

	strain tensor

	Return type:

	strain_map (RealSlice)

	
symmetry_reduce_directions(orientation, match_ind=0, plot_output=False, figsize=(15, 6), el_shift=0.0, az_shift=-30.0)

	This function calculates the symmetry-reduced cartesian directions from
and orientation matrix stored in orientation.matrix, and outputs them
into orientation.family. It optionally plots the 3D output.

	
save_ang_file(file_name, orientation_map, ind_orientation=0, pixel_size=1.0, pixel_units='px', transpose_xy=True, flip_x=False)

	This function outputs an ascii text file in the .ang format, containing
the Euler angles of an orientation map.

	Parameters:

	
	file_name (str) – Path to save .ang file.

	orientation_map (OrientationMap) – Class containing orientation matrices,
correlation values, etc.

	ind_orientation (int) – Which orientation match to plot if num_matches > 1

	pixel_size (float) – Pixel size, if known.

	pixel_units (str) – Units of the pixel size

	transpose_xy (bool) – Transpose x and y pixel coordinates.

	flip_x (bool) – Swap x direction pixels (after transpose).

	Returns:

	nothing

	
plot_structure(orientation_matrix: ndarray | None = None, zone_axis_lattice: ndarray | None = None, proj_x_lattice: ndarray | None = None, zone_axis_cartesian: ndarray | None = None, proj_x_cartesian: ndarray | None = None, size_marker: float = 400, tol_distance: float = 0.001, plot_limit: ndarray | None = None, camera_dist: float | None = None, show_axes: bool = False, perspective_axes: bool = True, figsize: tuple | list | ndarray = (8, 8), returnfig: bool = False)

	Quick 3D plot of the untit cell /atomic structure.

	Parameters:

	
	orientation_matrix (array) – (3,3) orientation matrix, where columns represent projection directions.

	zone_axis_lattice (array) – (3,) projection direction in lattice indices

	proj_x_lattice (array) – (3,) x-axis direction in lattice indices

	zone_axis_cartesian (array) – (3,) cartesian projection direction

	proj_x_cartesian (array) – (3,) cartesian projection direction

	scale_markers (float) – Size scaling for markers

	tol_distance (float) – Tolerance for repeating atoms on edges on cell boundaries.

	plot_limit (float) – (2,3) numpy array containing x y z plot min and max in columns.
Default is 1.1* unit cell dimensions.

	camera_dist (float) – Move camera closer to the plot (relative to matplotlib default of 10)

	show_axes (bool) – Whether to plot axes or not.

	perspective_axes (bool) – Select either perspective (true) or orthogonal (false) axes

	figsize (2 element float) – Size scaling of figure axes.

	returnfig (bool) – Return figure and axes handles.

	Returns:

	fig, ax (optional) figure and axes handles

	
plot_structure_factors(orientation_matrix: ndarray | None = None, zone_axis_lattice: ndarray | None = None, proj_x_lattice: ndarray | None = None, zone_axis_cartesian: ndarray | None = None, proj_x_cartesian: ndarray | None = None, scale_markers: float = 1000.0, plot_limit: list | tuple | ndarray | None = None, camera_dist: float | None = None, show_axes: bool = True, perspective_axes: bool = True, figsize: list | tuple | ndarray = (8, 8), returnfig: bool = False)

	3D scatter plot of the structure factors using magnitude^2, i.e. intensity.

	Parameters:

	
	orientation_matrix (array) – (3,3) orientation matrix, where columns represent projection directions.

	zone_axis_lattice (array) – (3,) projection direction in lattice indices

	proj_x_lattice (array) – (3,) x-axis direction in lattice indices

	zone_axis_cartesian (array) – (3,) cartesian projection direction

	proj_x_cartesian (array) – (3,) cartesian projection direction

	scale_markers (float) – size scaling for markers

	plot_limit (float) – x y z plot limits, default is [-1 1]*self.k_max

	camera_dist (float) – Move camera closer to the plot (relative to matplotlib default of 10)

	show_axes (bool) – Whether to plot axes or not.

	perspective_axes (bool) – Select either perspective (true) or orthogonal (false) axes

	figsize (2 element float) – size scaling of figure axes

	returnfig (bool) – set to True to return figure and axes handles

	Returns:

	fig, ax (optional) figure and axes handles

	
plot_scattering_intensity(k_min=0.0, k_max=None, k_step=0.001, k_broadening=0.0, k_power_scale=0.0, int_power_scale=0.5, int_scale=1.0, remove_origin=True, bragg_peaks=None, bragg_k_power=0.0, bragg_intensity_power=1.0, bragg_k_broadening=0.005, figsize: list | tuple | ndarray = (10, 4), returnfig: bool = False)

	1D plot of the structure factors

	Parameters:

	
	k_min (float) – min k value for profile range.

	k_max (float) – max k value for profile range.

	k_step (float) – Step size of k in profile range.

	k_broadening (float) – Broadening of simulated pattern.

	k_power_scale (float) – Scale SF intensities by k**k_power_scale.

	int_power_scale (float) – Scale SF intensities**int_power_scale.

	int_scale (float) – Scale output profile by this value.

	remove_origin (bool) – Remove origin from plot.

	bragg_peaks (BraggVectors) – Passed in bragg_peaks for comparison with simulated pattern.

	bragg_k_power (float) – bragg_peaks scaled by k**bragg_k_power.

	bragg_intensity_power (float) – bragg_peaks scaled by intensities**bragg_intensity_power.

	bragg_k_broadening (float) – Broadening applied to bragg_peaks.

	figsize (list, tuple, np.ndarray) – Figure size for plot.

	(bool) (returnfig) – Return figure and axes handles if this is True.

	Returns:

	figure and axes handles

	Return type:

	fig, ax (optional)

	
plot_orientation_zones(azim_elev: list | tuple | ndarray | None = None, proj_dir_lattice: list | tuple | ndarray | None = None, proj_dir_cartesian: list | tuple | ndarray | None = None, tol_den=10, marker_size: float = 20, plot_limit: list | tuple | ndarray = array([-1.1, 1.1]), figsize: list | tuple | ndarray = (8, 8), returnfig: bool = False)

	3D scatter plot of the structure factors using magnitude^2, i.e. intensity.

	Parameters:

	
	azim_elev (array) – az and el angles for plot

	proj_dir_lattice (array) – (3,) projection direction in lattice

	proj_dir_cartesian – (array): (3,) projection direction in cartesian

	tol_den (int) – tolerance for rational index denominator

	dir_proj (float) – projection direction, either [elev azim] or normal vector
Default is mean vector of self.orientation_zone_axis_range rows

	marker_size (float) – size of markers

	plot_limit (float) – x y z plot limits, default is [0, 1.05]

	figsize (2 element float) – size scaling of figure axes

	returnfig (bool) – set to True to return figure and axes handles

	Returns:

	fig, ax (optional) figure and axes handles

	
plot_orientation_plan(index_plot: int = 0, zone_axis_lattice: ndarray | None = None, zone_axis_cartesian: ndarray | None = None, figsize: list | tuple | ndarray = (14, 6), returnfig: bool = False)

	3D scatter plot of the structure factors using magnitude^2,
i.e. intensity.

	Parameters:

	
	index_plot (int) – which index slice to plot

	zone_axis_plot (3 element float) – which zone axis slice to plot

	figsize (2 element float) – size scaling of figure axes

	returnfig (bool) – set to True to return figure and axes handles

	Returns:

	fig, ax (optional) figure and axes handles

	
plot_orientation_maps(orientation_map=None, orientation_ind: int = 0, dir_in_plane_degrees: float = 0.0, corr_range: ndarray = array([0, 5]), corr_normalize: bool = True, scale_legend: bool | None = None, figsize: list | tuple | ndarray = (16, 5), figbound: list | tuple | ndarray = (0.01, 0.005), show_axes: bool = True, camera_dist=None, plot_limit=None, plot_layout=0, swap_axes_xy_limits=False, returnfig: bool = False, progress_bar=False)

	Plot the orientation maps.

	Parameters:

	
	orientation_map (OrientationMap) – Class containing orientation matrices, correlation values, etc.
Optional - can reference internally stored OrientationMap.

	orientation_ind (int) – Which orientation match to plot if num_matches > 1

	dir_in_plane_degrees (float) – In-plane angle to plot in degrees. Default is 0 / x-axis / vertical down.

	corr_range (np.ndarray) – Correlation intensity range for the plot

	corr_normalize (bool) – If true, set mean correlation to 1.

	scale_legend (float) – 2 elements, x and y scaling of legend panel

	figsize (array) – 2 elements defining figure size

	figbound (array) – 2 elements defining figure boundary

	show_axes (bool) – Flag setting whether orienation map axes are visible.

	camera_dist (float) – distance of camera from legend

	plot_limit (array) – 2x3 array defining plot boundaries of legend

	plot_layout (int) – subplot layout: 0 - 1 row, 3 col
1 - 3 row, 1 col

	swap_axes_xy_limits (bool) – swap x and y boundaries for legend (not sure why we need this in some cases)

	returnfig (bool) – set to True to return figure and axes handles

	progress_bar (bool) – Enable progressbar when calculating orientation images.

	Returns:

	RGB images
fig, axs (handles): Figure and axes handes for the

	Return type:

	images_orientation (int)

Note

Currently, no symmetry reduction. Therefore the x and y orientations
are going to be correct only for [001][011][111] orientation triangle.

	
plot_fiber_orientation_maps(orientation_map, orientation_ind: int = 0, symmetry_order: int | None = None, symmetry_mirror: bool = False, dir_in_plane_degrees: float = 0.0, corr_range: ndarray = array([0, 2]), corr_normalize: bool = True, show_axes: bool = True, medfilt_size: int | None = None, cmap_out_of_plane: str = 'plasma', leg_size: int = 200, figsize: list | tuple | ndarray = (12, 8), figbound: list | tuple | ndarray = (0.005, 0.04), returnfig: bool = False)

	Generate and plot the orientation maps from fiber texture plots.

	Parameters:

	
	orientation_map (OrientationMap) – Class containing orientation matrices, correlation values, etc.

	orientation_ind (int) – Which orientation match to plot if num_matches > 1

	dir_in_plane_degrees (float) – Reference in-plane angle (degrees). Default is 0 / x-axis / vertical down.

	corr_range (np.ndarray) – Correlation intensity range for the plot

	corr_normalize (bool) – If true, set mean correlation to 1.

	show_axes (bool) – Flag setting whether orienation map axes are visible.

	figsize (array) – 2 elements defining figure size

	figbound (array) – 2 elements defining figure boundary

	returnfig (bool) – set to True to return figure and axes handles

	Returns:

	RGB images
fig, axs (handles): Figure and axes handes for the

	Return type:

	images_orientation (int)

Note

Currently, no symmetry reduction. Therefore the x and y orientations
are going to be correct only for [001][011][111] orientation triangle.

	
plot_clusters(area_min=2, outline_grains=True, outline_thickness=1, fill_grains=0.25, smooth_grains=1.0, cmap='viridis', figsize=(8, 8), returnfig=False)

	Plot the clusters as an image.

	Parameters:

	
	area_min (int (optional)) – Min cluster size to include, in units of probe positions.

	outline_grains (bool (optional)) – Set to True to draw grains with outlines

	outline_thickness (int (optional)) – Thickenss of the grain outline

	fill_grains (float (optional)) – Outlined grains are filled with this value in pixels.

	smooth_grains (float (optional)) – Grain boundaries are smoothed by this value in pixels.

	figsize (tuple) – Size of the figure panel

	returnfig (bool) – Setting this to true returns the figure and axis handles

	Returns:

	Figure and axes handles

	Return type:

	fig, ax (optional)

	
plot_cluster_size(area_min=None, area_max=None, area_step=1, weight_intensity=False, pixel_area=1.0, pixel_area_units='px^2', figsize=(8, 6), returnfig=False)

	Plot the cluster sizes

	Parameters:

	
	area_min (int (optional)) – Min area to include in pixels^2

	area_max (int (optional)) – Max area bin in pixels^2

	area_step (int (optional)) – Step size of the histogram bin in pixels^2

	weight_intensity (bool) – Weight histogram by the peak intensity.

	pixel_area (float) – Size of pixel area unit square

	pixel_area_units (string) – Units of the pixel area

	figsize (tuple) – Size of the figure panel

	returnfig (bool) – Setting this to true returns the figure and axis handles

	Returns:

	Figure and axes handles

	Return type:

	fig, ax (optional)

	
calibrate_pixel_size(bragg_peaks, scale_pixel_size=1.0, bragg_k_power=1.0, bragg_intensity_power=1.0, k_min=0.0, k_max=None, k_step=0.002, k_broadening=0.002, fit_all_intensities=True, set_calibration_in_place=False, verbose=True, plot_result=False, figsize: list | tuple | ndarray = (12, 6), returnfig=False)

	Use the calculated structure factor scattering lengths to compute 1D
diffraction patterns, and solve the best-fit relative scaling between them.
Returns the fit pixel size in Å^-1.

	Parameters:

	
	bragg_peaks (BraggVectors) – Input Bragg vectors.

	scale_pixel_size (float) – Initial guess for scaling of the existing
pixel size If the pixel size is currently uncalibrated, this is a
guess of the pixel size in Å^-1. If the pixel size is already
(approximately) calibrated, this is the scaling factor to
correct that existing calibration.

	bragg_k_power (float) – Input Bragg peak intensities are multiplied by
k**bragg_k_power to change the weighting of longer scattering vectors

	bragg_intensity_power (float) – Input Bragg peak intensities are raised
power **bragg_intensity_power.

	k_min (float) – min k value for fitting range (Å^-1)

	k_max (float) – max k value for fitting range (Å^-1)

	k_step (float) step size of k in fitting range (Å^-1) –

	k_broadening (float) – Initial guess for Gaussian broadening of simulated
pattern (Å^-1)

	fit_all_intensities (bool) – Set to true to allow all peak intensities to
change independently False forces a single intensity scaling.

	set_calibration (bool) – if True, set the fit pixel size to the calibration
metadata, and calibrate bragg_peaks

	verbose (bool) – Output the calibrated pixel size.

	plot_result (bool) – Plot the resulting fit.

	figsize (list, tuple, np.ndarray) – Figure size of the plot.

	returnfig (bool) – Return handles figure and axis

	Returns:

	fig, ax – Figure and axis handles, if returnfig=True.

	Return type:

	handles, optional

	
calibrate_unit_cell(bragg_peaks, coef_index=None, coef_update=None, bragg_k_power=1.0, bragg_intensity_power=1.0, k_min=0.0, k_max=None, k_step=0.005, k_broadening=0.02, fit_all_intensities=True, verbose=True, plot_result=False, figsize: list | tuple | ndarray = (12, 6), returnfig=False)

	Solve for the best fit scaling between the computed structure factors and bragg_peaks.

	Parameters:

	
	bragg_peaks (BraggVectors) – Input Bragg vectors.

	coef_index (list of ints) – List of ints that act as pointers to unit cell parameters and angles to update.

	coef_update (list of bool) – List of booleans to indicate whether or not to update the cell at
that position

	bragg_k_power (float) – Input Bragg peak intensities are multiplied by k**bragg_k_power
to change the weighting of longer scattering vectors

	bragg_intensity_power (float) – Input Bragg peak intensities are raised power **bragg_intensity_power.

	k_min (float) – min k value for fitting range (Å^-1)

	k_max (float) – max k value for fitting range (Å^-1)

	k_step (float) – step size of k in fitting range (Å^-1)

	k_broadening (float) – Initial guess for Gaussian broadening of simulated pattern (Å^-1)

	fit_all_intensities (bool) – Set to true to allow all peak intensities to change independently
False forces a single intensity scaling.

	verbose (bool) – Output the calibrated pixel size.

	plot_result (bool) – Plot the resulting fit.

	figsize (list, tuple, np.ndarray) –

	returnfig (bool) – Return handles figure and axis

	Returns:

	Optional figure and axis handles, if returnfig=True.

	Return type:

	fig, ax (handles)

Details:
User has the option to define what is allowed to update in the unit cell using the arguments
coef_index and coef_update. Each has 6 entries, corresponding to the a, b, c, alpha, beta, gamma
parameters of the unit cell, in this order. The coef_update argument is a list of bools specifying
whether or not the unit cell value will be allowed to change (True) or must maintain the original
value (False) upon fitting. The coef_index argument provides a pointer to the index in which the
code will update to.

For example, to update a, b, c, alpha, beta, gamma all independently of eachother, the following
arguments should be used:

coef_index = [0, 1, 2, 3, 4, 5]
coef_update = [True, True, True, True, True, True,]

The default is set to automatically define what can update in a unit cell based on the
point group constraints. When either ‘coef_index’ or ‘coef_update’ are None, these constraints
will be automatically pulled from the pointgroup.

	For example, the default for cubic unit cells is:
	coef_index = [0, 0, 0, 3, 3, 3]
coef_update = [True, True, True, False, False, False]

Which allows a, b, and c to update (True in first 3 indices of coef_update)
but b and c update based on the value of a (0 in the 1 and 2 list entries in coef_index) such
that a = b = c. While coef_update is False for alpha, beta, and gamma (entries 3, 4, 5), no
updates will be made to the angles.

The user has the option to predefine coef_index or coef_update to override defaults. In the
coef_update list, there must be 6 entries and each are boolean. In the coef_index list, there
must be 6 entries, with the first 3 entries being between 0 - 2 and the last 3 entries between
3 - 5. These act as pointers to pull the updated parameter from.

	
generate_dynamical_diffraction_pattern(beams: PointList, thickness: float | list | tuple | ndarray, zone_axis_lattice: ndarray | None = None, zone_axis_cartesian: ndarray | None = None, foil_normal_lattice: ndarray | None = None, foil_normal_cartesian: ndarray | None = None, verbose: bool = False, always_return_list: bool = False, dynamical_matrix_cache: DynamicalMatrixCache | None = None, return_complex: bool = False, return_eigenvectors: bool = False, return_Smatrix: bool = False) → PointList | List[PointList]

	Generate a dynamical diffraction pattern (or thickness series of patterns)
using the Bloch wave method.

The beams to be included in the Bloch calculation must be pre-calculated
and passed as a PointList containing at least (qx, qy, h, k, l) fields.

If thickness is a single value, one new PointList will be returned.
If thickness is a sequence of values, a list of PointLists will be returned,

corresponding to each thickness value in the input.

	Frequent reference will be made to “Introduction to conventional transmission electron microscopy”
	by DeGraef, whose overall approach we follow here.

	Parameters:

	
	beams (PointList) – PointList from the kinematical diffraction generator
which will define the beams included in the Bloch calculation

	thickness (float or list/array) – The main Bloch calculation can be reused for multiple thicknesses
without much overhead.

	direction. (zone_axis & foil_normal Incident beam orientation and foil normal) – Each can be specified in the Cartesian or crystallographic basis,
using e.g. zone_axis_lattice or zone_axis_cartesian. These are
internally parsed by Crystal.parse_orientation

	Less commonly used args:
	
	always_return_list (bool): When True, the return is always a list of PointLists,
	even for a single thickness

	dynamical_matrix_cache: (DyanmicalMatrixCache) Dataclass used for caching of the
	dynamical matrix. If the cached matrix does not exist, it is
computed and stored. Subsequent calls will use the cached matrix
for the off-diagonal components of the A matrix and overwrite
the diagonal elements. This is used for CBED calculations.

return_complex (bool): When True, returns both the complex amplitude and intensity. Defaults to (False)

	Returns:

	
	Bragg peaks with fields [qx, qy, intensity, h, k, l]
	or

	[bragg_peaks,…] (PointList): If thickness is a list/array, or always_return_list is True,
	a list of PointLists is returned.

	if return_complex = True:
	
	bragg_peaks (PointList): Bragg peaks with fields [qx, qy, intensity, amplitude, h, k, l]
	or

	[bragg_peaks,…] (PointList): If thickness is a list/array, or always_return_list is True,
	a list of PointLists is returned.

	if return_Smatrix = True:
	
	[S_matrix, …], psi_0: Returns a list of S-matrices for each thickness (this is always a list),
	and the vector representing the incident plane wave. The beams of the
S-matrix have the same order as in the input beams.

	Return type:

	bragg_peaks (PointList)

	
generate_CBED(beams: ~emdfile.classes.pointlist.PointList, thickness: float | list | tuple | ~numpy.ndarray, alpha_mrad: float, pixel_size_inv_A: float, DP_size_inv_A: float | None = None, zone_axis_lattice: ~numpy.ndarray | None = None, zone_axis_cartesian: ~numpy.ndarray | None = None, foil_normal_lattice: ~numpy.ndarray | None = None, foil_normal_cartesian: ~numpy.ndarray | None = None, LACBED: bool = False, dtype: ~numpy.dtype = <class 'numpy.float32'>, verbose: bool = False, progress_bar: bool = True, return_mask: bool = False, two_beam_zone_axis_lattice: ~numpy.ndarray | None = None, return_probe: bool = False) → ndarray | List[ndarray] | Dict[Tuple[int], ndarray]

	Generate a dynamical CBED pattern using the Bloch wave method.

	Parameters:

	
	beams (PointList) – PointList from the kinematical diffraction generator
which will define the beams included in the Bloch calculation

	thickness (float or list/array) – The main Bloch calculation can be reused for multiple thicknesses
without much overhead.

	alpha_mrad (float) – Convergence angle for CBED pattern. Note that if disks in the calculation
overlap, they will be added incoherently, and the resulting CBED will
thus represent the average over the unit cell (i.e. a PACBED pattern,
as described in LeBeau et al., Ultramicroscopy 110(2): 2010.)

	pixel_size_inv_A (float) – CBED pixel size in 1/Å.

	DP_size_inv_A (optional float) – If specified, defines the extents of the diffraction pattern.
If left unspecified, the DP will be automatically scaled to
fit all of the beams present in the input plus some small buffer.

	zone_axis (np float vector) – 3 element projection direction for sim pattern
Can also be a 3x3 orientation matrix (zone axis 3rd column)

	foil_normal – 3 element foil normal - set to None to use zone_axis

	LACBED (bool) – keyed by tuples of (h,k,l).

	proj_x_axis (np float vector) – 3 element vector defining image x axis (vertical)

	PointList (two_beam_zone_axis_lattice When only two beams are present in the "beams") – the computation of the projected crystallographic directions
becomes ambiguous. In this case, you must specify the indices of
the zone axis used to generate the beams.

	:paramthe computation of the projected crystallographic directions
	becomes ambiguous. In this case, you must specify the indices of
the zone axis used to generate the beams.

	Parameters:

	return_probe (bool) – If True, the probe (np.ndarray) will be returned in additon to the CBED

	Returns:

	CBED pattern as np.ndarray
If thickness is a sequence: CBED patterns for each thickness value as a list of np.ndarrays
If LACBED is True and thickness is scalar: Dictionary with tuples of ints (h,k,l) as keys, mapping to np.ndarray.
If LACBED is True and thickness is a sequence: List of dictionaries, structured as above.
If return_probe is True: will return a tuple (<CBED/LACBED object>, Probe)

	Return type:

	If thickness is a scalar

	
calculate_dynamical_structure_factors(accelerating_voltage: float, method: str = 'WK-CP', k_max: float = 2.0, thermal_sigma: float | dict | None = None, tol_structure_factor: float = 0.0, recompute_kinematic_structure_factors=True, g_vec_precision=None, verbose=True)

	Calculate and store the relativistic corrected structure factors used for Bloch computations
in a dictionary for faster lookup.

	Parameters:

	
	accelerating_voltage (float) – accelerating voltage in eV

	method (str) – Choose which parameterization of the structure factors to use:
“Lobato”: Uses the kinematic structure factors from crystal.py, using the parameterization from

Lobato & Van Dyck, Acta Cryst A 70:6 (2014)

	”Lobato-absorptive”: Lobato factors plus an imaginary part
	equal to 0.1•f, as a simple but inaccurate way to include absorption, per
Hashimoto, Howie, & Whelan, Proc R Soc Lond A 269:80-103 (1962)

	”WK”: Uses the Weickenmeier-Kohl parameterization for
	the elastic form factors, including Debye-Waller factor,
with no absorption, as described in
Weickenmeier & Kohl, Acta Cryst A 47:5 (1991)

	”WK-C”: WK form factors plus the “core” contribution to absorption
	following H. Rose, Optik 45:2 (1976)

”WK-P”: WK form factors plus the phonon/TDS absorptive contribution
“WK-CP”: WK form factors plus core and phonon absorption (default)

	k_max (float) – max scattering length to compute structure factors to.
Setting this to 2x the k_max used in generating the beamsn
included in a simulation will retain all possible couplings

	thermal_sigma (float or dict{int->float}) – RMS atomic diplacement for attenuating form factors to account for thermal
broadening of the potential, only used when a “WK” method is
selected. Required when WK-P or WK-CP are selected.
Units are Å. (This is often written as 〈u〉in papers)
To specify different 〈u〉 for each element, pass a dictionary
with Z as the key, mapping to the appropriate float value

	tol_structure_factor (float) – tolerance for removing low-valued structure factors. Reflections
with structure factor below the tolerance will have zero coupling
in the dynamical calculations (i.e. they are the ignored weak beams)

	recompute_kinematic_structure_factors (bool) – When True, recomputes the kinematic structure
factors using the same tol_structure_factor, and with k_max
set to half the k_max for the dynamical factors. The factor
of half ensures that every beam in a simulation can couple to
every other beam (no high-angle couplings in the Bloch matrix
are set to zero.)

	g_vec_precision (optional int) – If specified, rounds |g| to this many decimal places so that
automatic caching of the atomic form factors is not slowed
down due to floating point errors. Setting this to 3 can give
substantial speedup at the cost of some reduced accuracy

	factors. (See WK_scattering_factors.py for details on the Weickenmeier-Kohl form) –

	
__init__(positions, numbers, cell)

	
	Parameters:

	
	positions (np.array) – fractional coordinates of each atom in the cell

	numbers (np.array) – Z number for each atom in the cell, if one number passed it is used for all atom positions

	cell (np.array) – specify the unit cell, using a variable number of parameters
1 number: the lattice parameter for a cubic cell
3 numbers: the three lattice parameters for an orthorhombic cell
6 numbers: the a,b,c lattice parameters and ɑ,β,ɣ angles for any cell
3x3 array: row vectors containing the (u,v,w) lattice vectors.

	
positions

	fractional atomic coordinates

	
get_strained_crystal(exx=0.0, eyy=0.0, ezz=0.0, exy=0.0, exz=0.0, eyz=0.0, deformation_matrix=None, return_deformation_matrix=False)

	This method returns new Crystal class with strain applied. The directions of (x,y,z)
are with respect to the default Crystal orientation, which can be checked with
print(Crystal.lat_real) applied to the original Crystal.

Strains are given in fractional values, so exx = 0.01 is 1% strain along the x direction.
Deformation matrix should be of the form:

	deformation_matrix = np.array([
	[1.0+exx, 1.0*exy, 1.0*exz],
[1.0*exy, 1.0+eyy, 1.0*eyz],
[1.0*exz, 1.0*eyz, 1.0+ezz],

])

	Parameters:

	
	(float) (eyz) – fractional strain along the xx direction

	(float) – fractional strain along the yy direction

	(float) – fractional strain along the zz direction

	(float) – fractional strain along the xy direction

	(float) – fractional strain along the xz direction

	(float) – fractional strain along the yz direction

	(np.ndarray) (deformation_matrix) – 3x3 array describing deformation matrix

	(bool) (return_deformation_matrix) – boolean switch to return deformation matrix

	Returns:

	
	return_deformation_matrix == False – strained_crystal (py4DSTEM.Crystal)

	return_deformation_matrix == True – (strained_crystal, deformation_matrix)

	
from_CIF(conventional_standard_structure=True)

	Create a Crystal object from a CIF file, using pymatgen to import the CIF

Note that pymatgen typically prefers to return primitive unit cells,
which can be overridden by setting conventional_standard_structure=True.

	Parameters:

	
	CIF – (str or Path) path to the CIF File

	conventional_standard_structure – (bool) if True, conventional standard unit cell will be returned
instead of the primitive unit cell pymatgen typically returns

	
from_pymatgen_structure(formula=None, space_grp=None, MP_key=None, conventional_standard_structure=True)

	Create a Crystal object from a pymatgen Structure object.
If a Materials Project API key is installed, you may pass
the Materials Project ID of a structure, which will be
fetched through the MP API. For setup information see:
https://pymatgen.org/usage.html#setting-the-pmg-mapi-key-in-the-config-file.
Alternatively, Materials Porject API key can be pass as an argument through
the function (MP_key). To get your API key, please visit Materials Project website
and login/sign up using your email id. Once logged in, go to the dashboard
to generate your own API key (https://materialsproject.org/dashboard).

Note that pymatgen typically prefers to return primitive unit cells,
which can be overridden by setting conventional_standard_structure=True.

	Parameters:

	
	structure – (pymatgen Structure or str), if specified as a string, it will be considered
as a Materials Project ID of a structure, otherwise it will accept only
pymatgen Structure object. if None, MP database will be queried using the
specified formula and/or space groups for the available structure

	formula – (str), pretty formula to search in the MP database, (note that the forumlas in MP
database are not always formatted in the conventional order. Please
visit Materials Project website for information (https://materialsproject.org/)
if None, structure argument must not be None

	space_grp – (int) space group number of the forumula provided to query MP database. If None, MP will search
for all the available space groups for the formula provided and will consider the
one with lowest unit cell volume, only specify when using formula to search MP
database

	MP_key – (str) Materials Project API key

	conventional_standard_structure – (bool) if True, conventional standard unit cell will be returned
instead of the primitive unit cell pymatgen returns

	
from_unitcell_parameters(elements, positions, space_group=None, lattice_type='cubic', from_cartesian=False, conventional_standard_structure=True)

	Create a Crystal using pymatgen to generate unit cell manually from user inputs

	Parameters:

	
	latt_params – (list of floats) list of lattice parameters. For example, for cubic: latt_params = [a],
for hexagonal: latt_params = [a, c], for monoclinic: latt_params = [a,b,c,beta],
and in general: latt_params = [a,b,c,alpha,beta,gamma]

	elements – (list of strings) list of elements, for example for SnS: elements = [“Sn”, “S”]

	positions – (list) list of (x,y,z) positions for each element present in the elements, default: fractional coord

	space_group – (optional) (string or int) space group of the crystal system, if specified, unit cell will be created using
pymatgen Structure.from_spacegroup function

	lattice_type – (string) type of crystal family: cubic, hexagonal, triclinic etc; default: ‘cubic’

	from_cartesian – (bool) if True, positions will be considered as cartesian, default: False

	conventional_standard_structure – (bool) if True, conventional standard unit cell will be returned
instead of the primitive unit cell pymatgen returns

	Returns:

	Crystal object

	
setup_diffraction(accelerating_voltage: float)

	Set up attributes used for diffraction calculations without going
through the full ACOM pipeline.

	
calculate_structure_factors(k_max: float = 2.0, tol_structure_factor: float = 0.0001, return_intensities: bool = False)

	Calculate structure factors for all hkl indices up to max scattering vector k_max

	Parameters:

	
	k_max (float) – max scattering vector to include (1/Angstroms)

	tol_structure_factor (float) – tolerance for removing low-valued structure factors

	return_intensities (bool) – return the intensities and positions of all structure factor peaks.

	Returns:

	Tuple of the q vectors and intensities of each structure factor.

	Return type:

	(q_SF, I_SF)

	
generate_diffraction_pattern(orientation: Orientation | None = None, ind_orientation: int | None = 0, orientation_matrix: ndarray | None = None, zone_axis_lattice: ndarray | None = None, proj_x_lattice: ndarray | None = None, foil_normal_lattice: list | tuple | ndarray | None = None, zone_axis_cartesian: ndarray | None = None, proj_x_cartesian: ndarray | None = None, foil_normal_cartesian: list | tuple | ndarray | None = None, sigma_excitation_error: float = 0.02, tol_excitation_error_mult: float = 3, tol_intensity: float = 0.0001, k_max: float | None = None, keep_qz=False, return_orientation_matrix=False)

	Generate a single diffraction pattern, return all peaks as a pointlist.

	Parameters:

	
	orientation (Orientation) – an Orientation class object

	orientations (ind_orientation If input is an Orientation class object with multiple) – this input can be used to select a specific orientation.

:param : this input can be used to select a specific orientation.
:param orientation_matrix: (3,3) orientation matrix, where columns represent projection directions.
:type orientation_matrix: array
:param zone_axis_lattice: (3,) projection direction in lattice indices
:type zone_axis_lattice: array
:param proj_x_lattice: (3,) x-axis direction in lattice indices
:type proj_x_lattice: array
:param zone_axis_cartesian: (3,) cartesian projection direction
:type zone_axis_cartesian: array
:param proj_x_cartesian: (3,) cartesian projection direction
:type proj_x_cartesian: array
:param foil_normal: 3 element foil normal - set to None to use zone_axis
:param proj_x_axis: 3 element vector defining image x axis (vertical)
:type proj_x_axis: np float vector
:param accel_voltage: Accelerating voltage in Volts. If not specified,

we check to see if crystal already has voltage specified.

	Parameters:

	
	sigma_excitation_error (float) – sigma value for envelope applied to s_g (excitation errors) in units of inverse Angstroms

	tol_excitation_error_mult (float) – tolerance in units of sigma for s_g inclusion

	tol_intensity (np float) – tolerance in intensity units for inclusion of diffraction spots

	k_max (float) – Maximum scattering vector

	keep_qz (bool) – Flag to return out-of-plane diffraction vectors

	return_orientation_matrix (bool) – Return the orientation matrix

	Returns:

	list of all Bragg peaks with fields [qx, qy, intensity, h, k, l]
orientation_matrix (array): 3x3 orientation matrix (optional)

	Return type:

	bragg_peaks (PointList)

	
generate_ring_pattern(k_max=2.0, use_bloch=False, thickness=None, bloch_params=None, orientation_plan_params=None, sigma_excitation_error=0.02, tol_intensity=0.001, plot_rings=True, plot_params={}, return_calc=True)

	Calculate polycrystalline diffraction pattern from structure

	Parameters:

	
	k_max (float) – Maximum scattering vector

	use_bloch (bool) – if true, use dynamic instead of kinematic approach

	thickness (float) – thickness in Ångström to evaluate diffraction patterns,
only needed for dynamical calculations

	bloch_params (dict) – optional, parameters to calculate dynamical structure factor,
see calculate_dynamical_structure_factors doc strings

	orientation_plan_params (dict) – optional, parameters to calculate orientation plan,
see orientation_plan doc strings

	sigma_excitation_error (float) – sigma value for envelope applied to s_g (excitation errors)
in units of inverse Angstroms

	tol_intensity (np float) – tolerance in intensity units for inclusion of diffraction spots

	plot_rings (bool) – if true, plot diffraction rings with plot_ring_pattern

	return_calc (bool) – return radii and intensities

	Returns:

	radii of ring pattern in units of scattering vector k
intensity_unique (np array): intensity of rings weighted by frequency of diffraciton spots

	Return type:

	radii_unique (np array)

	
excitation_errors(g, foil_normal=None)

	Calculate the excitation errors, assuming k0 = [0, 0, -1/lambda].
If foil normal is not specified, we assume it is [0,0,-1].

	
calculate_bragg_peak_histogram(bragg_peaks, bragg_k_power=1.0, bragg_intensity_power=1.0, k_min=0.0, k_max=None, k_step=0.005)

	Prepare experimental bragg peaks for lattice parameter or unit cell fitting.

	Parameters:

	
	bragg_peaks (BraggVectors) – Input Bragg vectors.

	bragg_k_power (float) – Input Bragg peak intensities are multiplied by k**bragg_k_power
to change the weighting of longer scattering vectors

	bragg_intensity_power (float) – Input Bragg peak intensities are raised power **bragg_intensity_power.

	k_min (float) – min k value for fitting range (Å^-1)

	k_max (float) – max k value for fitting range (Å^-1)

	k_step (float) – step size of k in fitting range (Å^-1)

	Returns:

	Bragg vectors after calibration
fig, ax (handles): Optional figure and axis handles, if returnfig=True.

	Return type:

	bragg_peaks_cali (BraggVectors)

	
py4DSTEM.process.diffraction.crystal.generate_moire_diffraction_pattern(bragg_peaks_0, bragg_peaks_1, thresh_0=0.0002, thresh_1=0.0002, exx_1=0.0, eyy_1=0.0, exy_1=0.0, phi_1=0.0, power=2.0)

	Calculate a Moire lattice from 2 parent diffraction patterns. The second lattice can be rotated
and strained with respect to the original lattice. Note that this strain is applied in real space,
and so the inverse of the calculated infinitestimal strain tensor is applied.

	Parameters:

	
	bragg_peaks_0 (BraggVector) – Bragg vectors for parent lattice 0.

	bragg_peaks_1 (BraggVector) – Bragg vectors for parent lattice 1.

	thresh_0 (float) – Intensity threshold for structure factors from lattice 0.

	thresh_1 (float) – Intensity threshold for structure factors from lattice 1.

	exx_1 (float) – Strain of lattice 1 in x direction (vertical) in real space.

	eyy_1 (float) – Strain of lattice 1 in y direction (horizontal) in real space.

	exy_1 (float) – Shear strain of lattice 1 in (x,y) direction (diagonal) in real space.

	phi_1 (float) – Rotation of lattice 1 in real space.

	power (float) – Plotting power law (default is amplitude**2.0, i.e. intensity).

	Returns:

	parent_peaks_0, parent_peaks_1, moire_peaks – Bragg vectors for the rotated & strained parent lattices
and the moire lattice

	Return type:

	BraggVectors

	
py4DSTEM.process.diffraction.crystal.plot_moire_diffraction_pattern(bragg_parent_0, bragg_parent_1, bragg_moire, int_range=(0, 0.005), k_max=1.0, plot_subpixel=True, labels=None, marker_size_parent=16, marker_size_moire=4, text_size_parent=10, text_size_moire=6, add_labels_parent=False, add_labels_moire=False, dist_labels=0.03, dist_check=0.06, sep_labels=0.03, figsize=(8, 6), returnfig=False)

	Plot Moire lattice and parent lattices.

	Parameters:

	
	bragg_peaks_0 (BraggVector) – Bragg vectors for parent lattice 0.

	bragg_peaks_1 (BraggVector) – Bragg vectors for parent lattice 1.

	bragg_moire (BraggVector) – Bragg vectors for moire lattice.

	int_range ((float, float)) – Plotting intensity range for the Moire peaks.

	k_max (float) – Max k value of the plotted Moire lattice.

	plot_subpixel (bool) – Apply subpixel corrections to the Bragg spot positions.
Matplotlib default scatter plot rounds to the nearest pixel.

	labels (list) – List of text labels for parent lattices

	marker_size_parent (float) – Size of plot markers for the two parent lattices.

	marker_size_moire (float) – Size of plot markers for the Moire lattice.

	text_size_parent (float) – Label text size for parent lattice.

	text_size_moire (float) – Label text size for Moire lattice.

	add_labels_parent (bool) – Plot the parent lattice index labels.

	add_labels_moire (bool) – Plot the parent lattice index labels for the Moire spots.

	dist_labels (float) – Distance to move the labels off the spots.

	dist_check (float) – Set to some distance to “push” the labels away from each other if they are within this distance.

	sep_labels (float) – Separation distance for labels which are “pushed” apart.

	figsize ((float,float)) – Size of output figure.

	returnfig (bool) – Return the (fix,ax) handles of the plot.

	Returns:

	fig, ax – Figure and axes handles for the moire plot.

	Return type:

	matplotlib handles (optional)

	
py4DSTEM.process.diffraction.crystal_ACOM.orientation_plan(self, zone_axis_range: ndarray = array([[0, 1, 1], [1, 1, 1]]), angle_step_zone_axis: float = 2.0, angle_coarse_zone_axis: float | None = None, angle_refine_range: float | None = None, angle_step_in_plane: float = 2.0, accel_voltage: float = 300000.0, corr_kernel_size: float = 0.08, radial_power: float = 1.0, intensity_power: float = 0.25, calculate_correlation_array=True, tol_peak_delete=None, tol_distance: float = 0.01, fiber_axis=None, fiber_angles=None, figsize: list | tuple | ndarray = (6, 6), CUDA: bool = False, progress_bar: bool = True)

	Calculate the rotation basis arrays for an SO(3) rotation correlogram.

	Parameters:

	
	zone_axis_range (float) – Row vectors give the range for zone axis orientations.
If user specifies 2 vectors (2x3 array), we start at [0,0,1]

to make z-x-z rotation work.

If user specifies 3 vectors (3x3 array), plan will span these vectors.
Setting to ‘full’ as a string will use a hemispherical range.
Setting to ‘half’ as a string will use a quarter sphere range.
Setting to ‘fiber’ as a string will make a spherical cap around a given vector.
Setting to ‘auto’ will use pymatgen to determine the point group symmetry

of the structure and choose an appropriate zone_axis_range

	angle_step_zone_axis (float) – Approximate angular step size for zone axis search [degrees]

	angle_coarse_zone_axis (float) – Coarse step size for zone axis search [degrees]. Setting to
None uses the same value as angle_step_zone_axis.

	angle_refine_range (float) – Range of angles to use for zone axis refinement. Setting to
None uses same value as angle_coarse_zone_axis.

	angle_step_in_plane (float) – Approximate angular step size for in-plane rotation [degrees]

	accel_voltage (float) – Accelerating voltage for electrons [Volts]

	corr_kernel_size (float) – Correlation kernel size length in Angstroms

	radial_power (float) – Power for scaling the correlation intensity as a function of the peak radius

	intensity_power (float) – Power for scaling the correlation intensity as a function of the peak intensity

	calculate_correlation_array (bool) – Set to false to skip calculating the correlation array.
This is useful when we only want the angular range / rotation matrices.

	tol_peak_delete (float) – Distance to delete peaks for multiple matches.
Default is kernel_size * 0.5

	tol_distance (float) – Distance tolerance for radial shell assignment [1/Angstroms]

	fiber_axis (float) – (3,) vector specifying the fiber axis

	fiber_angles (float) – (2,) vector specifying angle range from fiber axis, and in-plane angular range [degrees]

	cartesian_directions (bool) – When set to true, all zone axes and projection directions
are specified in Cartesian directions.

	figsize (float) – (2,) vector giving the figure size

	CUDA (bool) – Use CUDA for the Fourier operations.

	progress_bar (bool) – If false no progress bar is displayed

	
py4DSTEM.process.diffraction.crystal_ACOM.match_orientations(self, bragg_peaks_array: PointListArray, num_matches_return: int = 1, min_angle_between_matches_deg=None, min_number_peaks: int = 3, inversion_symmetry: bool = True, multiple_corr_reset: bool = True, return_orientation: bool = True, progress_bar: bool = True)

	
	Parameters:

	
	bragg_peaks_array (PointListArray) – PointListArray containing the Bragg peaks and intensities, with calibrations applied

	num_matches_return (int) – return these many matches as 3th dim of orient (matrix)

	min_angle_between_matches_deg (int) – Minimum angle between zone axis of multiple matches, in degrees.
Note that I haven’t thought how to handle in-plane rotations, since multiple matches are possible.

	min_number_peaks (int) – Minimum number of peaks required to perform ACOM matching

	inversion_symmetry (bool) – check for inversion symmetry in the matches

	multiple_corr_reset (bool) – keep original correlation score for multiple matches

	return_orientation (bool) – Return orientation map from function for inspection.
The map is always stored in the Crystal object.

	progress_bar (bool) – Show or hide the progress bar

	
py4DSTEM.process.diffraction.crystal_ACOM.match_single_pattern(self, bragg_peaks: PointList, num_matches_return: int = 1, min_angle_between_matches_deg=None, min_number_peaks=3, inversion_symmetry=True, multiple_corr_reset=True, plot_polar: bool = False, plot_corr: bool = False, returnfig: bool = False, figsize: list | tuple | ndarray = (12, 4), verbose: bool = False)

	Solve for the best fit orientation of a single diffraction pattern.

	Parameters:

	
	bragg_peaks (PointList) – numpy array containing the Bragg positions and intensities (‘qx’, ‘qy’, ‘intensity’)

	num_matches_return (int) – return these many matches as 3th dim of orient (matrix)

	min_angle_between_matches_deg (int) – Minimum angle between zone axis of multiple matches, in degrees.
Note that I haven’t thought how to handle in-plane rotations, since multiple matches are possible.

	min_number_peaks (int) – Minimum number of peaks required to perform ACOM matching

	bool (multiple_corr_reset) – check for inversion symmetry in the matches

	bool – keep original correlation score for multiple matches

	subpixel_tilt (bool) – set to false for faster matching, returning the nearest corr point

	plot_polar (bool) – set to true to plot the polar transform of the diffraction pattern

	plot_corr (bool) – set to true to plot the resulting correlogram

	returnfig (bool) – return figure handles

	figsize (list) – size of figure

	verbose (bool) – Print the fitted zone axes, correlation scores

	CUDA (bool) – Enable CUDA for the FFT steps

	Returns:

	
	orientation (Orientation) – Orientation class containing all outputs

	fig, ax (handles) – Figure handles for the plotting output

	
py4DSTEM.process.diffraction.crystal_ACOM.cluster_grains(self, threshold_add=1.0, threshold_grow=0.1, angle_tolerance_deg=5.0, progress_bar=True)

	Cluster grains using rotation criterion, and correlation values.

	Parameters:

	
	threshold_add (float) – Minimum signal required for a probe position to initialize a cluster.

	threshold_grow (float) – Minimum signal required for a probe position to be added to a cluster.

	angle_tolerance_deg (float) – Rotation rolerance for clustering grains.

	progress_bar (bool) – Turns on the progress bar for the polar transformation

	
py4DSTEM.process.diffraction.crystal_ACOM.cluster_orientation_map(self, stripe_width=(2, 2), area_min=2)

	Produce a new orientation map from the clustered grains.
Use a stripe pattern for the overlapping grains.

	Parameters:

	
	stripe_width ((int,int)) – Width of stripes for plotting maps with overlapping grains

	area_min ((int)) – Minimum size of grains to include

	Returns:

	The clustered orientation map

	Return type:

	orientation_map

	
py4DSTEM.process.diffraction.crystal_ACOM.calculate_strain(self, bragg_peaks_array: PointListArray, orientation_map: OrientationMap, corr_kernel_size=None, sigma_excitation_error=0.02, tol_excitation_error_mult: float = 3, tol_intensity: float = 0.0001, k_max: float | None = None, min_num_peaks=5, rotation_range=None, mask_from_corr=True, corr_range=(0, 2), corr_normalize=True, progress_bar=True)

	This function takes in both a PointListArray containing Bragg peaks, and a
corresponding OrientationMap, and uses least squares to compute the
deformation tensor which transforms the simulated diffraction pattern
into the experimental pattern, for all probe positons.

TODO: add robust fitting?

	Parameters:

	
	bragg_peaks_array (PointListArray) – All Bragg peaks

	orientation_map (OrientationMap) – Orientation map generated from ACOM

	corr_kernel_size (float) – Correlation kernel size - if user does
not specify, uses self.corr_kernel_size.

	sigma_excitation_error (float) – sigma value for envelope applied to s_g (excitation errors) in units of inverse Angstroms

	tol_excitation_error_mult (float) – tolerance in units of sigma for s_g inclusion

	tol_intensity (np float) – tolerance in intensity units for inclusion of diffraction spots

	k_max (float) – Maximum scattering vector

	min_num_peaks (int) – Minimum number of peaks required.

	rotation_range (float) – Maximum rotation range in radians (for symmetry reduction).

	progress_bar (bool) – Show progress bar

	mask_from_corr (bool) – Use ACOM correlation signal for mask

	corr_range (np.ndarray) – Range of correlation signals for mask

	corr_normalize (bool) – Normalize correlation signal before masking

	Returns:

	strain tensor

	Return type:

	strain_map (RealSlice)

	
py4DSTEM.process.diffraction.crystal_ACOM.save_ang_file(self, file_name, orientation_map, ind_orientation=0, pixel_size=1.0, pixel_units='px', transpose_xy=True, flip_x=False)

	This function outputs an ascii text file in the .ang format, containing
the Euler angles of an orientation map.

	Parameters:

	
	file_name (str) – Path to save .ang file.

	orientation_map (OrientationMap) – Class containing orientation matrices,
correlation values, etc.

	ind_orientation (int) – Which orientation match to plot if num_matches > 1

	pixel_size (float) – Pixel size, if known.

	pixel_units (str) – Units of the pixel size

	transpose_xy (bool) – Transpose x and y pixel coordinates.

	flip_x (bool) – Swap x direction pixels (after transpose).

	Returns:

	nothing

	
py4DSTEM.process.diffraction.crystal_ACOM.symmetry_reduce_directions(self, orientation, match_ind=0, plot_output=False, figsize=(15, 6), el_shift=0.0, az_shift=-30.0)

	This function calculates the symmetry-reduced cartesian directions from
and orientation matrix stored in orientation.matrix, and outputs them
into orientation.family. It optionally plots the 3D output.

	
class py4DSTEM.process.diffraction.crystal_bloch.DynamicalMatrixCache(has_valid_cache: bool = False, cached_U_gmh: <built-in function array> = None)

	
	
__init__(has_valid_cache: bool = False, cached_U_gmh: array | None = None) → None

	

	
py4DSTEM.process.diffraction.crystal_bloch.calculate_dynamical_structure_factors(self, accelerating_voltage: float, method: str = 'WK-CP', k_max: float = 2.0, thermal_sigma: float | dict | None = None, tol_structure_factor: float = 0.0, recompute_kinematic_structure_factors=True, g_vec_precision=None, verbose=True)

	Calculate and store the relativistic corrected structure factors used for Bloch computations
in a dictionary for faster lookup.

	Parameters:

	
	accelerating_voltage (float) – accelerating voltage in eV

	method (str) – Choose which parameterization of the structure factors to use:
“Lobato”: Uses the kinematic structure factors from crystal.py, using the parameterization from

Lobato & Van Dyck, Acta Cryst A 70:6 (2014)

	”Lobato-absorptive”: Lobato factors plus an imaginary part
	equal to 0.1•f, as a simple but inaccurate way to include absorption, per
Hashimoto, Howie, & Whelan, Proc R Soc Lond A 269:80-103 (1962)

	”WK”: Uses the Weickenmeier-Kohl parameterization for
	the elastic form factors, including Debye-Waller factor,
with no absorption, as described in
Weickenmeier & Kohl, Acta Cryst A 47:5 (1991)

	”WK-C”: WK form factors plus the “core” contribution to absorption
	following H. Rose, Optik 45:2 (1976)

”WK-P”: WK form factors plus the phonon/TDS absorptive contribution
“WK-CP”: WK form factors plus core and phonon absorption (default)

	k_max (float) – max scattering length to compute structure factors to.
Setting this to 2x the k_max used in generating the beamsn
included in a simulation will retain all possible couplings

	thermal_sigma (float or dict{int->float}) – RMS atomic diplacement for attenuating form factors to account for thermal
broadening of the potential, only used when a “WK” method is
selected. Required when WK-P or WK-CP are selected.
Units are Å. (This is often written as 〈u〉in papers)
To specify different 〈u〉 for each element, pass a dictionary
with Z as the key, mapping to the appropriate float value

	tol_structure_factor (float) – tolerance for removing low-valued structure factors. Reflections
with structure factor below the tolerance will have zero coupling
in the dynamical calculations (i.e. they are the ignored weak beams)

	recompute_kinematic_structure_factors (bool) – When True, recomputes the kinematic structure
factors using the same tol_structure_factor, and with k_max
set to half the k_max for the dynamical factors. The factor
of half ensures that every beam in a simulation can couple to
every other beam (no high-angle couplings in the Bloch matrix
are set to zero.)

	g_vec_precision (optional int) – If specified, rounds |g| to this many decimal places so that
automatic caching of the atomic form factors is not slowed
down due to floating point errors. Setting this to 3 can give
substantial speedup at the cost of some reduced accuracy

	factors. (See WK_scattering_factors.py for details on the Weickenmeier-Kohl form) –

	
py4DSTEM.process.diffraction.crystal_bloch.generate_dynamical_diffraction_pattern(self, beams: PointList, thickness: float | list | tuple | ndarray, zone_axis_lattice: ndarray | None = None, zone_axis_cartesian: ndarray | None = None, foil_normal_lattice: ndarray | None = None, foil_normal_cartesian: ndarray | None = None, verbose: bool = False, always_return_list: bool = False, dynamical_matrix_cache: DynamicalMatrixCache | None = None, return_complex: bool = False, return_eigenvectors: bool = False, return_Smatrix: bool = False) → PointList | List[PointList]

	Generate a dynamical diffraction pattern (or thickness series of patterns)
using the Bloch wave method.

The beams to be included in the Bloch calculation must be pre-calculated
and passed as a PointList containing at least (qx, qy, h, k, l) fields.

If thickness is a single value, one new PointList will be returned.
If thickness is a sequence of values, a list of PointLists will be returned,

corresponding to each thickness value in the input.

	Frequent reference will be made to “Introduction to conventional transmission electron microscopy”
	by DeGraef, whose overall approach we follow here.

	Parameters:

	
	beams (PointList) – PointList from the kinematical diffraction generator
which will define the beams included in the Bloch calculation

	thickness (float or list/array) – The main Bloch calculation can be reused for multiple thicknesses
without much overhead.

	direction. (zone_axis & foil_normal Incident beam orientation and foil normal) – Each can be specified in the Cartesian or crystallographic basis,
using e.g. zone_axis_lattice or zone_axis_cartesian. These are
internally parsed by Crystal.parse_orientation

	Less commonly used args:
	
	always_return_list (bool): When True, the return is always a list of PointLists,
	even for a single thickness

	dynamical_matrix_cache: (DyanmicalMatrixCache) Dataclass used for caching of the
	dynamical matrix. If the cached matrix does not exist, it is
computed and stored. Subsequent calls will use the cached matrix
for the off-diagonal components of the A matrix and overwrite
the diagonal elements. This is used for CBED calculations.

return_complex (bool): When True, returns both the complex amplitude and intensity. Defaults to (False)

	Returns:

	
	Bragg peaks with fields [qx, qy, intensity, h, k, l]
	or

	[bragg_peaks,…] (PointList): If thickness is a list/array, or always_return_list is True,
	a list of PointLists is returned.

	if return_complex = True:
	
	bragg_peaks (PointList): Bragg peaks with fields [qx, qy, intensity, amplitude, h, k, l]
	or

	[bragg_peaks,…] (PointList): If thickness is a list/array, or always_return_list is True,
	a list of PointLists is returned.

	if return_Smatrix = True:
	
	[S_matrix, …], psi_0: Returns a list of S-matrices for each thickness (this is always a list),
	and the vector representing the incident plane wave. The beams of the
S-matrix have the same order as in the input beams.

	Return type:

	bragg_peaks (PointList)

	
py4DSTEM.process.diffraction.crystal_bloch.generate_CBED(self, beams: ~emdfile.classes.pointlist.PointList, thickness: float | list | tuple | ~numpy.ndarray, alpha_mrad: float, pixel_size_inv_A: float, DP_size_inv_A: float | None = None, zone_axis_lattice: ~numpy.ndarray | None = None, zone_axis_cartesian: ~numpy.ndarray | None = None, foil_normal_lattice: ~numpy.ndarray | None = None, foil_normal_cartesian: ~numpy.ndarray | None = None, LACBED: bool = False, dtype: ~numpy.dtype = <class 'numpy.float32'>, verbose: bool = False, progress_bar: bool = True, return_mask: bool = False, two_beam_zone_axis_lattice: ~numpy.ndarray | None = None, return_probe: bool = False) → ndarray | List[ndarray] | Dict[Tuple[int], ndarray]

	Generate a dynamical CBED pattern using the Bloch wave method.

	Parameters:

	
	beams (PointList) – PointList from the kinematical diffraction generator
which will define the beams included in the Bloch calculation

	thickness (float or list/array) – The main Bloch calculation can be reused for multiple thicknesses
without much overhead.

	alpha_mrad (float) – Convergence angle for CBED pattern. Note that if disks in the calculation
overlap, they will be added incoherently, and the resulting CBED will
thus represent the average over the unit cell (i.e. a PACBED pattern,
as described in LeBeau et al., Ultramicroscopy 110(2): 2010.)

	pixel_size_inv_A (float) – CBED pixel size in 1/Å.

	DP_size_inv_A (optional float) – If specified, defines the extents of the diffraction pattern.
If left unspecified, the DP will be automatically scaled to
fit all of the beams present in the input plus some small buffer.

	zone_axis (np float vector) – 3 element projection direction for sim pattern
Can also be a 3x3 orientation matrix (zone axis 3rd column)

	foil_normal – 3 element foil normal - set to None to use zone_axis

	LACBED (bool) – keyed by tuples of (h,k,l).

	proj_x_axis (np float vector) – 3 element vector defining image x axis (vertical)

	PointList (two_beam_zone_axis_lattice When only two beams are present in the "beams") – the computation of the projected crystallographic directions
becomes ambiguous. In this case, you must specify the indices of
the zone axis used to generate the beams.

	:paramthe computation of the projected crystallographic directions
	becomes ambiguous. In this case, you must specify the indices of
the zone axis used to generate the beams.

	Parameters:

	return_probe (bool) – If True, the probe (np.ndarray) will be returned in additon to the CBED

	Returns:

	CBED pattern as np.ndarray
If thickness is a sequence: CBED patterns for each thickness value as a list of np.ndarrays
If LACBED is True and thickness is scalar: Dictionary with tuples of ints (h,k,l) as keys, mapping to np.ndarray.
If LACBED is True and thickness is a sequence: List of dictionaries, structured as above.
If return_probe is True: will return a tuple (<CBED/LACBED object>, Probe)

	Return type:

	If thickness is a scalar

	
py4DSTEM.process.diffraction.crystal_calibrate.calibrate_pixel_size(self, bragg_peaks, scale_pixel_size=1.0, bragg_k_power=1.0, bragg_intensity_power=1.0, k_min=0.0, k_max=None, k_step=0.002, k_broadening=0.002, fit_all_intensities=True, set_calibration_in_place=False, verbose=True, plot_result=False, figsize: list | tuple | ndarray = (12, 6), returnfig=False)

	Use the calculated structure factor scattering lengths to compute 1D
diffraction patterns, and solve the best-fit relative scaling between them.
Returns the fit pixel size in Å^-1.

	Parameters:

	
	bragg_peaks (BraggVectors) – Input Bragg vectors.

	scale_pixel_size (float) – Initial guess for scaling of the existing
pixel size If the pixel size is currently uncalibrated, this is a
guess of the pixel size in Å^-1. If the pixel size is already
(approximately) calibrated, this is the scaling factor to
correct that existing calibration.

	bragg_k_power (float) – Input Bragg peak intensities are multiplied by
k**bragg_k_power to change the weighting of longer scattering vectors

	bragg_intensity_power (float) – Input Bragg peak intensities are raised
power **bragg_intensity_power.

	k_min (float) – min k value for fitting range (Å^-1)

	k_max (float) – max k value for fitting range (Å^-1)

	k_step (float) step size of k in fitting range (Å^-1) –

	k_broadening (float) – Initial guess for Gaussian broadening of simulated
pattern (Å^-1)

	fit_all_intensities (bool) – Set to true to allow all peak intensities to
change independently False forces a single intensity scaling.

	set_calibration (bool) – if True, set the fit pixel size to the calibration
metadata, and calibrate bragg_peaks

	verbose (bool) – Output the calibrated pixel size.

	plot_result (bool) – Plot the resulting fit.

	figsize (list, tuple, np.ndarray) – Figure size of the plot.

	returnfig (bool) – Return handles figure and axis

	Returns:

	fig, ax – Figure and axis handles, if returnfig=True.

	Return type:

	handles, optional

	
py4DSTEM.process.diffraction.crystal_calibrate.calibrate_unit_cell(self, bragg_peaks, coef_index=None, coef_update=None, bragg_k_power=1.0, bragg_intensity_power=1.0, k_min=0.0, k_max=None, k_step=0.005, k_broadening=0.02, fit_all_intensities=True, verbose=True, plot_result=False, figsize: list | tuple | ndarray = (12, 6), returnfig=False)

	Solve for the best fit scaling between the computed structure factors and bragg_peaks.

	Parameters:

	
	bragg_peaks (BraggVectors) – Input Bragg vectors.

	coef_index (list of ints) – List of ints that act as pointers to unit cell parameters and angles to update.

	coef_update (list of bool) – List of booleans to indicate whether or not to update the cell at
that position

	bragg_k_power (float) – Input Bragg peak intensities are multiplied by k**bragg_k_power
to change the weighting of longer scattering vectors

	bragg_intensity_power (float) – Input Bragg peak intensities are raised power **bragg_intensity_power.

	k_min (float) – min k value for fitting range (Å^-1)

	k_max (float) – max k value for fitting range (Å^-1)

	k_step (float) – step size of k in fitting range (Å^-1)

	k_broadening (float) – Initial guess for Gaussian broadening of simulated pattern (Å^-1)

	fit_all_intensities (bool) – Set to true to allow all peak intensities to change independently
False forces a single intensity scaling.

	verbose (bool) – Output the calibrated pixel size.

	plot_result (bool) – Plot the resulting fit.

	figsize (list, tuple, np.ndarray) –

	returnfig (bool) – Return handles figure and axis

	Returns:

	Optional figure and axis handles, if returnfig=True.

	Return type:

	fig, ax (handles)

Details:
User has the option to define what is allowed to update in the unit cell using the arguments
coef_index and coef_update. Each has 6 entries, corresponding to the a, b, c, alpha, beta, gamma
parameters of the unit cell, in this order. The coef_update argument is a list of bools specifying
whether or not the unit cell value will be allowed to change (True) or must maintain the original
value (False) upon fitting. The coef_index argument provides a pointer to the index in which the
code will update to.

For example, to update a, b, c, alpha, beta, gamma all independently of eachother, the following
arguments should be used:

coef_index = [0, 1, 2, 3, 4, 5]
coef_update = [True, True, True, True, True, True,]

The default is set to automatically define what can update in a unit cell based on the
point group constraints. When either ‘coef_index’ or ‘coef_update’ are None, these constraints
will be automatically pulled from the pointgroup.

	For example, the default for cubic unit cells is:
	coef_index = [0, 0, 0, 3, 3, 3]
coef_update = [True, True, True, False, False, False]

Which allows a, b, and c to update (True in first 3 indices of coef_update)
but b and c update based on the value of a (0 in the 1 and 2 list entries in coef_index) such
that a = b = c. While coef_update is False for alpha, beta, and gamma (entries 3, 4, 5), no
updates will be made to the angles.

The user has the option to predefine coef_index or coef_update to override defaults. In the
coef_update list, there must be 6 entries and each are boolean. In the coef_index list, there
must be 6 entries, with the first 3 entries being between 0 - 2 and the last 3 entries between
3 - 5. These act as pointers to pull the updated parameter from.

	
class py4DSTEM.process.diffraction.crystal_phase.Crystal_Phase(crystals, orientation_maps, name)

	A class storing multiple crystal structures, and associated diffraction data.
Must be initialized after matching orientations to a pointlistarray???

	
__init__(crystals, orientation_maps, name)

	
	Parameters:

	
	crystals (list) – List of crystal instances

	orientation_maps (list) – List of orientation maps

	name (str) – Name of Crystal_Phase instance

	
plot_all_phase_maps(map_scale_values=None, index=0)

	Visualize phase maps of dataset.

	Parameters:

	map_scale_values (float) – Value to scale correlations by

	
quantify_phase(pointlistarray, tolerance_distance=0.08, method='nnls', intensity_power=0, mask_peaks=None)

	Quantification of the phase of a crystal based on the crystal instances and the pointlistarray.

	Parameters:

	
	pointlisarray (pointlistarray) – Pointlistarray to quantify phase of

	tolerance_distance (float) – Distance allowed between a peak and match

	method (str) – Numerical method used to quantify phase

	intensity_power (float) – …

	mask_peaks (list, optional) – A pointer of which positions to mask peaks from

Details:

	
quantify_phase_pointlist(pointlistarray, position, method='nnls', tolerance_distance=0.08, intensity_power=0, mask_peaks=None)

	
	Parameters:

	
	pointlisarray (pointlistarray) – Pointlistarray to quantify phase of

	position (tuple/list) – Position of pointlist in pointlistarray

	tolerance_distance (float) – Distance allowed between a peak and match

	method (str) – Numerical method used to quantify phase

	intensity_power (float) – …

	mask_peaks (list, optional) – A pointer of which positions to mask peaks from

	Returns:

	Peak matches in the rows of array and the crystals in the columns
phase_weights (np.ndarray): Weights of each phase
phase_residuals (np.ndarray): Residuals
crystal_identity (list): List of lists, where the each entry represents the position in the

crystal and orientation match that is associated with the phase
weights. for example, if the output was [[0,0], [0,1], [1,0], [0,1]],
the first entry [0,0] in phase weights is associated with the first crystal
the first match within that crystal. [0,1] is the first crystal and the
second match within that crystal.

	Return type:

	pointlist_peak_intensity_matches (np.ndarray)

	
py4DSTEM.process.diffraction.crystal_viz.plot_structure(self, orientation_matrix: ndarray | None = None, zone_axis_lattice: ndarray | None = None, proj_x_lattice: ndarray | None = None, zone_axis_cartesian: ndarray | None = None, proj_x_cartesian: ndarray | None = None, size_marker: float = 400, tol_distance: float = 0.001, plot_limit: ndarray | None = None, camera_dist: float | None = None, show_axes: bool = False, perspective_axes: bool = True, figsize: tuple | list | ndarray = (8, 8), returnfig: bool = False)

	Quick 3D plot of the untit cell /atomic structure.

	Parameters:

	
	orientation_matrix (array) – (3,3) orientation matrix, where columns represent projection directions.

	zone_axis_lattice (array) – (3,) projection direction in lattice indices

	proj_x_lattice (array) – (3,) x-axis direction in lattice indices

	zone_axis_cartesian (array) – (3,) cartesian projection direction

	proj_x_cartesian (array) – (3,) cartesian projection direction

	scale_markers (float) – Size scaling for markers

	tol_distance (float) – Tolerance for repeating atoms on edges on cell boundaries.

	plot_limit (float) – (2,3) numpy array containing x y z plot min and max in columns.
Default is 1.1* unit cell dimensions.

	camera_dist (float) – Move camera closer to the plot (relative to matplotlib default of 10)

	show_axes (bool) – Whether to plot axes or not.

	perspective_axes (bool) – Select either perspective (true) or orthogonal (false) axes

	figsize (2 element float) – Size scaling of figure axes.

	returnfig (bool) – Return figure and axes handles.

	Returns:

	fig, ax (optional) figure and axes handles

	
py4DSTEM.process.diffraction.crystal_viz.plot_structure_factors(self, orientation_matrix: ndarray | None = None, zone_axis_lattice: ndarray | None = None, proj_x_lattice: ndarray | None = None, zone_axis_cartesian: ndarray | None = None, proj_x_cartesian: ndarray | None = None, scale_markers: float = 1000.0, plot_limit: list | tuple | ndarray | None = None, camera_dist: float | None = None, show_axes: bool = True, perspective_axes: bool = True, figsize: list | tuple | ndarray = (8, 8), returnfig: bool = False)

	3D scatter plot of the structure factors using magnitude^2, i.e. intensity.

	Parameters:

	
	orientation_matrix (array) – (3,3) orientation matrix, where columns represent projection directions.

	zone_axis_lattice (array) – (3,) projection direction in lattice indices

	proj_x_lattice (array) – (3,) x-axis direction in lattice indices

	zone_axis_cartesian (array) – (3,) cartesian projection direction

	proj_x_cartesian (array) – (3,) cartesian projection direction

	scale_markers (float) – size scaling for markers

	plot_limit (float) – x y z plot limits, default is [-1 1]*self.k_max

	camera_dist (float) – Move camera closer to the plot (relative to matplotlib default of 10)

	show_axes (bool) – Whether to plot axes or not.

	perspective_axes (bool) – Select either perspective (true) or orthogonal (false) axes

	figsize (2 element float) – size scaling of figure axes

	returnfig (bool) – set to True to return figure and axes handles

	Returns:

	fig, ax (optional) figure and axes handles

	
py4DSTEM.process.diffraction.crystal_viz.plot_scattering_intensity(self, k_min=0.0, k_max=None, k_step=0.001, k_broadening=0.0, k_power_scale=0.0, int_power_scale=0.5, int_scale=1.0, remove_origin=True, bragg_peaks=None, bragg_k_power=0.0, bragg_intensity_power=1.0, bragg_k_broadening=0.005, figsize: list | tuple | ndarray = (10, 4), returnfig: bool = False)

	1D plot of the structure factors

	Parameters:

	
	k_min (float) – min k value for profile range.

	k_max (float) – max k value for profile range.

	k_step (float) – Step size of k in profile range.

	k_broadening (float) – Broadening of simulated pattern.

	k_power_scale (float) – Scale SF intensities by k**k_power_scale.

	int_power_scale (float) – Scale SF intensities**int_power_scale.

	int_scale (float) – Scale output profile by this value.

	remove_origin (bool) – Remove origin from plot.

	bragg_peaks (BraggVectors) – Passed in bragg_peaks for comparison with simulated pattern.

	bragg_k_power (float) – bragg_peaks scaled by k**bragg_k_power.

	bragg_intensity_power (float) – bragg_peaks scaled by intensities**bragg_intensity_power.

	bragg_k_broadening (float) – Broadening applied to bragg_peaks.

	figsize (list, tuple, np.ndarray) – Figure size for plot.

	(bool) (returnfig) – Return figure and axes handles if this is True.

	Returns:

	figure and axes handles

	Return type:

	fig, ax (optional)

	
py4DSTEM.process.diffraction.crystal_viz.plot_orientation_zones(self, azim_elev: list | tuple | ndarray | None = None, proj_dir_lattice: list | tuple | ndarray | None = None, proj_dir_cartesian: list | tuple | ndarray | None = None, tol_den=10, marker_size: float = 20, plot_limit: list | tuple | ndarray = array([-1.1, 1.1]), figsize: list | tuple | ndarray = (8, 8), returnfig: bool = False)

	3D scatter plot of the structure factors using magnitude^2, i.e. intensity.

	Parameters:

	
	azim_elev (array) – az and el angles for plot

	proj_dir_lattice (array) – (3,) projection direction in lattice

	proj_dir_cartesian – (array): (3,) projection direction in cartesian

	tol_den (int) – tolerance for rational index denominator

	dir_proj (float) – projection direction, either [elev azim] or normal vector
Default is mean vector of self.orientation_zone_axis_range rows

	marker_size (float) – size of markers

	plot_limit (float) – x y z plot limits, default is [0, 1.05]

	figsize (2 element float) – size scaling of figure axes

	returnfig (bool) – set to True to return figure and axes handles

	Returns:

	fig, ax (optional) figure and axes handles

	
py4DSTEM.process.diffraction.crystal_viz.plot_orientation_plan(self, index_plot: int = 0, zone_axis_lattice: ndarray | None = None, zone_axis_cartesian: ndarray | None = None, figsize: list | tuple | ndarray = (14, 6), returnfig: bool = False)

	3D scatter plot of the structure factors using magnitude^2,
i.e. intensity.

	Parameters:

	
	index_plot (int) – which index slice to plot

	zone_axis_plot (3 element float) – which zone axis slice to plot

	figsize (2 element float) – size scaling of figure axes

	returnfig (bool) – set to True to return figure and axes handles

	Returns:

	fig, ax (optional) figure and axes handles

	
py4DSTEM.process.diffraction.crystal_viz.plot_diffraction_pattern(bragg_peaks: PointList, bragg_peaks_compare: PointList | None = None, scale_markers: float = 500, scale_markers_compare: float | None = None, power_markers: float = 1, plot_range_kx_ky: list | tuple | ndarray | None = None, add_labels: bool = True, shift_labels: float = 0.08, shift_marker: float = 0.005, min_marker_size: float = 1e-06, max_marker_size: float = 1000, figsize: list | tuple | ndarray = (12, 6), returnfig: bool = False, input_fig_handle=None)

	2D scatter plot of the Bragg peaks

	Parameters:

	
	bragg_peaks (PointList) – numpy array containing (‘qx’, ‘qy’, ‘intensity’, ‘h’, ‘k’, ‘l’)

	bragg_peaks_compare (PointList) – numpy array containing (‘qx’, ‘qy’, ‘intensity’)

	scale_markers (float) – size scaling for markers

	scale_markers_compare (float) – size scaling for markers of comparison

	power_markers (float) – power law scaling for marks (default is 1, i.e. amplitude)

	plot_range_kx_ky (float) – 2 element numpy vector giving the plot range

	add_labels (bool) – flag to add hkl labels to peaks

	min_marker_size (float) – minimum marker size for the comparison peaks

	max_marker_size (float) – maximum marker size for the comparison peaks

	figsize (2 element float) – size scaling of figure axes

	returnfig (bool) – set to True to return figure and axes handles

	input_fig_handle (fig,ax) –

	
py4DSTEM.process.diffraction.crystal_viz.plot_orientation_maps(self, orientation_map=None, orientation_ind: int = 0, dir_in_plane_degrees: float = 0.0, corr_range: ndarray = array([0, 5]), corr_normalize: bool = True, scale_legend: bool | None = None, figsize: list | tuple | ndarray = (16, 5), figbound: list | tuple | ndarray = (0.01, 0.005), show_axes: bool = True, camera_dist=None, plot_limit=None, plot_layout=0, swap_axes_xy_limits=False, returnfig: bool = False, progress_bar=False)

	Plot the orientation maps.

	Parameters:

	
	orientation_map (OrientationMap) – Class containing orientation matrices, correlation values, etc.
Optional - can reference internally stored OrientationMap.

	orientation_ind (int) – Which orientation match to plot if num_matches > 1

	dir_in_plane_degrees (float) – In-plane angle to plot in degrees. Default is 0 / x-axis / vertical down.

	corr_range (np.ndarray) – Correlation intensity range for the plot

	corr_normalize (bool) – If true, set mean correlation to 1.

	scale_legend (float) – 2 elements, x and y scaling of legend panel

	figsize (array) – 2 elements defining figure size

	figbound (array) – 2 elements defining figure boundary

	show_axes (bool) – Flag setting whether orienation map axes are visible.

	camera_dist (float) – distance of camera from legend

	plot_limit (array) – 2x3 array defining plot boundaries of legend

	plot_layout (int) – subplot layout: 0 - 1 row, 3 col
1 - 3 row, 1 col

	swap_axes_xy_limits (bool) – swap x and y boundaries for legend (not sure why we need this in some cases)

	returnfig (bool) – set to True to return figure and axes handles

	progress_bar (bool) – Enable progressbar when calculating orientation images.

	Returns:

	RGB images
fig, axs (handles): Figure and axes handes for the

	Return type:

	images_orientation (int)

Note

Currently, no symmetry reduction. Therefore the x and y orientations
are going to be correct only for [001][011][111] orientation triangle.

	
py4DSTEM.process.diffraction.crystal_viz.plot_fiber_orientation_maps(self, orientation_map, orientation_ind: int = 0, symmetry_order: int | None = None, symmetry_mirror: bool = False, dir_in_plane_degrees: float = 0.0, corr_range: ndarray = array([0, 2]), corr_normalize: bool = True, show_axes: bool = True, medfilt_size: int | None = None, cmap_out_of_plane: str = 'plasma', leg_size: int = 200, figsize: list | tuple | ndarray = (12, 8), figbound: list | tuple | ndarray = (0.005, 0.04), returnfig: bool = False)

	Generate and plot the orientation maps from fiber texture plots.

	Parameters:

	
	orientation_map (OrientationMap) – Class containing orientation matrices, correlation values, etc.

	orientation_ind (int) – Which orientation match to plot if num_matches > 1

	dir_in_plane_degrees (float) – Reference in-plane angle (degrees). Default is 0 / x-axis / vertical down.

	corr_range (np.ndarray) – Correlation intensity range for the plot

	corr_normalize (bool) – If true, set mean correlation to 1.

	show_axes (bool) – Flag setting whether orienation map axes are visible.

	figsize (array) – 2 elements defining figure size

	figbound (array) – 2 elements defining figure boundary

	returnfig (bool) – set to True to return figure and axes handles

	Returns:

	RGB images
fig, axs (handles): Figure and axes handes for the

	Return type:

	images_orientation (int)

Note

Currently, no symmetry reduction. Therefore the x and y orientations
are going to be correct only for [001][011][111] orientation triangle.

	
py4DSTEM.process.diffraction.crystal_viz.plot_clusters(self, area_min=2, outline_grains=True, outline_thickness=1, fill_grains=0.25, smooth_grains=1.0, cmap='viridis', figsize=(8, 8), returnfig=False)

	Plot the clusters as an image.

	Parameters:

	
	area_min (int (optional)) – Min cluster size to include, in units of probe positions.

	outline_grains (bool (optional)) – Set to True to draw grains with outlines

	outline_thickness (int (optional)) – Thickenss of the grain outline

	fill_grains (float (optional)) – Outlined grains are filled with this value in pixels.

	smooth_grains (float (optional)) – Grain boundaries are smoothed by this value in pixels.

	figsize (tuple) – Size of the figure panel

	returnfig (bool) – Setting this to true returns the figure and axis handles

	Returns:

	Figure and axes handles

	Return type:

	fig, ax (optional)

	
py4DSTEM.process.diffraction.crystal_viz.plot_cluster_size(self, area_min=None, area_max=None, area_step=1, weight_intensity=False, pixel_area=1.0, pixel_area_units='px^2', figsize=(8, 6), returnfig=False)

	Plot the cluster sizes

	Parameters:

	
	area_min (int (optional)) – Min area to include in pixels^2

	area_max (int (optional)) – Max area bin in pixels^2

	area_step (int (optional)) – Step size of the histogram bin in pixels^2

	weight_intensity (bool) – Weight histogram by the peak intensity.

	pixel_area (float) – Size of pixel area unit square

	pixel_area_units (string) – Units of the pixel area

	figsize (tuple) – Size of the figure panel

	returnfig (bool) – Setting this to true returns the figure and axis handles

	Returns:

	Figure and axes handles

	Return type:

	fig, ax (optional)

	
py4DSTEM.process.diffraction.crystal_viz.atomic_colors(Z, scheme='jmol')

	Return atomic colors for Z.

Modes are “colin” and “jmol”.
“colin” uses the handmade but incomplete scheme of Colin Ophus
“jmol” uses the JMOL scheme, from http://jmol.sourceforge.net/jscolors

which includes all elements up to 109

	
py4DSTEM.process.diffraction.crystal_viz.plot_ring_pattern(radii, intensity, theta=[-3.141592653589793, 3.141592653589793, 200], intensity_scale=1, intensity_constant=False, color='k', figsize=(10, 10), returnfig=False, input_fig_handle=None, **kwargs)

	2D plot of diffraction rings

	Parameters:

	
	radii (PointList) – 1D numpy array containing radii for diffraction rings

	intensity (PointList) – 1D numpy array containing intensities for diffraciton rings

	theta (3-tuple) – first two values specify angle range, and the last specifies the number of points used for plotting

	intensity_scale (float) – size scaling for ring thickness

	intensity_constant (bool) – if true, all rings are plotted with same line width

	color (matplotlib color) – color of ring, any format recognized by matplotlib

	figsize (2 element float) – size scaling of figure axes

	returnfig (bool) – set to True to return figure and axes handles

	input_fig_handle (fig,ax) –

	
py4DSTEM.process.diffraction.flowlines.make_orientation_histogram(bragg_peaks: PointListArray | None = None, radial_ranges: ndarray | None = None, orientation_map=None, orientation_ind: int = 0, orientation_growth_angles: array = 0.0, orientation_separate_bins: bool = False, orientation_flip_sign: bool = False, upsample_factor=4.0, theta_step_deg=1.0, sigma_x=1.0, sigma_y=1.0, sigma_theta=3.0, normalize_intensity_image: bool = False, normalize_intensity_stack: bool = True, progress_bar: bool = True)

	Create an 3D or 4D orientation histogram from a braggpeaks PointListArray
from user-specified radial ranges, or from the Euler angles from a fiber
texture OrientationMap generated by the ACOM module of py4DSTEM.

	Parameters:

	
	bragg_peaks (PointListArray) – 2D of pointlists containing centered peak locations.

	radial_ranges (np array) – Size (N x 2) array for N radial bins, or (2,) for a single bin.

	orientation_map (OrientationMap) – Class containing the Euler angles to generate a flowline map.

	orientation_ind (int) – Index of the orientation map (default 0)

	orientation_growth_angles (array) – Angles to place into histogram, relative to orientation.

	orientation_separate_bins (bool) – whether to place multiple angles into multiple radial bins.

	upsample_factor (float) – Upsample factor

	theta_step_deg (float) – Step size along annular direction in degrees

	sigma_x (float) – Smoothing in x direction before upsample

	sigma_y (float) – Smoothing in x direction before upsample

	sigma_theta (float) – Smoothing in annular direction (units of bins, periodic)

	normalize_intensity_image (bool) – Normalize to max peak intensity = 1, per image

	normalize_intensity_stack (bool) – Normalize to max peak intensity = 1, all images

	progress_bar (bool) – Enable progress bar

	Returns:

	
	4D array containing Bragg peak intensity histogram
	[radial_bin x_probe y_probe theta]

	Return type:

	orient_hist (array)

	
py4DSTEM.process.diffraction.flowlines.make_flowline_map(orient_hist, thresh_seed=0.2, thresh_grow=0.05, thresh_collision=0.001, sep_seeds=None, sep_xy=6.0, sep_theta=5.0, sort_seeds='intensity', linewidth=2.0, step_size=0.5, min_steps=4, max_steps=1000, sigma_x=1.0, sigma_y=1.0, sigma_theta=2.0, progress_bar: bool = True)

	Create an 3D or 4D orientation flowline map - essentially a pixelated “stream map” which represents diffraction data.

	Parameters:

	
	orient_hist (array) – Histogram of all orientations with coordinates
[radial_bin x_probe y_probe theta]
We assume theta bin ranges from 0 to 180 degrees and is periodic.

	thresh_seed (float) – Threshold for seed generation in histogram.

	thresh_grow (float) – Threshold for flowline growth in histogram.

	thresh_collision (float) – Threshold for termination of flowline growth in histogram.

	sep_seeds (float) – Initial seed separation in bins - set to None to use default value,
which is equal to 0.5*sep_xy.

	sep_xy (float) – Search radius for flowline direction in x and y.

	= (sep_theta) – Search radius for flowline direction in theta.

	sort_seeds (str) – How to sort the initial seeds for growth:
None - no sorting
‘intensity’ - sort by histogram intensity
‘random’ - random order

	linewidth (float) – Thickness of the flowlines in pixels.

	step_size (float) – Step size for flowline growth in pixels.

	min_steps (int) – Minimum number of steps for a flowline to be drawn.

	max_steps (int) – Maximum number of steps for a flowline to be drawn.

	sigma_x (float) – Weighted sigma in x direction for direction update.

	sigma_y (float) – Weighted sigma in y direction for direction update.

	sigma_theta (float) – Weighted sigma in theta for direction update.

	progress_bar (bool) – Enable progress bar

	Returns:

	
	4D array containing flowlines
	[radial_bin x_probe y_probe theta]

	Return type:

	orient_flowlines (array)

	
py4DSTEM.process.diffraction.flowlines.make_flowline_rainbow_image(orient_flowlines, int_range=[0, 0.2], sym_rotation_order=2, theta_offset=0.0, greyscale=False, greyscale_max=True, white_background=False, power_scaling=1.0, sum_radial_bins=False, plot_images=True, figsize=None)

	Generate RGB output images from the flowline arrays.

	Parameters:

	
	orient_flowline (array) – Histogram of all orientations with coordinates [x y radial_bin theta]
We assume theta bin ranges from 0 to 180 degrees and is periodic.

	int_range (float) –

	sym_rotation_order (int) – rotational symmety for colouring

	theta_offset (float) – Offset the anglular coloring by this value in radians.

	greyscale (bool) – Set to False for color output, True for greyscale output.

	greyscale_max (bool) – If output is greyscale, use max instead of mean for overlapping flowlines.

	white_background (bool) – For either color or greyscale output, switch to white background (from black).

	power_scaling (float) – Power law scaling for flowline intensity output.

	sum_radial_bins (bool) – Sum all radial bins (alternative is to output separate images).

	plot_images (bool) – Plot the outputs for quick visualization.

	figsize (2-tuple) – Size of output figure.

	Returns:

	3D or 4D array containing flowline images

	Return type:

	im_flowline (array)

	
py4DSTEM.process.diffraction.flowlines.make_flowline_rainbow_legend(im_size=array([256, 256]), sym_rotation_order=2, theta_offset=0.0, white_background=False, return_image=False, radial_range=array([0.45, 0.9]), plot_legend=True, figsize=(4, 4))

	This function generates a legend for a the rainbow colored flowline maps, and returns it as an RGB image.

	Parameters:

	
	im_size (np.array) – Size of legend image in pixels.

	sym_rotation_order (int) – rotational symmety for colouring

	theta_offset (float) – Offset the anglular coloring by this value in radians.

	white_background (bool) – For either color or greyscale output, switch to white background (from black).

	return_image (bool) – Return the image array.

	radial_range (np.array) – Inner and outer radius for the legend ring.

	plot_legend (bool) – Plot the generated legend.

	figsize (tuple or list) – Size of the plotted legend.

	Returns:

	Image array for the legend.

	Return type:

	im_legend (array)

	
py4DSTEM.process.diffraction.flowlines.make_flowline_combined_image(orient_flowlines, int_range=[0, 0.2], cvals=array([[0., 0.7, 0.], [1., 0., 0.], [0., 0.7, 1.]]), white_background=False, power_scaling=1.0, sum_radial_bins=True, plot_images=True, figsize=None)

	Generate RGB output images from the flowline arrays.

	Parameters:

	
	orient_flowline (array) – Histogram of all orientations with coordinates [x y radial_bin theta]
We assume theta bin ranges from 0 to 180 degrees and is periodic.

	int_range (float) –

	cvals (array) – Nx3 size array containing RGB colors for different radial ibns.

	white_background (bool) – For either color or greyscale output, switch to white background (from black).

	power_scaling (float) – Power law scaling for flowline intensities.

	sum_radial_bins (bool) – Sum outputs over radial bins.

	plot_images (bool) – Plot the output images for quick visualization.

	figsize (2-tuple) – Size of output figure.

	Returns:

	flowline images

	Return type:

	im_flowline (array)

	
py4DSTEM.process.diffraction.flowlines.orientation_correlation(orient_hist, radius_max=None)

	Take in the 4D orientation histogram, and compute the distance-angle (auto)correlations

	Parameters:

	
	orient_hist (array) – 3D or 4D histogram of all orientations with coordinates [x y radial_bin theta]

	radius_max (float) – Maximum radial distance for correlogram calculation. If set to None, the maximum
radius will be set to min(orient_hist.shape[0],orient_hist.shape[1])/2.

	Returns:

	3D or 4D array containing correlation images as function of (dr,dtheta)

	Return type:

	orient_corr (array)

	
py4DSTEM.process.diffraction.flowlines.plot_orientation_correlation(orient_corr, prob_range=[0.1, 10.0], inds_plot=None, pixel_size=None, pixel_units=None, size_fig=[8, 6], return_fig=False)

	Plot the distance-angle (auto)correlations in orient_corr.

	Parameters:

	
	orient_corr (array) – 3D or 4D array containing correlation images as function of (dr,dtheta)
1st index represents each pair of rings.

	prob_range (array) – Plotting range in units of “multiples of random distribution”.

	inds_plot (float) – Which indices to plot for orient_corr. Set to “None” to plot all pairs.

	pixel_size (float) – Pixel size for x axis.

	pixel_units (str) – units of pixels.

	size_fig (array) – Size of the figure panels.

	return_fig (bool) – Whether to return figure axes.

	Returns:

	fig, ax Figure and axes handles (optional).

This module provides access to some objects used or maintained by the
interpreter and to functions that interact strongly with the interpreter.

Dynamic objects:

argv – command line arguments; argv[0] is the script pathname if known
path – module search path; path[0] is the script directory, else ‘’
modules – dictionary of loaded modules

displayhook – called to show results in an interactive session
excepthook – called to handle any uncaught exception other than SystemExit

To customize printing in an interactive session or to install a custom
top-level exception handler, assign other functions to replace these.

stdin – standard input file object; used by input()
stdout – standard output file object; used by print()
stderr – standard error object; used for error messages

By assigning other file objects (or objects that behave like files)
to these, it is possible to redirect all of the interpreter’s I/O.

last_type – type of last uncaught exception
last_value – value of last uncaught exception
last_traceback – traceback of last uncaught exception

These three are only available in an interactive session after a
traceback has been printed.

Static objects:

builtin_module_names – tuple of module names built into this interpreter
copyright – copyright notice pertaining to this interpreter
exec_prefix – prefix used to find the machine-specific Python library
executable – absolute path of the executable binary of the Python interpreter
float_info – a named tuple with information about the float implementation.
float_repr_style – string indicating the style of repr() output for floats
hash_info – a named tuple with information about the hash algorithm.
hexversion – version information encoded as a single integer
implementation – Python implementation information.
int_info – a named tuple with information about the int implementation.
maxsize – the largest supported length of containers.
maxunicode – the value of the largest Unicode code point
platform – platform identifier
prefix – prefix used to find the Python library
thread_info – a named tuple with information about the thread implementation.
version – the version of this interpreter as a string
version_info – version information as a named tuple
__stdin__ – the original stdin; don’t touch!
__stdout__ – the original stdout; don’t touch!
__stderr__ – the original stderr; don’t touch!
__displayhook__ – the original displayhook; don’t touch!
__excepthook__ – the original excepthook; don’t touch!

Functions:

displayhook() – print an object to the screen, and save it in builtins._
excepthook() – print an exception and its traceback to sys.stderr
exc_info() – return thread-safe information about the current exception
exit() – exit the interpreter by raising SystemExit
getdlopenflags() – returns flags to be used for dlopen() calls
getprofile() – get the global profiling function
getrefcount() – return the reference count for an object (plus one :-)
getrecursionlimit() – return the max recursion depth for the interpreter
getsizeof() – return the size of an object in bytes
gettrace() – get the global debug tracing function
setdlopenflags() – set the flags to be used for dlopen() calls
setprofile() – set the global profiling function
setrecursionlimit() – set the max recursion depth for the interpreter
settrace() – set the global debug tracing function

	
class py4DSTEM.process.diffraction.utils.Orientation(num_matches: int)

	A class for storing output orientations, generated by fitting a Crystal
class orientation plan or Bloch wave pattern matching to a PointList.

	
__init__(num_matches: int) → None

	

	
class py4DSTEM.process.diffraction.utils.OrientationMap(num_x: int, num_y: int, num_matches: int)

	A class for storing output orientations, generated by fitting a Crystal class orientation plan or
Bloch wave pattern matching to a PointListArray.

	
__init__(num_x: int, num_y: int, num_matches: int) → None

	

	
py4DSTEM.process.diffraction.utils.sort_orientation_maps(orientation_map, sort='intensity', cluster_thresh=0.1)

	Sort the orientation maps along the ind_match direction, either by intensity
or by clustering similar angles (greedily, in order of intensity).

	Parameters:

	
	OrientationMap (orientation_map Initial) –

	sort (string) – “intensity” or “cluster” for sorting method.

	cluster_thresh (float) – similarity threshold for clustering method

	Returns:

	orientation_sort Sorted OrientationMap

	
py4DSTEM.process.diffraction.utils.calc_1D_profile(k, g_coords, g_int, remove_origin=True, k_broadening=0.0, int_scale=None, normalize_intensity=True)

	Utility function to calculate a 1D histogram from the diffraction vector lengths
stored in a Crystal class.

	Parameters:

	
	k (np.array) – k coordinates.

	g_coords (np.array) – Scattering vector lengths g.

	bragg_intensity_power (np.array) – Scattering vector intensities.

	remove_origin (bool) – Remove the origin peak from the profile.

	k_broadening (float) – Broadening applied to full profile.

	int_scale (np.array) – Either a scalar value mulitiplied into all peak intensities,
or a vector with 1 value per peak to scale peaks individually.

	normalize_intensity – Normalize maximum output value to 1.

diskdetection

fit

	
py4DSTEM.process.fit.fit.fit_1D_gaussian(xdata, ydata, xmin, xmax)

	Fits a 1D gaussian to the subset of the 1D curve f(xdata)=ydata within the window
(xmin,xmax). Returns A,mu,sigma. Retrieve the full curve with

>>> fit_gaussian = py4DSTEM.process.fit.gaussian(xdata,A,mu,sigma)

	
py4DSTEM.process.fit.fit.fit_2D(function, data, data_mask=None, popt=None, robust=False, robust_steps=3, robust_thresh=2)

	Performs a 2D fit.

TODO: make returning the mask optional

	Parameters:

	
	function (callable) – Some function(xy, **p) where xy is a length 2 vector (1D np array)
specifying the pixel position (x,y), and p is the function parameters

	data (ndarray) – Some 2D array of any shape (n,m)

	data_mask (None or boolean array of shape (n,m), optional) – If specified, fits only the pixels in data where this array is True

	popt (dict) – Initial guess at the parameters p of function. Note that positions
in pixels (i.e. the xy positions) are linearly scaled to the space [0,1]

	robust (bool) – Toggles robust fitting, which iteratively rejects outlier data points
which have a root-mean-square error beyond robust_thresh

	robust_steps (int) – The number of robust fitting iterations to perform

	robust_thresh (int) – The robust fitting cutoff

	Returns –

	(popt (4-tuple) – The optimal fit parameters, the fitting covariance matrix, the
the fit array with the returned popt params, and the mask

	pcov (4-tuple) – The optimal fit parameters, the fitting covariance matrix, the
the fit array with the returned popt params, and the mask

	fit_at (4-tuple) – The optimal fit parameters, the fitting covariance matrix, the
the fit array with the returned popt params, and the mask

	mask) (4-tuple) – The optimal fit parameters, the fitting covariance matrix, the
the fit array with the returned popt params, and the mask

	
py4DSTEM.process.fit.fit.fit_2D_polar_gaussian(data, mask=None, p0=None, robust=False, robust_steps=3, robust_thresh=2, constant_background=False)

	NOTE - this cannot work without using pixel coordinates - something is wrong in the workflow.

Fits a 2D gaussian to the pixels in data which are set to True in mask.

The gaussian is anisotropic and oriented along (t,q), centered at
(mu_t,mu_q), has standard deviations (sigma_t,sigma_q), maximum of I0,
and an optional constant offset of C, and is periodic in t.

f(x,y) = I0 * exp(- (x-mu_x)^2/(2sig_x^2) + (y-mu_y)^2/(2sig_y^2))
or
f(x,y) = I0 * exp(- (x-mu_x)^2/(2sig_x^2) + (y-mu_y)^2/(2sig_y^2)) + C

	Parameters:

	
	data (2d array) – the data to fit

	p0 (6-tuple) – initial guess at fit parameters, (I0,mu_x,mu_y,sigma_x_sigma_y,C)

	mask (2d boolean array) – ignore pixels where mask is False

	robust (bool) – toggle robust fitting

	robust_steps (int) – number of robust fit iterations

	robust_thresh (number) – the robust fitting threshold

	constant_background (bool) – whether or not to include constant background

	Returns:

	(popt,pcov,fit_ar) – the optimal fit parameters, the covariance matrix, and the fit array

	Return type:

	3-tuple

latticevectors

phase

Module for reconstructing phase objects from 4DSTEM datasets using iterative methods.

	
class py4DSTEM.process.phase.iterative_base_class.PhaseReconstruction(name='custom')

	Base phase reconstruction class.
Defines various common functions and properties for subclasses to inherit.

	
attach_datacube(datacube: DataCube)

	Attaches a datacube to a class initialized without one.

	Parameters:

	datacube (Datacube) – Input 4D diffraction pattern intensities

	Returns:

	self – Self to enable chaining

	Return type:

	PhaseReconstruction

	
reinitialize_parameters(device: str | None = None, verbose: bool | None = None)

	Reinitializes common parameters. This is useful when loading a previously-saved
reconstruction (which set device=’cpu’ and verbose=True for compatibility) ,
using different initialization parameters.

	Parameters:

	
	device (str, optional) – If not None, imports and assigns appropriate device modules

	verbose (bool, optional) – If not None, sets the verbosity to verbose

	Returns:

	self – Self to enable chaining

	Return type:

	PhaseReconstruction

	
set_save_defaults(save_datacube: bool = False, save_exit_waves: bool = False, save_iterations: bool = True, save_iterations_frequency: int = 1)

	Sets the class defaults for saving reconstructions to file.

	Parameters:

	
	save_datacube (bool, optional) – If True, self._datacube saved to file

	save_exit_waves (bool, optional) – If True, self._exit_waves saved to file

	save_iterations (int, optional) – If True, self.probe_iterations and self.object_iterations saved to file

	save_iterations – If save_iterations is True, controls the frequency of saved iterations

	Returns:

	self – Self to enable chaining

	Return type:

	PhaseReconstruction

	
show_complex_CoM(com=None, cbar=True, scalebar=True, pixelsize=None, pixelunits=None, **kwargs)

	Plot complex-valued CoM image

	Parameters:

	
	(CoM_x (com =) – If None is specified, uses (self.com_x, self.com_y) instead

	tuple (CoM_y)) – If None is specified, uses (self.com_x, self.com_y) instead

	cbar (bool, optional) – if True, adds colorbar

	scalebar (bool, optional) – if True, adds scalebar to probe

	pixelunits (str, optional) – units for scalebar, default is A

	pixelsize (float, optional) – default is scan sampling

	
class py4DSTEM.process.phase.iterative_base_class.PtychographicReconstruction(name='custom')

	Base ptychographic reconstruction class.
Inherits from PhaseReconstruction and PtychographicConstraints.
Defines various common functions and properties for subclasses to inherit.

	
to_h5(group)

	Wraps datasets and metadata to write in emdfile classes,
notably: the object and probe arrays.

	
tune_angle_and_defocus(angle_guess=None, defocus_guess=None, transpose=None, angle_step_size=1, defocus_step_size=20, num_angle_values=5, num_defocus_values=5, max_iter=5, plot_reconstructions=True, plot_convergence=True, return_values=False, **kwargs)

	Run reconstructions over a parameters space of angles and
defocus values. Should be run after preprocess step.

	Parameters:

	
	angle_guess (float (degrees), optional) – initial starting guess for rotation angle between real and reciprocal space
if None, uses current initialized values

	defocus_guess (float (A), optional) – initial starting guess for defocus
if None, uses current initialized values

	angle_step_size (float (degrees), optional) – size of change of rotation angle between real and reciprocal space for
each step in parameter space

	defocus_step_size (float (A), optional) – size of change of defocus for each step in parameter space

	num_angle_values (int, optional) – number of values of angle to test, must be >= 1.

	num_defocus_values (int,optional) – number of values of defocus to test, must be >= 1

	max_iter (int, optional) – number of iterations to run in ptychographic reconstruction

	plot_reconstructions (bool, optional) – if True, plot phase of reconstructed objects

	plot_convergence (bool, optional) – if True, plots error for each iteration for each reconstruction.

	return_values (bool, optional) – if True, returns objects, convergence

	Returns:

	
	objects (list) – reconstructed objects

	convergence (np.ndarray) – array of convergence values from reconstructions

	
plot_position_correction(scale_arrows=1, plot_arrow_freq=1, verbose=True, **kwargs)

	Function to plot changes to probe positions during ptychography reconstruciton

	Parameters:

	
	scale_arrows (float, optional) – scaling factor to be applied on vectors prior to plt.quiver call

	verbose (bool, optional) – if True, prints AffineTransformation if positions have been updated

	
show_uncertainty_visualization(errors=None, max_batch_size=None, projected_cropped_potential=None, kde_sigma=None, plot_histogram=True, plot_contours=False, **kwargs)

	Plot uncertainty visualization using self-consistency errors

	
show_fourier_probe(probe=None, cbar=True, scalebar=True, pixelsize=None, pixelunits=None, **kwargs)

	Plot probe in fourier space

	Parameters:

	
	probe (complex array, optional) – if None is specified, uses the probe_fourier property

	cbar (bool, optional) – if True, adds colorbar

	scalebar (bool, optional) – if True, adds scalebar to probe

	pixelunits (str, optional) – units for scalebar, default is A^-1

	pixelsize (float, optional) – default is probe reciprocal sampling

	
show_object_fft(obj=None, **kwargs)

	Plot FFT of reconstructed object

	Parameters:

	obj (complex array, optional) – if None is specified, uses the object_fft property

	
property probe_fourier

	Current probe estimate in Fourier space

	
property probe_centered

	Current probe estimate shifted to the center

	
property object_fft

	Fourier transform of current object estimate

	
property angular_sampling

	Angular sampling [mrad]

	
property sampling

	Sampling [Å]

	
property positions

	Probe positions [A]

	
property object_cropped

	Cropped and rotated object

Module for reconstructing phase objects from 4DSTEM datasets using iterative methods,
namely DPC.

	
class py4DSTEM.process.phase.iterative_dpc.DPCReconstruction(datacube: DataCube | None = None, initial_object_guess: ndarray | None = None, energy: float | None = None, verbose: bool = True, device: str = 'cpu', name: str = 'dpc_reconstruction')

	Iterative Differential Phase Constrast Reconstruction Class.

Diffraction intensities dimensions : (Rx,Ry,Qx,Qy)
Reconstructed phase object dimensions : (Rx,Ry)

	Parameters:

	
	datacube (DataCube) – Input 4D diffraction pattern intensities

	initial_object_guess (np.ndarray, optional) – Cropped initial guess of dpc phase

	energy (float, optional) – The electron energy of the wave functions in eV

	verbose (bool, optional) – If True, class methods will inherit this and print additional information

	device (str, optional) – Calculation device will be perfomed on. Must be ‘cpu’ or ‘gpu’

	name (str, optional) – Class name

	
__init__(datacube: DataCube | None = None, initial_object_guess: ndarray | None = None, energy: float | None = None, verbose: bool = True, device: str = 'cpu', name: str = 'dpc_reconstruction')

	

	
to_h5(group)

	Wraps datasets and metadata to write in emdfile classes,
notably: the object phase array.

	
preprocess(dp_mask: ndarray | None = None, padding_factor: float = 2, rotation_angles_deg: ndarray = array([-89., -88., -87., -86., -85., -84., -83., -82., -81., -80., -79., -78., -77., -76., -75., -74., -73., -72., -71., -70., -69., -68., -67., -66., -65., -64., -63., -62., -61., -60., -59., -58., -57., -56., -55., -54., -53., -52., -51., -50., -49., -48., -47., -46., -45., -44., -43., -42., -41., -40., -39., -38., -37., -36., -35., -34., -33., -32., -31., -30., -29., -28., -27., -26., -25., -24., -23., -22., -21., -20., -19., -18., -17., -16., -15., -14., -13., -12., -11., -10., -9., -8., -7., -6., -5., -4., -3., -2., -1., 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89.]), maximize_divergence: bool = False, fit_function: str = 'plane', force_com_rotation: float | None = None, force_com_transpose: bool | None = None, force_com_shifts: Sequence[ndarray] | Sequence[float] | None = None, force_com_measured: Sequence[ndarray] | None = None, plot_center_of_mass: str = 'default', plot_rotation: bool = True, **kwargs)

	DPC preprocessing step.
Calls the base class methods:

_extract_intensities_and_calibrations_from_datacube(),
_calculate_intensities_center_of_mass(), and
_solve_for_center_of_mass_relative_rotation()

	Parameters:

	
	dp_mask (ndarray, optional) – Mask for datacube intensities (Qx,Qy)

	padding_factor (float, optional) – Factor to pad object by to reduce periodic artifacts

	rotation_angles_deg (np.darray, optional) – Array of angles in degrees to perform curl minimization over

	maximize_divergence (bool, optional) – If True, the divergence of the CoM gradient vector field is maximized

	fit_function (str, optional) – 2D fitting function for CoM fitting. One of ‘plane’,’parabola’,’bezier_two’

	com_rotation (force) – Force relative rotation angle between real and reciprocal space

	force_com_transpose (bool (optional)) – Force whether diffraction intensities need to be transposed.

	force_com_shifts (tuple of ndarrays (CoMx, CoMy)) – Force CoM fitted shifts

	force_com_measured (tuple of ndarrays (CoMx measured, CoMy measured)) – Force CoM measured shifts

	plot_center_of_mass (str, optional) – If ‘default’, the corrected CoM arrays will be displayed
If ‘all’, the computed and fitted CoM arrays will be displayed

	plot_rotation (bool, optional) – If True, the CoM curl minimization search result will be displayed

	Returns:

	self – Self to accommodate chaining

	Return type:

	DPCReconstruction

	
reconstruct(reset: bool | None = None, max_iter: int = 64, step_size: float | None = None, stopping_criterion: float = 1e-06, backtrack: bool = True, progress_bar: bool = True, gaussian_filter_sigma: float | None = None, gaussian_filter_iter: int = inf, butterworth_filter_iter: int = inf, q_lowpass: float | None = None, q_highpass: float | None = None, butterworth_order: float = 2, anti_gridding: float = True, store_iterations: bool = False)

	Performs Iterative DPC Reconstruction:

	Parameters:

	
	reset (bool, optional) – If True, previous reconstructions are ignored

	max_iter (int, optional) – Maximum number of iterations

	step_size (float, optional) – Reconstruction update step size

	stopping_criterion (float, optional) – step_size below which reconstruction exits

	backtrack (bool, optional) – If True, steps that increase the error metric are rejected
and iteration continues with a reduced step size from the
previous iteration

	progress_bar (bool, optional) – If True, reconstruction progress bar will be printed

	gaussian_filter_sigma (float, optional) – Standard deviation of gaussian kernel in A

	gaussian_filter_iter (int, optional) – Number of iterations to run using object smoothness constraint

	butterworth_filter_iter (int, optional) – Number of iterations to run using high-pass butteworth filter

	q_lowpass (float) – Cut-off frequency in A^-1 for low-pass butterworth filter

	q_highpass (float) – Cut-off frequency in A^-1 for high-pass butterworth filter

	butterworth_order (float) – Butterworth filter order. Smaller gives a smoother filter

	anti_gridding (bool) – If true, zero outer pixels of object fft to remove
gridding artifacts

	store_iterations (bool, optional) – If True, all reconstruction iterations will be stored

	Returns:

	self – Self to accommodate chaining

	Return type:

	DPCReconstruction

	
visualize(fig=None, iterations_grid: Tuple[int, int] | None = None, plot_convergence: bool = True, cbar: bool = True, **kwargs)

	Displays reconstructed phase object.

	Parameters:

	
	fig – Matplotlib figure to draw Gridspec on

	optional – Matplotlib figure to draw Gridspec on

	plot_convergence (bool, optional) – If true, the NMSE error plot is displayed

	iterations_grid (Tuple[int,int]) – Grid dimensions to plot reconstruction iterations

	cbar (bool, optional) – If true, displays a colorbar

	Returns:

	self – Self to accommodate chaining

	Return type:

	DPCReconstruction

	
property sampling

	Sampling [Å]

Module for reconstructing phase objects from 4DSTEM datasets using iterative methods,
namely mixed-state ptychography.

	
class py4DSTEM.process.phase.iterative_mixedstate_ptychography.MixedstatePtychographicReconstruction(energy: float, datacube: DataCube | None = None, num_probes: int | None = None, semiangle_cutoff: float | None = None, semiangle_cutoff_pixels: float | None = None, rolloff: float = 2.0, vacuum_probe_intensity: ndarray | None = None, polar_parameters: Mapping[str, float] | None = None, object_padding_px: Tuple[int, int] | None = None, initial_object_guess: ndarray | None = None, initial_probe_guess: ndarray | None = None, initial_scan_positions: ndarray | None = None, object_type: str = 'complex', positions_mask: ndarray | None = None, verbose: bool = True, device: str = 'cpu', name: str = 'mixed-state_ptychographic_reconstruction', **kwargs)

	Mixed-State Ptychographic Reconstruction Class.

Diffraction intensities dimensions : (Rx,Ry,Qx,Qy)
Reconstructed probe dimensions : (N,Sx,Sy)
Reconstructed object dimensions : (Px,Py)

such that (Sx,Sy) is the region-of-interest (ROI) size of our N probes
and (Px,Py) is the padded-object size we position our ROI around in.

	Parameters:

	
	energy (float) – The electron energy of the wave functions in eV

	datacube (DataCube) – Input 4D diffraction pattern intensities

	num_probes (int, optional) – Number of mixed-state probes

	semiangle_cutoff (float, optional) – Semiangle cutoff for the initial probe guess in mrad

	semiangle_cutoff_pixels (float, optional) – Semiangle cutoff for the initial probe guess in pixels

	rolloff (float, optional) – Semiangle rolloff for the initial probe guess

	vacuum_probe_intensity (np.ndarray, optional) – Vacuum probe to use as intensity aperture for initial probe guess

	polar_parameters (dict, optional) – Mapping from aberration symbols to their corresponding values. All aberration
magnitudes should be given in Å and angles should be given in radians.

	object_padding_px (Tuple[int,int], optional) – Pixel dimensions to pad object with
If None, the padding is set to half the probe ROI dimensions

	initial_object_guess (np.ndarray, optional) – Initial guess for complex-valued object of dimensions (Px,Py)
If None, initialized to 1.0j

	initial_probe_guess (np.ndarray, optional) – Initial guess for complex-valued probe of dimensions (Sx,Sy). If None,
initialized to ComplexProbe with semiangle_cutoff, energy, and aberrations

	initial_scan_positions (np.ndarray, optional) – Probe positions in Å for each diffraction intensity
If None, initialized to a grid scan

	positions_mask (np.ndarray, optional) – Boolean real space mask to select positions in datacube to skip for reconstruction

	verbose (bool, optional) – If True, class methods will inherit this and print additional information

	device (str, optional) – Calculation device will be perfomed on. Must be ‘cpu’ or ‘gpu’

	name (str, optional) – Class name

	kwargs – Provide the aberration coefficients as keyword arguments.

	
__init__(energy: float, datacube: DataCube | None = None, num_probes: int | None = None, semiangle_cutoff: float | None = None, semiangle_cutoff_pixels: float | None = None, rolloff: float = 2.0, vacuum_probe_intensity: ndarray | None = None, polar_parameters: Mapping[str, float] | None = None, object_padding_px: Tuple[int, int] | None = None, initial_object_guess: ndarray | None = None, initial_probe_guess: ndarray | None = None, initial_scan_positions: ndarray | None = None, object_type: str = 'complex', positions_mask: ndarray | None = None, verbose: bool = True, device: str = 'cpu', name: str = 'mixed-state_ptychographic_reconstruction', **kwargs)

	

	
preprocess(diffraction_intensities_shape: Tuple[int, int] | None = None, reshaping_method: str = 'fourier', probe_roi_shape: Tuple[int, int] | None = None, dp_mask: ndarray | None = None, fit_function: str = 'plane', plot_center_of_mass: str = 'default', plot_rotation: bool = True, maximize_divergence: bool = False, rotation_angles_deg: ndarray = array([-89., -88., -87., -86., -85., -84., -83., -82., -81., -80., -79., -78., -77., -76., -75., -74., -73., -72., -71., -70., -69., -68., -67., -66., -65., -64., -63., -62., -61., -60., -59., -58., -57., -56., -55., -54., -53., -52., -51., -50., -49., -48., -47., -46., -45., -44., -43., -42., -41., -40., -39., -38., -37., -36., -35., -34., -33., -32., -31., -30., -29., -28., -27., -26., -25., -24., -23., -22., -21., -20., -19., -18., -17., -16., -15., -14., -13., -12., -11., -10., -9., -8., -7., -6., -5., -4., -3., -2., -1., 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89.]), plot_probe_overlaps: bool = True, force_com_rotation: float | None = None, force_com_transpose: float | None = None, force_com_shifts: float | None = None, force_scan_sampling: float | None = None, force_angular_sampling: float | None = None, force_reciprocal_sampling: float | None = None, object_fov_mask: ndarray | None = None, crop_patterns: bool = False, **kwargs)

	Ptychographic preprocessing step.
Calls the base class methods:

_extract_intensities_and_calibrations_from_datacube,
_compute_center_of_mass(),
_solve_CoM_rotation(),
_normalize_diffraction_intensities()
_calculate_scan_positions_in_px()

Additionally, it initializes an (Px,Py) array of 1.0j
and a complex probe using the specified polar parameters.

	Parameters:

	
	diffraction_intensities_shape (Tuple[int,int], optional) – Pixel dimensions (Qx’,Qy’) of the resampled diffraction intensities
If None, no resampling of diffraction intenstities is performed

	reshaping_method (str, optional) – Method to use for reshaping, either ‘bin, ‘bilinear’, or ‘fourier’ (default)

	probe_roi_shape – Padded diffraction intensities shape.
If None, no padding is performed

	(int – Padded diffraction intensities shape.
If None, no padding is performed

	int) – Padded diffraction intensities shape.
If None, no padding is performed

	optional – Padded diffraction intensities shape.
If None, no padding is performed

	dp_mask (ndarray, optional) – Mask for datacube intensities (Qx,Qy)

	fit_function (str, optional) – 2D fitting function for CoM fitting. One of ‘plane’,’parabola’,’bezier_two’

	plot_center_of_mass (str, optional) – If ‘default’, the corrected CoM arrays will be displayed
If ‘all’, the computed and fitted CoM arrays will be displayed

	plot_rotation (bool, optional) – If True, the CoM curl minimization search result will be displayed

	maximize_divergence (bool, optional) – If True, the divergence of the CoM gradient vector field is maximized

	rotation_angles_deg (np.darray, optional) – Array of angles in degrees to perform curl minimization over

	plot_probe_overlaps (bool, optional) – If True, initial probe overlaps scanned over the object will be displayed

	force_com_rotation (float (degrees), optional) – Force relative rotation angle between real and reciprocal space

	force_com_transpose (bool, optional) – Force whether diffraction intensities need to be transposed.

	force_com_shifts (tuple of ndarrays (CoMx, CoMy)) – Amplitudes come from diffraction patterns shifted with
the CoM in the upper left corner for each probe unless
shift is overwritten.

	force_scan_sampling (float, optional) – Override DataCube real space scan pixel size calibrations, in Angstrom

	force_angular_sampling (float, optional) – Override DataCube reciprocal pixel size calibration, in mrad

	force_reciprocal_sampling (float, optional) – Override DataCube reciprocal pixel size calibration, in A^-1

	object_fov_mask (np.ndarray (boolean)) – Boolean mask of FOV. Used to calculate additional shrinkage of object
If None, probe_overlap intensity is thresholded

	crop_patterns (bool) – if True, crop patterns to avoid wrap around of patterns when centering

	Returns:

	self – Self to accommodate chaining

	Return type:

	PtychographicReconstruction

	
reconstruct(max_iter: int = 64, reconstruction_method: str = 'gradient-descent', reconstruction_parameter: float = 1.0, reconstruction_parameter_a: float | None = None, reconstruction_parameter_b: float | None = None, reconstruction_parameter_c: float | None = None, max_batch_size: int | None = None, seed_random: int | None = None, step_size: float = 0.5, normalization_min: float = 1, positions_step_size: float = 0.9, pure_phase_object_iter: int = 0, fix_com: bool = True, orthogonalize_probe: bool = True, fix_probe_iter: int = 0, fix_probe_aperture_iter: int = 0, constrain_probe_amplitude_iter: int = 0, constrain_probe_amplitude_relative_radius: float = 0.5, constrain_probe_amplitude_relative_width: float = 0.05, constrain_probe_fourier_amplitude_iter: int = 0, constrain_probe_fourier_amplitude_max_width_pixels: float = 3.0, constrain_probe_fourier_amplitude_constant_intensity: bool = False, fix_positions_iter: int = inf, global_affine_transformation: bool = True, constrain_position_distance: float | None = None, gaussian_filter_sigma: float | None = None, gaussian_filter_iter: int = inf, fit_probe_aberrations_iter: int = 0, fit_probe_aberrations_max_angular_order: int = 4, fit_probe_aberrations_max_radial_order: int = 4, butterworth_filter_iter: int = inf, q_lowpass: float | None = None, q_highpass: float | None = None, butterworth_order: float = 2, tv_denoise_iter: int = inf, tv_denoise_weight: float | None = None, tv_denoise_inner_iter: float = 40, object_positivity: bool = True, shrinkage_rad: float = 0.0, fix_potential_baseline: bool = True, switch_object_iter: int = inf, store_iterations: bool = False, progress_bar: bool = True, reset: bool | None = None)

	Ptychographic reconstruction main method.

	Parameters:

	
	max_iter (int, optional) – Maximum number of iterations to run

	reconstruction_method (str, optional) – Specifies which reconstruction algorithm to use, one of:
“generalized-projections”,
“DM_AP” (or “difference-map_alternating-projections”),
“RAAR” (or “relaxed-averaged-alternating-reflections”),
“RRR” (or “relax-reflect-reflect”),
“SUPERFLIP” (or “charge-flipping”), or
“GD” (or “gradient_descent”)

	reconstruction_parameter (float, optional) – Reconstruction parameter for various reconstruction methods above.

	reconstruction_parameter_a (float, optional) – Reconstruction parameter a for reconstruction_method=’generalized-projections’.

	reconstruction_parameter_b (float, optional) – Reconstruction parameter b for reconstruction_method=’generalized-projections’.

	reconstruction_parameter_c (float, optional) – Reconstruction parameter c for reconstruction_method=’generalized-projections’.

	max_batch_size (int, optional) – Max number of probes to update at once

	seed_random (int, optional) – Seeds the random number generator, only applicable when max_batch_size is not None

	step_size (float, optional) – Update step size

	normalization_min (float, optional) – Probe normalization minimum as a fraction of the maximum overlap intensity

	positions_step_size (float, optional) – Positions update step size

	pure_phase_object_iter (int, optional) – Number of iterations where object amplitude is set to unity

	fix_com (bool, optional) – If True, fixes center of mass of probe

	fix_probe_iter (int, optional) – Number of iterations to run with a fixed probe before updating probe estimate

	fix_probe_aperture_iter (int, optional) – Number of iterations to run with a fixed probe fourier amplitude before updating probe estimate

	constrain_probe_amplitude_iter (int, optional) – Number of iterations to run while constraining the real-space probe with a top-hat support.

	constrain_probe_amplitude_relative_radius (float) – Relative location of top-hat inflection point, between 0 and 0.5

	constrain_probe_amplitude_relative_width (float) – Relative width of top-hat sigmoid, between 0 and 0.5

	constrain_probe_fourier_amplitude_iter (int, optional) – Number of iterations to run while constraining the Fourier-space probe by fitting a sigmoid for each angular frequency.

	constrain_probe_fourier_amplitude_max_width_pixels (float) – Maximum pixel width of fitted sigmoid functions.

	constrain_probe_fourier_amplitude_constant_intensity (bool) – If True, the probe aperture is additionally constrained to a constant intensity.

	fix_positions_iter (int, optional) – Number of iterations to run with fixed positions before updating positions estimate

	constrain_position_distance (float) – Distance to constrain position correction within original field of view in A

	global_affine_transformation (bool, optional) – If True, positions are assumed to be a global affine transform from initial scan

	gaussian_filter_sigma (float, optional) – Standard deviation of gaussian kernel in A

	gaussian_filter_iter (int, optional) – Number of iterations to run using object smoothness constraint

	fit_probe_aberrations_iter (int, optional) – Number of iterations to run while fitting the probe aberrations to a low-order expansion

	fit_probe_aberrations_max_angular_order (bool) – Max angular order of probe aberrations basis functions

	fit_probe_aberrations_max_radial_order (bool) – Max radial order of probe aberrations basis functions

	butterworth_filter_iter (int, optional) – Number of iterations to run using high-pass butteworth filter

	q_lowpass (float) – Cut-off frequency in A^-1 for low-pass butterworth filter

	q_highpass (float) – Cut-off frequency in A^-1 for high-pass butterworth filter

	butterworth_order (float) – Butterworth filter order. Smaller gives a smoother filter

	tv_denoise_iter (int, optional) – Number of iterations to run using tv denoise filter on object

	tv_denoise_weight (float) – Denoising weight. The greater weight, the more denoising.

	tv_denoise_inner_iter (float) – Number of iterations to run in inner loop of TV denoising

	object_positivity (bool, optional) – If True, forces object to be positive

	shrinkage_rad (float) – Phase shift in radians to be subtracted from the potential at each iteration

	fix_potential_baseline (bool) – If true, the potential mean outside the FOV is forced to zero at each iteration

	switch_object_iter (int, optional) – Iteration to switch object type between ‘complex’ and ‘potential’ or between
‘potential’ and ‘complex’

	store_iterations (bool, optional) – If True, reconstructed objects and probes are stored at each iteration

	progress_bar (bool, optional) – If True, reconstruction progress is displayed

	reset (bool, optional) – If True, previous reconstructions are ignored

	Returns:

	self – Self to accommodate chaining

	Return type:

	PtychographicReconstruction

	
visualize(fig=None, iterations_grid: Tuple[int, int] | None = None, plot_convergence: bool = True, plot_probe: bool = True, plot_fourier_probe: bool = False, cbar: bool = True, padding: int = 0, **kwargs)

	Displays reconstructed object and probe.

	Parameters:

	
	fig (Figure) – Matplotlib figure to place Gridspec in

	plot_convergence (bool, optional) – If true, the normalized mean squared error (NMSE) plot is displayed

	iterations_grid (Tuple[int,int]) – Grid dimensions to plot reconstruction iterations

	cbar (bool, optional) – If true, displays a colorbar

	plot_probe (bool, optional) – If true, the reconstructed complex probe is displayed

	plot_fourier_probe (bool, optional) – If true, the reconstructed complex Fourier probe is displayed

	padding (int, optional) – Pixels to pad by post rotating-cropping object

	Returns:

	self – Self to accommodate chaining

	Return type:

	PtychographicReconstruction

	
show_fourier_probe(probe=None, scalebar=True, pixelsize=None, pixelunits=None, **kwargs)

	Plot probe in fourier space

	Parameters:

	
	probe (complex array, optional) – if None is specified, uses the probe_fourier property

	scalebar (bool, optional) – if True, adds scalebar to probe

	pixelunits (str, optional) – units for scalebar, default is A^-1

	pixelsize (float, optional) – default is probe reciprocal sampling

Module for reconstructing phase objects from 4DSTEM datasets using iterative methods,
namely multislice ptychography.

	
class py4DSTEM.process.phase.iterative_multislice_ptychography.MultislicePtychographicReconstruction(energy: float, num_slices: int, slice_thicknesses: float | Sequence[float], datacube: DataCube | None = None, semiangle_cutoff: float | None = None, semiangle_cutoff_pixels: float | None = None, rolloff: float = 2.0, vacuum_probe_intensity: ndarray | None = None, polar_parameters: Mapping[str, float] | None = None, object_padding_px: Tuple[int, int] | None = None, initial_object_guess: ndarray | None = None, initial_probe_guess: ndarray | None = None, initial_scan_positions: ndarray | None = None, theta_x: float = 0, theta_y: float = 0, middle_focus: bool = False, object_type: str = 'complex', positions_mask: ndarray | None = None, verbose: bool = True, device: str = 'cpu', name: str = 'multi-slice_ptychographic_reconstruction', **kwargs)

	Multislice Ptychographic Reconstruction Class.

Diffraction intensities dimensions : (Rx,Ry,Qx,Qy)
Reconstructed probe dimensions : (Sx,Sy)
Reconstructed object dimensions : (T,Px,Py)

such that (Sx,Sy) is the region-of-interest (ROI) size of our probe
and (Px,Py) is the padded-object size we position our ROI around in
each of the T slices.

	Parameters:

	
	energy (float) – The electron energy of the wave functions in eV

	num_slices (int) – Number of slices to use in the forward model

	slice_thicknesses (float or Sequence[float]) – Slice thicknesses in angstroms. If float, all slices are assigned the same thickness

	datacube (DataCube, optional) – Input 4D diffraction pattern intensities

	semiangle_cutoff (float, optional) – Semiangle cutoff for the initial probe guess in mrad

	semiangle_cutoff_pixels (float, optional) – Semiangle cutoff for the initial probe guess in pixels

	rolloff (float, optional) – Semiangle rolloff for the initial probe guess

	vacuum_probe_intensity (np.ndarray, optional) – Vacuum probe to use as intensity aperture for initial probe guess

	polar_parameters (dict, optional) – Mapping from aberration symbols to their corresponding values. All aberration
magnitudes should be given in Å and angles should be given in radians.

	object_padding_px (Tuple[int,int], optional) – Pixel dimensions to pad object with
If None, the padding is set to half the probe ROI dimensions

	initial_object_guess (np.ndarray, optional) – Initial guess for complex-valued object of dimensions (Px,Py)
If None, initialized to 1.0j

	initial_probe_guess (np.ndarray, optional) – Initial guess for complex-valued probe of dimensions (Sx,Sy). If None,
initialized to ComplexProbe with semiangle_cutoff, energy, and aberrations

	initial_scan_positions (np.ndarray, optional) – Probe positions in Å for each diffraction intensity
If None, initialized to a grid scan

	theta_x (float) – x tilt of propagator (in degrees)

	theta_y (float) – y tilt of propagator (in degrees)

	middle_focus (bool) – if True, adds half the sample thickness to the defocus

	object_type (str, optional) – The object can be reconstructed as a real potential (‘potential’) or a complex
object (‘complex’)

	positions_mask (np.ndarray, optional) – Boolean real space mask to select positions in datacube to skip for reconstruction

	verbose (bool, optional) – If True, class methods will inherit this and print additional information

	device (str, optional) – Calculation device will be perfomed on. Must be ‘cpu’ or ‘gpu’

	name (str, optional) – Class name

	kwargs – Provide the aberration coefficients as keyword arguments.

	
__init__(energy: float, num_slices: int, slice_thicknesses: float | Sequence[float], datacube: DataCube | None = None, semiangle_cutoff: float | None = None, semiangle_cutoff_pixels: float | None = None, rolloff: float = 2.0, vacuum_probe_intensity: ndarray | None = None, polar_parameters: Mapping[str, float] | None = None, object_padding_px: Tuple[int, int] | None = None, initial_object_guess: ndarray | None = None, initial_probe_guess: ndarray | None = None, initial_scan_positions: ndarray | None = None, theta_x: float = 0, theta_y: float = 0, middle_focus: bool = False, object_type: str = 'complex', positions_mask: ndarray | None = None, verbose: bool = True, device: str = 'cpu', name: str = 'multi-slice_ptychographic_reconstruction', **kwargs)

	

	
preprocess(diffraction_intensities_shape: Tuple[int, int] | None = None, reshaping_method: str = 'fourier', probe_roi_shape: Tuple[int, int] | None = None, dp_mask: ndarray | None = None, fit_function: str = 'plane', plot_center_of_mass: str = 'default', plot_rotation: bool = True, maximize_divergence: bool = False, rotation_angles_deg: ndarray = array([-89., -88., -87., -86., -85., -84., -83., -82., -81., -80., -79., -78., -77., -76., -75., -74., -73., -72., -71., -70., -69., -68., -67., -66., -65., -64., -63., -62., -61., -60., -59., -58., -57., -56., -55., -54., -53., -52., -51., -50., -49., -48., -47., -46., -45., -44., -43., -42., -41., -40., -39., -38., -37., -36., -35., -34., -33., -32., -31., -30., -29., -28., -27., -26., -25., -24., -23., -22., -21., -20., -19., -18., -17., -16., -15., -14., -13., -12., -11., -10., -9., -8., -7., -6., -5., -4., -3., -2., -1., 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89.]), plot_probe_overlaps: bool = True, force_com_rotation: float | None = None, force_com_transpose: float | None = None, force_com_shifts: float | None = None, force_scan_sampling: float | None = None, force_angular_sampling: float | None = None, force_reciprocal_sampling: float | None = None, object_fov_mask: ndarray | None = None, crop_patterns: bool = False, **kwargs)

	Ptychographic preprocessing step.
Calls the base class methods:

_extract_intensities_and_calibrations_from_datacube,
_compute_center_of_mass(),
_solve_CoM_rotation(),
_normalize_diffraction_intensities()
_calculate_scan_positions_in_px()

Additionally, it initializes an (T,Px,Py) array of 1.0j
and a complex probe using the specified polar parameters.

	Parameters:

	
	diffraction_intensities_shape (Tuple[int,int], optional) – Pixel dimensions (Qx’,Qy’) of the resampled diffraction intensities
If None, no resampling of diffraction intenstities is performed

	reshaping_method (str, optional) – Method to use for reshaping, either ‘bin, ‘bilinear’, or ‘fourier’ (default)

	probe_roi_shape – Padded diffraction intensities shape.
If None, no padding is performed

	(int – Padded diffraction intensities shape.
If None, no padding is performed

	int) – Padded diffraction intensities shape.
If None, no padding is performed

	optional – Padded diffraction intensities shape.
If None, no padding is performed

	dp_mask (ndarray, optional) – Mask for datacube intensities (Qx,Qy)

	fit_function (str, optional) – 2D fitting function for CoM fitting. One of ‘plane’,’parabola’,’bezier_two’

	plot_center_of_mass (str, optional) – If ‘default’, the corrected CoM arrays will be displayed
If ‘all’, the computed and fitted CoM arrays will be displayed

	plot_rotation (bool, optional) – If True, the CoM curl minimization search result will be displayed

	maximize_divergence (bool, optional) – If True, the divergence of the CoM gradient vector field is maximized

	rotation_angles_deg (np.darray, optional) – Array of angles in degrees to perform curl minimization over

	plot_probe_overlaps (bool, optional) – If True, initial probe overlaps scanned over the object will be displayed

	force_com_rotation (float (degrees), optional) – Force relative rotation angle between real and reciprocal space

	force_com_transpose (bool, optional) – Force whether diffraction intensities need to be transposed.

	force_com_shifts (tuple of ndarrays (CoMx, CoMy)) – Amplitudes come from diffraction patterns shifted with
the CoM in the upper left corner for each probe unless
shift is overwritten.

	force_scan_sampling (float, optional) – Override DataCube real space scan pixel size calibrations, in Angstrom

	force_angular_sampling (float, optional) – Override DataCube reciprocal pixel size calibration, in mrad

	force_reciprocal_sampling (float, optional) – Override DataCube reciprocal pixel size calibration, in A^-1

	object_fov_mask (np.ndarray (boolean)) – Boolean mask of FOV. Used to calculate additional shrinkage of object
If None, probe_overlap intensity is thresholded

	crop_patterns (bool) – if True, crop patterns to avoid wrap around of patterns when centering

	Returns:

	self – Self to accommodate chaining

	Return type:

	MultislicePtychographicReconstruction

	
reconstruct(max_iter: int = 64, reconstruction_method: str = 'gradient-descent', reconstruction_parameter: float = 1.0, reconstruction_parameter_a: float | None = None, reconstruction_parameter_b: float | None = None, reconstruction_parameter_c: float | None = None, max_batch_size: int | None = None, seed_random: int | None = None, step_size: float = 0.5, normalization_min: float = 1, positions_step_size: float = 0.9, fix_com: bool = True, fix_probe_iter: int = 0, fix_probe_aperture_iter: int = 0, constrain_probe_amplitude_iter: int = 0, constrain_probe_amplitude_relative_radius: float = 0.5, constrain_probe_amplitude_relative_width: float = 0.05, constrain_probe_fourier_amplitude_iter: int = 0, constrain_probe_fourier_amplitude_max_width_pixels: float = 3.0, constrain_probe_fourier_amplitude_constant_intensity: bool = False, fix_positions_iter: int = inf, constrain_position_distance: float | None = None, global_affine_transformation: bool = True, gaussian_filter_sigma: float | None = None, gaussian_filter_iter: int = inf, fit_probe_aberrations_iter: int = 0, fit_probe_aberrations_max_angular_order: int = 4, fit_probe_aberrations_max_radial_order: int = 4, butterworth_filter_iter: int = inf, q_lowpass: float | None = None, q_highpass: float | None = None, butterworth_order: float = 2, kz_regularization_filter_iter: int = inf, kz_regularization_gamma: float | ndarray | None = None, identical_slices_iter: int = 0, object_positivity: bool = True, shrinkage_rad: float = 0.0, fix_potential_baseline: bool = True, pure_phase_object_iter: int = 0, tv_denoise_iter_chambolle=inf, tv_denoise_weight_chambolle=None, tv_denoise_pad_chambolle=True, tv_denoise_iter=inf, tv_denoise_weights=None, tv_denoise_inner_iter=40, switch_object_iter: int = inf, store_iterations: bool = False, progress_bar: bool = True, reset: bool | None = None)

	Ptychographic reconstruction main method.

	Parameters:

	
	max_iter (int, optional) – Maximum number of iterations to run

	reconstruction_method (str, optional) – Specifies which reconstruction algorithm to use, one of:
“generalized-projections”,
“DM_AP” (or “difference-map_alternating-projections”),
“RAAR” (or “relaxed-averaged-alternating-reflections”),
“RRR” (or “relax-reflect-reflect”),
“SUPERFLIP” (or “charge-flipping”), or
“GD” (or “gradient_descent”)

	reconstruction_parameter (float, optional) – Reconstruction parameter for various reconstruction methods above.

	reconstruction_parameter_a (float, optional) – Reconstruction parameter a for reconstruction_method=’generalized-projections’.

	reconstruction_parameter_b (float, optional) – Reconstruction parameter b for reconstruction_method=’generalized-projections’.

	reconstruction_parameter_c (float, optional) – Reconstruction parameter c for reconstruction_method=’generalized-projections’.

	max_batch_size (int, optional) – Max number of probes to update at once

	seed_random (int, optional) – Seeds the random number generator, only applicable when max_batch_size is not None

	step_size (float, optional) – Update step size

	normalization_min (float, optional) – Probe normalization minimum as a fraction of the maximum overlap intensity

	positions_step_size (float, optional) – Positions update step size

	fix_com (bool, optional) – If True, fixes center of mass of probe

	fix_probe_iter (int, optional) – Number of iterations to run with a fixed probe before updating probe estimate

	fix_probe_aperture_iter (int, optional) – Number of iterations to run with a fixed probe Fourier amplitude before updating probe estimate

	constrain_probe_amplitude_iter (int, optional) – Number of iterations to run while constraining the real-space probe with a top-hat support.

	constrain_probe_amplitude_relative_radius (float) – Relative location of top-hat inflection point, between 0 and 0.5

	constrain_probe_amplitude_relative_width (float) – Relative width of top-hat sigmoid, between 0 and 0.5

	constrain_probe_fourier_amplitude_iter (int, optional) – Number of iterations to run while constraining the Fourier-space probe by fitting a sigmoid for each angular frequency.

	constrain_probe_fourier_amplitude_max_width_pixels (float) – Maximum pixel width of fitted sigmoid functions.

	constrain_probe_fourier_amplitude_constant_intensity (bool) – If True, the probe aperture is additionally constrained to a constant intensity.

	fix_positions_iter (int, optional) – Number of iterations to run with fixed positions before updating positions estimate

	constrain_position_distance (float) – Distance to constrain position correction within original field of view in A

	global_affine_transformation (bool, optional) – If True, positions are assumed to be a global affine transform from initial scan

	gaussian_filter_sigma (float, optional) – Standard deviation of gaussian kernel in A

	gaussian_filter_iter (int, optional) – Number of iterations to run using object smoothness constraint

	fit_probe_aberrations_iter (int, optional) – Number of iterations to run while fitting the probe aberrations to a low-order expansion

	fit_probe_aberrations_max_angular_order (bool) – Max angular order of probe aberrations basis functions

	fit_probe_aberrations_max_radial_order (bool) – Max radial order of probe aberrations basis functions

	butterworth_filter_iter (int, optional) – Number of iterations to run using high-pass butteworth filter

	q_lowpass (float) – Cut-off frequency in A^-1 for low-pass butterworth filter

	q_highpass (float) – Cut-off frequency in A^-1 for high-pass butterworth filter

	butterworth_order (float) – Butterworth filter order. Smaller gives a smoother filter

	kz_regularization_filter_iter (int, optional) – Number of iterations to run using kz regularization filter

	kz_regularization_gamma – kz regularization strength

	float – kz regularization strength

	optional – kz regularization strength

	identical_slices_iter (int, optional) – Number of iterations to run using identical slices

	object_positivity (bool, optional) – If True, forces object to be positive

	shrinkage_rad (float) – Phase shift in radians to be subtracted from the potential at each iteration

	fix_potential_baseline (bool) – If true, the potential mean outside the FOV is forced to zero at each iteration

	pure_phase_object_iter (int, optional) – Number of iterations where object amplitude is set to unity

	tv_denoise_iter_chambolle (bool) – Number of iterations with TV denoisining

	tv_denoise_weight_chambolle (float) – weight of tv denoising constraint

	tv_denoise_pad_chambolle (bool) – if True, pads object at top and bottom with zeros before applying denoising

	tv_denoise (bool) – If True, applies TV denoising on object

	tv_denoise_weights ([float,float]) – Denoising weights[z weight, r weight]. The greater weight,
the more denoising.

	tv_denoise_inner_iter (float) – Number of iterations to run in inner loop of TV denoising

	switch_object_iter (int, optional) – Iteration to switch object type between ‘complex’ and ‘potential’ or between
‘potential’ and ‘complex’

	store_iterations (bool, optional) – If True, reconstructed objects and probes are stored at each iteration

	progress_bar (bool, optional) – If True, reconstruction progress is displayed

	reset (bool, optional) – If True, previous reconstructions are ignored

	Returns:

	self – Self to accommodate chaining

	Return type:

	MultislicePtychographicReconstruction

	
visualize(fig=None, iterations_grid: Tuple[int, int] | None = None, plot_convergence: bool = True, plot_probe: bool = True, plot_fourier_probe: bool = False, cbar: bool = True, padding: int = 0, **kwargs)

	Displays reconstructed object and probe.

	Parameters:

	
	fig (Figure) – Matplotlib figure to place Gridspec in

	plot_convergence (bool, optional) – If true, the normalized mean squared error (NMSE) plot is displayed

	iterations_grid (Tuple[int,int]) – Grid dimensions to plot reconstruction iterations

	cbar (bool, optional) – If true, displays a colorbar

	plot_probe (bool) – If true, the reconstructed probe intensity is also displayed

	plot_fourier_probe (bool, optional) – If true, the reconstructed complex Fourier probe is displayed

	padding (int, optional) – Pixels to pad by post rotating-cropping object

	Returns:

	self – Self to accommodate chaining

	Return type:

	PtychographicReconstruction

	
show_transmitted_probe(plot_fourier_probe: bool = False, **kwargs)

	Plots the min, max, and mean transmitted probe after propagation and transmission.

	Parameters:

	
	plot_fourier_probe (boolean, optional) – If True, the transmitted probes are also plotted in Fourier space

	kwargs – Passed to show_complex

	
show_slices(ms_object=None, cbar: bool = True, common_color_scale: bool = True, padding: int = 0, num_cols: int = 3, show_fft: bool = False, **kwargs)

	Displays reconstructed slices of object

	Parameters:

	
	ms_object (nd.array, optional) – Object to plot slices of. If None, uses current object

	cbar (bool, optional) – If True, displays a colorbar

	padding (int, optional) – Padding to leave uncropped

	num_cols (int, optional) – Number of GridSpec columns

	show_fft (bool, optional) – if True, plots fft of object slices

	
show_depth(x1: float, x2: float, y1: float, y2: float, specify_calibrated: bool = False, gaussian_filter_sigma: float | None = None, ms_object=None, cbar: bool = False, aspect: float | None = None, plot_line_profile: bool = False, **kwargs)

	Displays line profile depth section

	Parameters:

	
	x1 (floats (pixels)) – Line profile for depth section runs from (x1,y1) to (x2,y2)
Specified in pixels unless specify_calibrated is True

	x2 (floats (pixels)) – Line profile for depth section runs from (x1,y1) to (x2,y2)
Specified in pixels unless specify_calibrated is True

	y1 (floats (pixels)) – Line profile for depth section runs from (x1,y1) to (x2,y2)
Specified in pixels unless specify_calibrated is True

	y2 (floats (pixels)) – Line profile for depth section runs from (x1,y1) to (x2,y2)
Specified in pixels unless specify_calibrated is True

	specify_calibrated (bool (optional)) – If True, specify x1, x2, y1, y2 in A values instead of pixels

	gaussian_filter_sigma (float (optional)) – Standard deviation of gaussian kernel in A

	ms_object (np.array) – Object to plot slices of. If None, uses current object

	cbar (bool, optional) – If True, displays a colorbar

	aspect (float, optional) – aspect ratio for depth profile plot

	plot_line_profile (bool) – If True, also plots line profile showing where depth profile is taken

	
tune_num_slices_and_thicknesses(num_slices_guess=None, thicknesses_guess=None, num_slices_step_size=1, thicknesses_step_size=20, num_slices_values=3, num_thicknesses_values=3, update_defocus=False, max_iter=5, plot_reconstructions=True, plot_convergence=True, return_values=False, **kwargs)

	Run reconstructions over a parameters space of number of slices
and slice thicknesses. Should be run after the preprocess step.

	Parameters:

	
	num_slices_guess (float, optional) – initial starting guess for number of slices, rounds to nearest integer
if None, uses current initialized values

	thicknesses_guess (float (A), optional) – initial starting guess for thicknesses of slices assuming same
thickness for each slice
if None, uses current initialized values

	num_slices_step_size (float, optional) – size of change of number of slices for each step in parameter space

	thicknesses_step_size (float (A), optional) – size of change of slice thicknesses for each step in parameter space

	num_slices_values (int, optional) – number of number of slice values to test, must be >= 1

	num_thicknesses_values (int,optional) – number of thicknesses values to test, must be >= 1

	update_defocus (bool, optional) – if True, updates defocus based on estimated total thickness

	max_iter (int, optional) – number of iterations to run in ptychographic reconstruction

	plot_reconstructions (bool, optional) – if True, plot phase of reconstructed objects

	plot_convergence (bool, optional) – if True, plots error for each iteration for each reconstruction

	return_values (bool, optional) – if True, returns objects, convergence

	Returns:

	
	objects (list) – reconstructed objects

	convergence (np.ndarray) – array of convergence values from reconstructions

Module for reconstructing phase objects from 4DSTEM datasets using iterative methods,
namely overlap tomography.

	
class py4DSTEM.process.phase.iterative_overlap_tomography.OverlapTomographicReconstruction(energy: float, num_slices: int, tilt_orientation_matrices: Sequence[ndarray], datacube: Sequence[DataCube] | None = None, semiangle_cutoff: float | None = None, semiangle_cutoff_pixels: float | None = None, rolloff: float = 2.0, vacuum_probe_intensity: ndarray | None = None, polar_parameters: Mapping[str, float] | None = None, object_padding_px: Tuple[int, int] | None = None, object_type: str = 'potential', positions_mask: ndarray | None = None, initial_object_guess: ndarray | None = None, initial_probe_guess: ndarray | None = None, initial_scan_positions: Sequence[ndarray] | None = None, verbose: bool = True, device: str = 'cpu', name: str = 'overlap-tomographic_reconstruction', **kwargs)

	Overlap Tomographic Reconstruction Class.

List of diffraction intensities dimensions : (Rx,Ry,Qx,Qy)
Reconstructed probe dimensions : (Sx,Sy)
Reconstructed object dimensions : (Px,Py,Py)

such that (Sx,Sy) is the region-of-interest (ROI) size of our probe
and (Px,Py,Py) is the padded-object electrostatic potential volume,
where x-axis is the tilt.

	Parameters:

	
	datacube (List of DataCubes) – Input list of 4D diffraction pattern intensities

	energy (float) – The electron energy of the wave functions in eV

	num_slices (int) – Number of slices to use in the forward model

	tilt_orientation_matrices (Sequence[np.ndarray]) – List of orientation matrices for each tilt

	semiangle_cutoff (float, optional) – Semiangle cutoff for the initial probe guess in mrad

	semiangle_cutoff_pixels (float, optional) – Semiangle cutoff for the initial probe guess in pixels

	rolloff (float, optional) – Semiangle rolloff for the initial probe guess

	vacuum_probe_intensity (np.ndarray, optional) – Vacuum probe to use as intensity aperture for initial probe guess

	polar_parameters (dict, optional) – Mapping from aberration symbols to their corresponding values. All aberration
magnitudes should be given in Å and angles should be given in radians.

	object_padding_px (Tuple[int,int], optional) – Pixel dimensions to pad object with
If None, the padding is set to half the probe ROI dimensions

	initial_object_guess (np.ndarray, optional) – Initial guess for complex-valued object of dimensions (Px,Py,Py)
If None, initialized to 1.0

	initial_probe_guess (np.ndarray, optional) – Initial guess for complex-valued probe of dimensions (Sx,Sy). If None,
initialized to ComplexProbe with semiangle_cutoff, energy, and aberrations

	initial_scan_positions (list of np.ndarray, optional) – Probe positions in Å for each diffraction intensity per tilt
If None, initialized to a grid scan centered along tilt axis

	verbose (bool, optional) – If True, class methods will inherit this and print additional information

	device (str, optional) – Calculation device will be perfomed on. Must be ‘cpu’ or ‘gpu’

	object_type (str, optional) – The object can be reconstructed as a real potential (‘potential’) or a complex
object (‘complex’)

	positions_mask (np.ndarray, optional) – Boolean real space mask to select positions to ignore in reconstruction

	name (str, optional) – Class name

	kwargs – Provide the aberration coefficients as keyword arguments.

	
__init__(energy: float, num_slices: int, tilt_orientation_matrices: Sequence[ndarray], datacube: Sequence[DataCube] | None = None, semiangle_cutoff: float | None = None, semiangle_cutoff_pixels: float | None = None, rolloff: float = 2.0, vacuum_probe_intensity: ndarray | None = None, polar_parameters: Mapping[str, float] | None = None, object_padding_px: Tuple[int, int] | None = None, object_type: str = 'potential', positions_mask: ndarray | None = None, initial_object_guess: ndarray | None = None, initial_probe_guess: ndarray | None = None, initial_scan_positions: Sequence[ndarray] | None = None, verbose: bool = True, device: str = 'cpu', name: str = 'overlap-tomographic_reconstruction', **kwargs)

	

	
preprocess(diffraction_intensities_shape: Tuple[int, int] | None = None, reshaping_method: str = 'fourier', probe_roi_shape: Tuple[int, int] | None = None, dp_mask: ndarray | None = None, fit_function: str = 'plane', plot_probe_overlaps: bool = True, rotation_real_space_degrees: float | None = None, diffraction_patterns_rotate_degrees: float | None = None, diffraction_patterns_transpose: bool | None = None, force_com_shifts: Sequence[float] | None = None, force_scan_sampling: float | None = None, force_angular_sampling: float | None = None, force_reciprocal_sampling: float | None = None, progress_bar: bool = True, object_fov_mask: ndarray | None = None, crop_patterns: bool = False, **kwargs)

	Ptychographic preprocessing step.

Additionally, it initializes an (Px,Py, Py) array of 1.0
and a complex probe using the specified polar parameters.

	Parameters:

	
	diffraction_intensities_shape (Tuple[int,int], optional) – Pixel dimensions (Qx’,Qy’) of the resampled diffraction intensities
If None, no resampling of diffraction intenstities is performed

	reshaping_method (str, optional) – Method to use for reshaping, either ‘bin, ‘bilinear’, or ‘fourier’ (default)

	probe_roi_shape – Padded diffraction intensities shape.
If None, no padding is performed

	(int – Padded diffraction intensities shape.
If None, no padding is performed

	int) – Padded diffraction intensities shape.
If None, no padding is performed

	optional – Padded diffraction intensities shape.
If None, no padding is performed

	dp_mask (ndarray, optional) – Mask for datacube intensities (Qx,Qy)

	fit_function (str, optional) – 2D fitting function for CoM fitting. One of ‘plane’,’parabola’,’bezier_two’

	plot_probe_overlaps (bool, optional) – If True, initial probe overlaps scanned over the object will be displayed

	rotation_real_space_degrees (float (degrees), optional) – In plane rotation around z axis between x axis and tilt axis in
real space (forced to be in xy plane)

	diffraction_patterns_rotate_degrees (float, optional) – Relative rotation angle between real and reciprocal space

	diffraction_patterns_transpose (bool, optional) – Whether diffraction intensities need to be transposed.

	force_com_shifts (list of tuple of ndarrays (CoMx, CoMy)) – Amplitudes come from diffraction patterns shifted with
the CoM in the upper left corner for each probe unless
shift is overwritten. One tuple per tilt.

	force_scan_sampling (float, optional) – Override DataCube real space scan pixel size calibrations, in Angstrom

	force_angular_sampling (float, optional) – Override DataCube reciprocal pixel size calibration, in mrad

	force_reciprocal_sampling (float, optional) – Override DataCube reciprocal pixel size calibration, in A^-1

	object_fov_mask (np.ndarray (boolean)) – Boolean mask of FOV. Used to calculate additional shrinkage of object
If None, probe_overlap intensity is thresholded

	crop_patterns (bool) – if True, crop patterns to avoid wrap around of patterns when centering

	Returns:

	self – Self to accommodate chaining

	Return type:

	OverlapTomographicReconstruction

	
reconstruct(max_iter: int = 64, reconstruction_method: str = 'gradient-descent', reconstruction_parameter: float = 1.0, reconstruction_parameter_a: float | None = None, reconstruction_parameter_b: float | None = None, reconstruction_parameter_c: float | None = None, max_batch_size: int | None = None, seed_random: int | None = None, step_size: float = 0.5, normalization_min: float = 1, positions_step_size: float = 0.9, fix_com: bool = True, fix_probe_iter: int = 0, fix_probe_aperture_iter: int = 0, constrain_probe_amplitude_iter: int = 0, constrain_probe_amplitude_relative_radius: float = 0.5, constrain_probe_amplitude_relative_width: float = 0.05, constrain_probe_fourier_amplitude_iter: int = 0, constrain_probe_fourier_amplitude_max_width_pixels: float = 3.0, constrain_probe_fourier_amplitude_constant_intensity: bool = False, fix_positions_iter: int = inf, constrain_position_distance: float | None = None, global_affine_transformation: bool = True, gaussian_filter_sigma: float | None = None, gaussian_filter_iter: int = inf, fit_probe_aberrations_iter: int = 0, fit_probe_aberrations_max_angular_order: int = 4, fit_probe_aberrations_max_radial_order: int = 4, butterworth_filter_iter: int = inf, q_lowpass: float | None = None, q_highpass: float | None = None, butterworth_order: float = 2, object_positivity: bool = True, shrinkage_rad: float = 0.0, fix_potential_baseline: bool = True, tv_denoise_iter=inf, tv_denoise_weights=None, tv_denoise_inner_iter=40, collective_tilt_updates: bool = False, store_iterations: bool = False, progress_bar: bool = True, reset: bool | None = None)

	Ptychographic reconstruction main method.

	Parameters:

	
	max_iter (int, optional) – Maximum number of iterations to run

	reconstruction_method (str, optional) – Specifies which reconstruction algorithm to use, one of:
“generalized-projections”,
“DM_AP” (or “difference-map_alternating-projections”),
“RAAR” (or “relaxed-averaged-alternating-reflections”),
“RRR” (or “relax-reflect-reflect”),
“SUPERFLIP” (or “charge-flipping”), or
“GD” (or “gradient_descent”)

	reconstruction_parameter (float, optional) – Reconstruction parameter for various reconstruction methods above.

	reconstruction_parameter_a (float, optional) – Reconstruction parameter a for reconstruction_method=’generalized-projections’.

	reconstruction_parameter_b (float, optional) – Reconstruction parameter b for reconstruction_method=’generalized-projections’.

	reconstruction_parameter_c (float, optional) – Reconstruction parameter c for reconstruction_method=’generalized-projections’.

	max_batch_size (int, optional) – Max number of probes to update at once

	seed_random (int, optional) – Seeds the random number generator, only applicable when max_batch_size is not None

	step_size (float, optional) – Update step size

	normalization_min (float, optional) – Probe normalization minimum as a fraction of the maximum overlap intensity

	positions_step_size (float, optional) – Positions update step size

	fix_com (bool, optional) – If True, fixes center of mass of probe

	fix_probe_iter (int, optional) – Number of iterations to run with a fixed probe before updating probe estimate

	fix_probe_aperture_iter (int, optional) – Number of iterations to run with a fixed probe Fourier amplitude before updating probe estimate

	constrain_probe_amplitude_iter (int, optional) – Number of iterations to run while constraining the real-space probe with a top-hat support.

	constrain_probe_amplitude_relative_radius (float) – Relative location of top-hat inflection point, between 0 and 0.5

	constrain_probe_amplitude_relative_width (float) – Relative width of top-hat sigmoid, between 0 and 0.5

	constrain_probe_fourier_amplitude_iter (int, optional) – Number of iterations to run while constraining the Fourier-space probe by fitting a sigmoid for each angular frequency.

	constrain_probe_fourier_amplitude_max_width_pixels (float) – Maximum pixel width of fitted sigmoid functions.

	constrain_probe_fourier_amplitude_constant_intensity (bool) – If True, the probe aperture is additionally constrained to a constant intensity.

	fix_positions_iter (int, optional) – Number of iterations to run with fixed positions before updating positions estimate

	constrain_position_distance (float, optional) – Distance to constrain position correction within original
field of view in A

	global_affine_transformation (bool, optional) – If True, positions are assumed to be a global affine transform from initial scan

	gaussian_filter_sigma (float, optional) – Standard deviation of gaussian kernel in A

	gaussian_filter_iter (int, optional) – Number of iterations to run using object smoothness constraint

	fit_probe_aberrations_iter (int, optional) – Number of iterations to run while fitting the probe aberrations to a low-order expansion

	fit_probe_aberrations_max_angular_order (bool) – Max angular order of probe aberrations basis functions

	fit_probe_aberrations_max_radial_order (bool) – Max radial order of probe aberrations basis functions

	butterworth_filter_iter (int, optional) – Number of iterations to run using high-pass butteworth filter

	q_lowpass (float) – Cut-off frequency in A^-1 for low-pass butterworth filter

	q_highpass (float) – Cut-off frequency in A^-1 for high-pass butterworth filter

	butterworth_order (float) – Butterworth filter order. Smaller gives a smoother filter

	object_positivity (bool, optional) – If True, forces object to be positive

	tv_denoise (bool) – If True, applies TV denoising on object

	tv_denoise_weights ([float,float]) – Denoising weights[z weight, r weight]. The greater weight,
the more denoising.

	tv_denoise_inner_iter (float) – Number of iterations to run in inner loop of TV denoising

	collective_tilt_updates (bool) – if True perform collective tilt updates

	shrinkage_rad (float) – Phase shift in radians to be subtracted from the potential at each iteration

	store_iterations (bool, optional) – If True, reconstructed objects and probes are stored at each iteration

	progress_bar (bool, optional) – If True, reconstruction progress is displayed

	reset (bool, optional) – If True, previous reconstructions are ignored

	Returns:

	self – Self to accommodate chaining

	Return type:

	OverlapTomographicReconstruction

	
visualize(fig=None, iterations_grid: Tuple[int, int] | None = None, plot_convergence: bool = True, plot_probe: bool = True, plot_fourier_probe: bool = False, cbar: bool = True, projection_angle_deg: float | None = None, projection_axes: Tuple[int, int] = (0, 2), x_lims=(None, None), y_lims=(None, None), **kwargs)

	Displays reconstructed object and probe.

	Parameters:

	
	fig (Figure) – Matplotlib figure to place Gridspec in

	plot_convergence (bool, optional) – If true, the normalized mean squared error (NMSE) plot is displayed

	cbar (bool, optional) – If true, displays a colorbar

	plot_probe (bool) – If true, the reconstructed probe intensity is also displayed

	plot_fourier_probe (bool, optional) – If true, the reconstructed complex Fourier probe is displayed

	iterations_grid (Tuple[int,int]) – Grid dimensions to plot reconstruction iterations

	projection_angle_deg (float) – Angle in degrees to rotate 3D array around prior to projection

	projection_axes (tuple(int,int)) – Axes defining projection plane

	x_lims (tuple(float,float)) – min/max x indices

	y_lims (tuple(float,float)) – min/max y indices

	Returns:

	self – Self to accommodate chaining

	Return type:

	OverlapTomographicReconstruction

	
show_object_fft(obj=None, projection_angle_deg: float | None = None, projection_axes: Tuple[int, int] = (0, 2), x_lims: Tuple[int, int] = (None, None), y_lims: Tuple[int, int] = (None, None), **kwargs)

	Plot FFT of reconstructed object

	Parameters:

	
	obj (array, optional) – if None is specified, uses self._object

	projection_angle_deg (float) – Angle in degrees to rotate 3D array around prior to projection

	projection_axes (tuple(int,int)) – Axes defining projection plane

	x_lims (tuple(float,float)) – min/max x indices

	y_lims (tuple(float,float)) – min/max y indices

	
property positions

	Probe positions [A]

	
show_uncertainty_visualization(errors=None, max_batch_size=None, projected_cropped_potential=None, kde_sigma=None, plot_histogram=True, plot_contours=False, **kwargs)

	Plot uncertainty visualization using self-consistency errors

Module for reconstructing virtual parallax (also known as tilted-shifted bright field)
images by aligning each virtual BF image.

	
class py4DSTEM.process.phase.iterative_parallax.ParallaxReconstruction(energy: float, datacube: DataCube | None = None, verbose: bool = False, object_padding_px: Tuple[int, int] = (32, 32), device: str = 'cpu', name: str = 'parallax_reconstruction')

	Iterative parallax reconstruction class.

	Parameters:

	
	datacube (DataCube) – Input 4D diffraction pattern intensities

	energy (float) – The electron energy of the wave functions in eV

	verbose (bool, optional) – If True, class methods will inherit this and print additional information

	device (str, optional) – Calculation device will be perfomed on. Must be ‘cpu’ or ‘gpu’

	object_padding_px (Tuple[int,int], optional) – Pixel dimensions to pad object with
If None, the padding is set to half the probe ROI dimensions

	
__init__(energy: float, datacube: DataCube | None = None, verbose: bool = False, object_padding_px: Tuple[int, int] = (32, 32), device: str = 'cpu', name: str = 'parallax_reconstruction')

	

	
to_h5(group)

	Wraps datasets and metadata to write in emdfile classes,
notably the (subpixel-)aligned BF.

	
preprocess(edge_blend: int = 16, threshold_intensity: float = 0.8, normalize_images: bool = True, normalize_order=0, descan_correct: bool = True, defocus_guess: float | None = None, rotation_guess: float | None = None, plot_average_bf: bool = True, **kwargs)

	Iterative parallax reconstruction preprocessing method.

	Parameters:

	
	edge_blend (int, optional) – Pixels to blend image at the border

	threshold (float, optional) – Fraction of max of dp_mean for bright-field pixels

	normalize_images (bool, optional) – If True, bright images normalized to have a mean of 1

	normalize_order (integer, optional) – Polynomial order for normalization. 0 means constant, 1 means linear, etc.
Higher orders not yet implemented.

	defocus_guess (float, optional) – Initial guess of defocus value (defocus dF) in A
If None, first iteration is assumed to be in-focus

	descan_correct (float, optional) – If True, aligns bright field stack based on measured descan

	rotation_guess (float, optional) – Initial guess of defocus value in degrees
If None, first iteration assumed to be 0

	plot_average_bf (bool, optional) – If True, plots the average bright field image, using defocus_guess

	Returns:

	self – Self to accommodate chaining

	Return type:

	ParallaxReconstruction

	
tune_angle_and_defocus(angle_guess=None, defocus_guess=None, angle_step_size=5, defocus_step_size=100, num_angle_values=5, num_defocus_values=5, return_values=False, plot_reconstructions=True, plot_convergence=True, **kwargs)

	Run parallax reconstruction over a parameters space of pre-determined angles
and defocus

	Parameters:

	
	angle_guess (float (degrees), optional) – initial starting guess for rotation angle between real and reciprocal space
if None, uses 0

	defocus_guess (float (A), optional) – initial starting guess for defocus (defocus dF)
if None, uses 0

	angle_step_size (float (degrees), optional) – size of change of rotation angle between real and reciprocal space for
each step in parameter space

	defocus_step_size (float (A), optional) – size of change of defocus for each step in parameter space

	num_angle_values (int, optional) – number of values of angle to test, must be >= 1.

	num_defocus_values (int,optional) – number of values of defocus to test, must be >= 1

	plot_reconstructions (bool, optional) – if True, plot phase of reconstructed objects

	plot_convergence (bool, optional) – if True, makes 2D plot of error metrix

	return_values (bool, optional) – if True, returns objects, convergence

	Returns:

	
	objects (list) – reconstructed objects

	convergence (np.ndarray) – array of convergence values from reconstructions

	
reconstruct(max_alignment_bin: int | None = None, min_alignment_bin: int = 1, max_iter_at_min_bin: int = 2, cross_correlation_upsample_factor: int = 8, regularizer_matrix_size: Tuple[int, int] = (1, 1), regularize_shifts: bool = True, running_average: bool = True, progress_bar: bool = True, plot_aligned_bf: bool = True, plot_convergence: bool = True, reset: bool | None = None, **kwargs)

	Iterative Parallax Reconstruction main reconstruction method.

	Parameters:

	
	max_alignment_bin (int, optional) – Maximum bin size for bright field alignment
If None, the bright field disk radius is used

	min_alignment_bin (int, optional) – Minimum bin size for bright field alignment

	max_iter_at_min_bin (int, optional) – Number of iterations to run at the smallest bin size

	cross_correlation_upsample_factor (int, optional) – DFT upsample factor for subpixel alignment

	regularizer_matrix_size (Tuple[int,int], optional) – Bernstein basis degree used for regularizing shifts

	regularize_shifts (bool, optional) – If True, the cross-correlated shifts are constrained to a spline interpolation

	running_average (bool, optional) – If True, the bright field reference image is updated in a spiral from the origin

	progress_bar (bool, optional) – If True, progress bar is displayed

	plot_aligned_bf (bool, optional) – If True, the aligned bright field image is plotted at each bin level

	plot_convergence (bool, optional) – If True, the convergence error is also plotted

	reset (bool, optional) – If True, the reconstruction is reset

	Returns:

	self – Self to accommodate chaining

	Return type:

	BFReconstruction

	
subpixel_alignment(kde_upsample_factor=None, kde_sigma=0.125, plot_upsampled_BF_comparison: bool = True, plot_upsampled_FFT_comparison: bool = False, **kwargs)

	Upsample and subpixel-align BFs using the measured image shifts.
Uses kernel density estimation (KDE) to align upsampled BFs.

	Parameters:

	
	kde_upsample_factor (int, optional) – Real-space upsampling factor

	kde_sigma (float, optional) – KDE gaussian kernel bandwidth

	plot_upsampled_BF_comparison (bool, optional) – If True, the pre/post alignment BF images are plotted for comparison

	plot_upsampled_FFT_comparison (bool, optional) – If True, the pre/post alignment BF FFTs are plotted for comparison

	
aberration_fit(fit_BF_shifts: bool = False, fit_CTF_FFT: bool = False, fit_aberrations_max_radial_order: int = 3, fit_aberrations_max_angular_order: int = 4, fit_aberrations_min_radial_order: int = 2, fit_aberrations_min_angular_order: int = 0, fit_max_thon_rings: int = 6, fit_power_alpha: float = 2.0, plot_CTF_comparison: bool | None = None, plot_BF_shifts_comparison: bool | None = None, upsampled: bool = True, force_transpose: bool = False)

	Fit aberrations to the measured image shifts.

	Parameters:

	
	fit_BF_shifts (bool) – Set to True to fit aberrations to the measured BF shifts directly.

	fit_CTF_FFT (bool) – Set to True to fit aberrations in the FFT of the (upsampled) BF
image. Note that this method relies on visible zero crossings in the FFT.

	fit_aberrations_max_radial_order (int) – Max radial order for fitting of aberrations.

	fit_aberrations_max_angular_order (int) – Max angular order for fitting of aberrations.

	fit_aberrations_min_radial_order (int) – Min radial order for fitting of aberrations.

	fit_aberrations_min_angular_order (int) – Min angular order for fitting of aberrations.

	fit_max_thon_rings (int) – Max number of Thon rings to search for during CTF FFT fitting.

	fit_power_alpha (int) – Power to raise FFT alpha weighting during CTF FFT fitting.

	plot_CTF_comparison (bool, optional) – If True, the fitted CTF is plotted against the reconstructed frequencies.

	plot_BF_shifts_comparison (bool, optional) – If True, the measured vs fitted BF shifts are plotted.

	upsampled (bool) – If True, and upsampled BF is available, uses that for CTF FFT fitting.

	force_transpose (bool) – If True, and fit_BF_shifts is True, flips the measured x and y shifts

	
aberration_correct(use_CTF_fit=None, plot_corrected_phase: bool = True, k_info_limit: float | None = None, k_info_power: float = 1.0, Wiener_filter=False, Wiener_signal_noise_ratio: float = 1.0, Wiener_filter_low_only: bool = False, upsampled: bool = True, **kwargs)

	CTF correction of the phase image using the measured defocus aberration.

	Parameters:

	
	use_FFT_fit (bool) – Use the CTF fitted to the zero crossings of the FFT.
Default is True

	plot_corrected_phase (bool, optional) – If True, the CTF-corrected phase is plotted

	k_info_limit (float, optional) – maximum allowed frequency in butterworth filter

	k_info_power (float, optional) – power of butterworth filter

	Wiener_filter (bool, optional) – Use Wiener filtering instead of CTF sign correction.

	Wiener_signal_noise_ratio (float, optional) – Signal to noise radio at k = 0 for Wiener filter

	Wiener_filter_low_only (bool, optional) – Apply Wiener filtering only to the CTF portions before the 1st CTF maxima.

	
depth_section(depth_angstroms=array([-250, -150, -50, 50, 150, 250]), plot_depth_sections=True, k_info_limit: float | None = None, k_info_power: float = 1.0, progress_bar=True, **kwargs)

	CTF correction of the BF image using the measured defocus aberration.

	Parameters:

	
	depth_angstroms (np.array) – Specify the depths

	k_info_limit (float, optional) – maximum allowed frequency in butterworth filter

	k_info_power (float, optional) – power of butterworth filter

	Returns:

	stack_depth – stack of phase images at different depths with shape [depth Nx Ny]

	Return type:

	np.array

	
show_shifts(scale_arrows=1, plot_arrow_freq=1, plot_rotated_shifts=True, **kwargs)

	Utility function to visualize bright field disk pixel shifts

	Parameters:

	
	scale_arrows (float, optional) – Scale to multiply shifts by

	plot_arrow_freq (int, optional) – Frequency of shifts to plot in quiver plot

	
visualize(**kwargs)

	Visualization function for bright field average

	Returns:

	self – Self to accommodate chaining

	Return type:

	BFReconstruction

	
property object_cropped

	cropped object

Module for reconstructing phase objects from 4DSTEM datasets using iterative methods,
namely joint ptychography.

	
class py4DSTEM.process.phase.iterative_simultaneous_ptychography.SimultaneousPtychographicReconstruction(energy: float, datacube: Sequence[DataCube] | None = None, simultaneous_measurements_mode: str = '-+', semiangle_cutoff: float | None = None, semiangle_cutoff_pixels: float | None = None, rolloff: float = 2.0, vacuum_probe_intensity: ndarray | None = None, polar_parameters: Mapping[str, float] | None = None, object_padding_px: Tuple[int, int] | None = None, positions_mask: ndarray | None = None, initial_object_guess: ndarray | None = None, initial_probe_guess: ndarray | None = None, initial_scan_positions: ndarray | None = None, object_type: str = 'complex', verbose: bool = True, device: str = 'cpu', name: str = 'simultaneous_ptychographic_reconstruction', **kwargs)

	Iterative Simultaneous Ptychographic Reconstruction Class.

Diffraction intensities dimensions : (Rx,Ry,Qx,Qy) (for each measurement)
Reconstructed probe dimensions : (Sx,Sy)
Reconstructed electrostatic dimensions : (Px,Py)
Reconstructed magnetic dimensions : (Px,Py)

such that (Sx,Sy) is the region-of-interest (ROI) size of our probe
and (Px,Py) is the padded-object size we position our ROI around in.

	Parameters:

	
	datacube (Sequence[DataCube]) – Tuple of input 4D diffraction pattern intensities

	energy (float) – The electron energy of the wave functions in eV

	simultaneous_measurements_mode (str, optional) – One of ‘-+’, ‘-0+’, ‘0+’, where -/0/+ refer to the sign of the magnetic potential

	semiangle_cutoff (float, optional) – Semiangle cutoff for the initial probe guess in mrad

	semiangle_cutoff_pixels (float, optional) – Semiangle cutoff for the initial probe guess in pixels

	rolloff (float, optional) – Semiangle rolloff for the initial probe guess

	vacuum_probe_intensity (np.ndarray, optional) – Vacuum probe to use as intensity aperture for initial probe guess

	polar_parameters (dict, optional) – Mapping from aberration symbols to their corresponding values. All aberration
magnitudes should be given in Å and angles should be given in radians.

	object_padding_px (Tuple[int,int], optional) – Pixel dimensions to pad objects with
If None, the padding is set to half the probe ROI dimensions

	positions_mask (np.ndarray, optional) – Boolean real space mask to select positions in datacube to skip for reconstruction

	initial_object_guess (np.ndarray, optional) – Initial guess for complex-valued object of dimensions (Px,Py)
If None, initialized to 1.0j

	initial_probe_guess (np.ndarray, optional) – Initial guess for complex-valued probe of dimensions (Sx,Sy). If None,
initialized to ComplexProbe with semiangle_cutoff, energy, and aberrations

	initial_scan_positions (np.ndarray, optional) – Probe positions in Å for each diffraction intensity
If None, initialized to a grid scan

	verbose (bool, optional) – If True, class methods will inherit this and print additional information

	device (str, optional) – Calculation device will be perfomed on. Must be ‘cpu’ or ‘gpu’

	object_type (str, optional) – The object can be reconstructed as a real potential (‘potential’) or a complex
object (‘complex’)

	name (str, optional) – Class name

	kwargs – Provide the aberration coefficients as keyword arguments.

	
__init__(energy: float, datacube: Sequence[DataCube] | None = None, simultaneous_measurements_mode: str = '-+', semiangle_cutoff: float | None = None, semiangle_cutoff_pixels: float | None = None, rolloff: float = 2.0, vacuum_probe_intensity: ndarray | None = None, polar_parameters: Mapping[str, float] | None = None, object_padding_px: Tuple[int, int] | None = None, positions_mask: ndarray | None = None, initial_object_guess: ndarray | None = None, initial_probe_guess: ndarray | None = None, initial_scan_positions: ndarray | None = None, object_type: str = 'complex', verbose: bool = True, device: str = 'cpu', name: str = 'simultaneous_ptychographic_reconstruction', **kwargs)

	

	
preprocess(diffraction_intensities_shape: Tuple[int, int] | None = None, reshaping_method: str = 'fourier', probe_roi_shape: Tuple[int, int] | None = None, dp_mask: ndarray | None = None, fit_function: str = 'plane', plot_rotation: bool = True, maximize_divergence: bool = False, rotation_angles_deg: ndarray = array([-89., -88., -87., -86., -85., -84., -83., -82., -81., -80., -79., -78., -77., -76., -75., -74., -73., -72., -71., -70., -69., -68., -67., -66., -65., -64., -63., -62., -61., -60., -59., -58., -57., -56., -55., -54., -53., -52., -51., -50., -49., -48., -47., -46., -45., -44., -43., -42., -41., -40., -39., -38., -37., -36., -35., -34., -33., -32., -31., -30., -29., -28., -27., -26., -25., -24., -23., -22., -21., -20., -19., -18., -17., -16., -15., -14., -13., -12., -11., -10., -9., -8., -7., -6., -5., -4., -3., -2., -1., 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89.]), plot_probe_overlaps: bool = True, force_com_rotation: float | None = None, force_com_transpose: float | None = None, force_com_shifts: float | None = None, force_scan_sampling: float | None = None, force_angular_sampling: float | None = None, force_reciprocal_sampling: float | None = None, object_fov_mask: ndarray | None = None, crop_patterns: bool = False, **kwargs)

	Ptychographic preprocessing step.
Calls the base class methods:

_extract_intensities_and_calibrations_from_datacube,
_compute_center_of_mass(),
_solve_CoM_rotation(),
_normalize_diffraction_intensities()
_calculate_scan_positions_in_px()

Additionally, it initializes an (Px,Py) array of 1.0j
and a complex probe using the specified polar parameters.

	Parameters:

	
	diffraction_intensities_shape (Tuple[int,int], optional) – Pixel dimensions (Qx’,Qy’) of the resampled diffraction intensities
If None, no resampling of diffraction intenstities is performed

	reshaping_method (str, optional) – Method to use for reshaping, either ‘bin’, ‘bilinear’, or ‘fourier’ (default)

	probe_roi_shape – Padded diffraction intensities shape.
If None, no padding is performed

	(int – Padded diffraction intensities shape.
If None, no padding is performed

	int) – Padded diffraction intensities shape.
If None, no padding is performed

	optional – Padded diffraction intensities shape.
If None, no padding is performed

	dp_mask (ndarray, optional) – Mask for datacube intensities (Qx,Qy)

	fit_function (str, optional) – 2D fitting function for CoM fitting. One of ‘plane’,’parabola’,’bezier_two’

	plot_rotation (bool, optional) – If True, the CoM curl minimization search result will be displayed

	maximize_divergence (bool, optional) – If True, the divergence of the CoM gradient vector field is maximized

	rotation_angles_deg (np.darray, optional) – Array of angles in degrees to perform curl minimization over

	plot_probe_overlaps (bool, optional) – If True, initial probe overlaps scanned over the object will be displayed

	force_com_rotation (float (degrees), optional) – Force relative rotation angle between real and reciprocal space

	force_com_transpose (bool, optional) – Force whether diffraction intensities need to be transposed.

	force_com_shifts (sequence of tuples of ndarrays (CoMx, CoMy)) – Amplitudes come from diffraction patterns shifted with
the CoM in the upper left corner for each probe unless
shift is overwritten.

	force_scan_sampling (float, optional) – Override DataCube real space scan pixel size calibrations, in Angstrom

	force_angular_sampling (float, optional) – Override DataCube reciprocal pixel size calibration, in mrad

	force_reciprocal_sampling (float, optional) – Override DataCube reciprocal pixel size calibration, in A^-1

	object_fov_mask (np.ndarray (boolean)) – Boolean mask of FOV. Used to calculate additional shrinkage of object
If None, probe_overlap intensity is thresholded

	crop_patterns (bool) – if True, crop patterns to avoid wrap around of patterns when centering

	Returns:

	self – Self to accommodate chaining

	Return type:

	PtychographicReconstruction

	
reconstruct(max_iter: int = 64, reconstruction_method: str = 'gradient-descent', reconstruction_parameter: float = 1.0, reconstruction_parameter_a: float | None = None, reconstruction_parameter_b: float | None = None, reconstruction_parameter_c: float | None = None, max_batch_size: int | None = None, seed_random: int | None = None, step_size: float = 0.5, normalization_min: float = 1, positions_step_size: float = 0.9, pure_phase_object_iter: int = 0, fix_com: bool = True, fix_probe_iter: int = 0, warmup_iter: int = 0, fix_probe_aperture_iter: int = 0, constrain_probe_amplitude_iter: int = 0, constrain_probe_amplitude_relative_radius: float = 0.5, constrain_probe_amplitude_relative_width: float = 0.05, constrain_probe_fourier_amplitude_iter: int = 0, constrain_probe_fourier_amplitude_max_width_pixels: float = 3.0, constrain_probe_fourier_amplitude_constant_intensity: bool = False, fix_positions_iter: int = inf, constrain_position_distance: float | None = None, global_affine_transformation: bool = True, gaussian_filter_sigma_e: float | None = None, gaussian_filter_sigma_m: float | None = None, gaussian_filter_iter: int = inf, fit_probe_aberrations_iter: int = 0, fit_probe_aberrations_max_angular_order: int = 4, fit_probe_aberrations_max_radial_order: int = 4, butterworth_filter_iter: int = inf, q_lowpass_e: float | None = None, q_lowpass_m: float | None = None, q_highpass_e: float | None = None, q_highpass_m: float | None = None, butterworth_order: float = 2, tv_denoise_iter: int = inf, tv_denoise_weight: float | None = None, tv_denoise_inner_iter: float = 40, object_positivity: bool = True, shrinkage_rad: float = 0.0, fix_potential_baseline: bool = True, switch_object_iter: int = inf, store_iterations: bool = False, progress_bar: bool = True, reset: bool | None = None)

	Ptychographic reconstruction main method.

	Parameters:

	
	max_iter (int, optional) – Maximum number of iterations to run

	reconstruction_method (str, optional) – Specifies which reconstruction algorithm to use, one of:
“generalized-projections”,
“DM_AP” (or “difference-map_alternating-projections”),
“RAAR” (or “relaxed-averaged-alternating-reflections”),
“RRR” (or “relax-reflect-reflect”),
“SUPERFLIP” (or “charge-flipping”), or
“GD” (or “gradient_descent”)

	reconstruction_parameter (float, optional) – Reconstruction parameter for various reconstruction methods above.

	reconstruction_parameter_a (float, optional) – Reconstruction parameter a for reconstruction_method=’generalized-projections’.

	reconstruction_parameter_b (float, optional) – Reconstruction parameter b for reconstruction_method=’generalized-projections’.

	reconstruction_parameter_c (float, optional) – Reconstruction parameter c for reconstruction_method=’generalized-projections’.

	max_batch_size (int, optional) – Max number of probes to update at once

	seed_random (int, optional) – Seeds the random number generator, only applicable when max_batch_size is not None

	step_size (float, optional) – Update step size

	normalization_min (float, optional) – Probe normalization minimum as a fraction of the maximum overlap intensity

	positions_step_size (float, optional) – Positions update step size

	pure_phase_object_iter (float, optional) – Number of iterations where object amplitude is set to unity

	fix_com (bool, optional) – If True, fixes center of mass of probe

	fix_probe_iter (int, optional) – Number of iterations to run with a fixed probe before updating probe estimate

	fix_probe_aperture_iter (int, optional) – Number of iterations to run with a fixed probe Fourier amplitude before updating probe estimate

	constrain_probe_amplitude_iter (int, optional) – Number of iterations to run while constraining the real-space probe with a top-hat support.

	constrain_probe_amplitude_relative_radius (float) – Relative location of top-hat inflection point, between 0 and 0.5

	constrain_probe_amplitude_relative_width (float) – Relative width of top-hat sigmoid, between 0 and 0.5

	constrain_probe_fourier_amplitude_iter (int, optional) – Number of iterations to run while constraining the Fourier-space probe by fitting a sigmoid for each angular frequency.

	constrain_probe_fourier_amplitude_max_width_pixels (float) – Maximum pixel width of fitted sigmoid functions.

	constrain_probe_fourier_amplitude_constant_intensity (bool) – If True, the probe aperture is additionally constrained to a constant intensity.

	fix_positions_iter (int, optional) – Number of iterations to run with fixed positions before updating positions estimate

	constrain_position_distance (float) – Distance to constrain position correction within original
field of view in A

	global_affine_transformation (bool, optional) – If True, positions are assumed to be a global affine transform from initial scan

	gaussian_filter_sigma_e (float) – Standard deviation of gaussian kernel for electrostatic object in A

	gaussian_filter_sigma_m (float) – Standard deviation of gaussian kernel for magnetic object in A

	gaussian_filter_iter (int, optional) – Number of iterations to run using object smoothness constraint

	fit_probe_aberrations_iter (int, optional) – Number of iterations to run while fitting the probe aberrations to a low-order expansion

	fit_probe_aberrations_max_angular_order (bool) – Max angular order of probe aberrations basis functions

	fit_probe_aberrations_max_radial_order (bool) – Max radial order of probe aberrations basis functions

	butterworth_filter_iter (int, optional) – Number of iterations to run using high-pass butteworth filter

	q_lowpass_e (float) – Cut-off frequency in A^-1 for low-pass filtering electrostatic object

	q_lowpass_m (float) – Cut-off frequency in A^-1 for low-pass filtering magnetic object

	q_highpass_e (float) – Cut-off frequency in A^-1 for high-pass filtering electrostatic object

	q_highpass_m (float) – Cut-off frequency in A^-1 for high-pass filtering magnetic object

	butterworth_order (float) – Butterworth filter order. Smaller gives a smoother filter

	tv_denoise_iter (int, optional) – Number of iterations to run using tv denoise filter on object

	tv_denoise_weight (float) – Denoising weight. The greater weight, the more denoising.

	tv_denoise_inner_iter (float) – Number of iterations to run in inner loop of TV denoising

	object_positivity (bool, optional) – If True, forces object to be positive

	shrinkage_rad (float) – Phase shift in radians to be subtracted from the potential at each iteration

	fix_potential_baseline (bool) – If true, the potential mean outside the FOV is forced to zero at each iteration

	switch_object_iter (int, optional) – Iteration to switch object type between ‘complex’ and ‘potential’ or between
‘potential’ and ‘complex’

	store_iterations (bool, optional) – If True, reconstructed objects and probes are stored at each iteration

	progress_bar (bool, optional) – If True, reconstruction progress is displayed

	reset (bool, optional) – If True, previous reconstructions are ignored

	Returns:

	self – Self to accommodate chaining

	Return type:

	PtychographicReconstruction

	
visualize(fig=None, iterations_grid: Tuple[int, int] | None = None, plot_convergence: bool = True, plot_probe: bool = True, plot_fourier_probe: bool = False, cbar: bool = True, padding: int = 0, **kwargs)

	Displays reconstructed object and probe.

	Parameters:

	
	fig (Figure) – Matplotlib figure to place Gridspec in

	plot_convergence (bool, optional) – If true, the normalized mean squared error (NMSE) plot is displayed

	iterations_grid (Tuple[int,int]) – Grid dimensions to plot reconstruction iterations

	cbar (bool, optional) – If true, displays a colorbar

	plot_probe (bool, optional) – If true, the reconstructed complex probe is displayed

	plot_fourier_probe (bool, optional) – If true, the reconstructed complex Fourier probe is displayed

	padding (int, optional) – Pixels to pad by post rotating-cropping object

	Returns:

	self – Self to accommodate chaining

	Return type:

	PtychographicReconstruction

	
property self_consistency_errors

	Compute the self-consistency errors for each probe position

	
property object_cropped

	Cropped and rotated object

	
py4DSTEM.process.phase.utils.polar_symbols = ('C10', 'C12', 'phi12', 'C21', 'phi21', 'C23', 'phi23', 'C30', 'C32', 'phi32', 'C34', 'phi34', 'C41', 'phi41', 'C43', 'phi43', 'C45', 'phi45', 'C50', 'C52', 'phi52', 'C54', 'phi54', 'C56', 'phi56')

	Symbols for the polar representation of all optical aberrations up to the fifth order.

	
py4DSTEM.process.phase.utils.polar_aliases = {'C5': 'C50', 'Cs': 'C30', 'astigmatism': 'C12', 'astigmatism_angle': 'phi12', 'coma': 'C21', 'coma_angle': 'phi21', 'defocus': 'C10'}

	Aliases for the most commonly used optical aberrations.

	
class py4DSTEM.process.phase.utils.ComplexProbe(energy: float, gpts: Tuple[int, int], sampling: Tuple[float, float], semiangle_cutoff: float = inf, rolloff: float = 2.0, vacuum_probe_intensity: ndarray | None = None, device: str = 'cpu', focal_spread: float = 0.0, angular_spread: float = 0.0, gaussian_spread: float = 0.0, phase_shift: float = 0.0, parameters: Mapping[str, float] | None = None, **kwargs)

	Complex Probe Class.

Simplified version of CTF and Probe from abTEM:
https://github.com/abTEM/abTEM/blob/master/abtem/transfer.py
https://github.com/abTEM/abTEM/blob/master/abtem/waves.py

	Parameters:

	
	energy (float) – The electron energy of the wave functions this contrast transfer function will be applied to [eV].

	semiangle_cutoff (float) – The semiangle cutoff describes the sharp Fourier space cutoff due to the objective aperture [mrad].

	gpts (Tuple[int,int]) – Number of grid points describing the wave functions.

	sampling (Tuple[float,float]) – Lateral sampling of wave functions in Å

	device (str, optional) – Device to perform calculations on. Must be either ‘cpu’ or ‘gpu’

	rolloff (float, optional) – Tapers the cutoff edge over the given angular range [mrad].

	vacuum_probe_intensity (np.ndarray, optional) – Squared of corner-centered aperture amplitude to use, instead of semiangle_cutoff + rolloff

	focal_spread (float, optional) – The 1/e width of the focal spread due to chromatic aberration and lens current instability [Å].

	angular_spread (float, optional) – The 1/e width of the angular deviations due to source size [mrad].

	gaussian_spread (float, optional) – The 1/e width image deflections due to vibrations and thermal magnetic noise [Å].

	phase_shift (float, optional) – A constant phase shift [radians].

	parameters (dict, optional) – Mapping from aberration symbols to their corresponding values. All aberration magnitudes should be given in Å
and angles should be given in radians.

	kwargs – Provide the aberration coefficients as keyword arguments.

	
__init__(energy: float, gpts: Tuple[int, int], sampling: Tuple[float, float], semiangle_cutoff: float = inf, rolloff: float = 2.0, vacuum_probe_intensity: ndarray | None = None, device: str = 'cpu', focal_spread: float = 0.0, angular_spread: float = 0.0, gaussian_spread: float = 0.0, phase_shift: float = 0.0, parameters: Mapping[str, float] | None = None, **kwargs)

	

	
set_parameters(parameters: dict)

	Set the phase of the phase aberration.
:param parameters: Mapping from aberration symbols to their corresponding values.
:type parameters: dict

	
polar_coordinates(x, y)

	Calculate a polar grid for a given Cartesian grid.

	
build()

	Builds corner-centered complex probe in the center of the region of interest.

	
visualize(**kwargs)

	Plots the probe intensity.

	
py4DSTEM.process.phase.utils.spatial_frequencies(gpts: Tuple[int, int], sampling: Tuple[float, float])

	Calculate spatial frequencies of a grid.

	Parameters:

	
	gpts (tuple of int) – Number of grid points.

	sampling (tuple of float) – Sampling of the potential [1 / Å].

	Return type:

	tuple of arrays

	
py4DSTEM.process.phase.utils.fourier_translation_operator(positions: ~numpy.ndarray, shape: tuple, xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>) → ndarray

	Create an array representing one or more phase ramp(s) for shifting another array.

	Parameters:

	
	positions (array of xy-positions) – Positions to calculate fourier translation operators for

	shape (two int) – Array dimensions to be fourier-shifted

	xp (Callable) – Array computing module

	Return type:

	Fourier translation operators

	
py4DSTEM.process.phase.utils.fft_shift(array, positions, xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	Fourier-shift array using positions.

	Parameters:

	
	array (np.ndarray) – Array to be shifted

	positions (array of xy-positions) – Positions to fourier-shift array with

	xp (Callable) – Array computing module

	Return type:

	Fourier-shifted array

	
py4DSTEM.process.phase.utils.subdivide_into_batches(num_items: int, num_batches: int | None = None, max_batch: int | None = None)

	Split an n integer into m (almost) equal integers, such that the sum of smaller integers equals n.

	Parameters:

	
	n (int) – The integer to split.

	m (int) – The number integers n will be split into.

	Return type:

	list of int

	
class py4DSTEM.process.phase.utils.AffineTransform(scale0: float = 1.0, scale1: float = 1.0, shear1: float = 0.0, angle: float = 0.0, t0: float = 0.0, t1: float = 0.0, dilation: float = 1.0)

	Affine Transform Class.

Simplified version of AffineTransform from tike:
https://github.com/AdvancedPhotonSource/tike/blob/f9004a32fda5e49fa63b987e9ffe3c8447d59950/src/tike/ptycho/position.py

AffineTransform() -> Identity

	Parameters:

	
	scale0 (float) – x-scaling

	scale1 (float) – y-scaling

	shear1 (float) – gamma shear

	angle (float) – theta rotation angle

	t0 (float) – x-translation

	t1 (float) – y-translation

	dilation (float) – Isotropic expansion (multiplies scale0 and scale1)

	
__init__(scale0: float = 1.0, scale1: float = 1.0, shear1: float = 0.0, angle: float = 0.0, t0: float = 0.0, t1: float = 0.0, dilation: float = 1.0)

	

	
classmethod fromarray(T: ndarray)

	Return an Affine Transfrom from a 2x2 matrix.
Use decomposition method from Graphics Gems 2 Section 7.1

	
asarray()

	Return an 2x2 matrix of scale, shear, rotation.
This matrix is scale @ shear @ rotate from left to right.

	
asarray3()

	Return an 3x2 matrix of scale, shear, rotation, translation.
This matrix is scale @ shear @ rotate from left to right.
Expects a homogenous (z) coordinate of 1.

	
astuple()

	Return the constructor parameters in a tuple.

	
py4DSTEM.process.phase.utils.estimate_global_transformation(positions0: ~numpy.ndarray, positions1: ~numpy.ndarray, origin: ~typing.Tuple[int, int] = (0, 0), translation_allowed: bool = True, xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	Use least squares to estimate the global affine transformation.

	
py4DSTEM.process.phase.utils.estimate_global_transformation_ransac(positions0: ~numpy.ndarray, positions1: ~numpy.ndarray, origin: ~typing.Tuple[int, int] = (0, 0), translation_allowed: bool = True, min_sample: int = 64, max_error: float = 16, min_consensus: float = 0.75, max_iter: int = 20, xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	Use RANSAC to estimate the global affine transformation.

	
py4DSTEM.process.phase.utils.fourier_ring_correlation(image_1, image_2, pixel_size=None, bin_size=None, sigma=None, align_images=False, upsample_factor=8, device='cpu', plot_frc=True, frc_color='red', half_bit_color='blue')

	Computes fourier ring correlation (FRC) of 2 arrays.
Arrays must bet the same size.

	Parameters
	

	image1: ndarray
	first image for FRC

	image2: ndarray
	second image for FRC

	pixel_size: tuple
	size of pixels in A (x,y)

	bin_size: float, optional
	size of bins for ring profile

	sigma: float, optional
	standard deviation for Gaussian kernel

	align_images: bool
	if True, aligns images using DFT upsampling of cross correlation.

	upsample factor: int
	if align_images, upsampling for correlation. Must be greater than 2.

	device: str, optional
	calculation device will be perfomed on. Must be ‘cpu’ or ‘gpu’

	plot_frc: bool, optional
	if True, plots frc

	frc_color: str, optional
	color of FRC line in plot

	half_bit_color: str, optional
	color of half-bit line

	Returns:

	
	q_frc (ndarray) – spatial frequencies of FRC

	frc (ndarray) – fourier ring correlation

	half_bit (ndarray) – half-bit criteria

	
py4DSTEM.process.phase.utils.return_1D_profile(intensity, pixel_size=None, bin_size=None, sigma=None, device='cpu')

	Return 1D radial profile from corner centered array

	Parameters
	

	intensity: ndarray
	Array for computing 1D profile

	pixel_size: tuple
	Size of pixels in A (x,y)

	bin_size: float, optional
	Size of bins for ring profile

	sigma: float, optional
	standard deviation for Gaussian kernel

	device: str, optional
	calculation device will be perfomed on. Must be ‘cpu’ or ‘gpu’

	Returns:

	
	q_bins (ndarray) – spatial frequencies of bins

	I_bins (ndarray) – Intensity of bins

	n (ndarray) – Number of pixels in each bin

	
py4DSTEM.process.phase.utils.fourier_rotate_real_volume(array, angle, axes=(0, 1), xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	Rotates a 3D array using three Fourier-based shear operators.

	Parameters
	

	array: ndarray
	3D array to rotate

	angle: float
	Angle in deg to rotate array by

	axes: tuple, Optional
	Axes defining plane in which to rotate about

	xp: Callable, optional
	Array computing module

	Returns:

	output_arr – Fourier-rotated array

	Return type:

	ndarray

	
py4DSTEM.process.phase.utils.compute_divergence(vector_field, spacings, xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	Computes divergence of vector_field

	
py4DSTEM.process.phase.utils.compute_gradient(scalar_field, spacings, xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	Computes gradient of scalar_field

	
py4DSTEM.process.phase.utils.array_slice(axis, ndim, start, end, step=1)

	Returns array slice along dynamic axis

	
py4DSTEM.process.phase.utils.make_array_rfft_compatible(array_nd, axis=0, xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	Expand array to be rfft compatible

	
py4DSTEM.process.phase.utils.dst_I(array_nd, xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	1D rfft-based DST-I

	
py4DSTEM.process.phase.utils.idst_I(array_nd, xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	1D rfft-based iDST-I

	
py4DSTEM.process.phase.utils.preconditioned_laplacian(num_exterior, spacing=1, xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	DST-I eigenvalues

	
py4DSTEM.process.phase.utils.preconditioned_poisson_solver(rhs_interior, spacing=1, xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	DST-I based poisson solver

	
py4DSTEM.process.phase.utils.project_vector_field_divergence(vector_field, spacings=(1, 1, 1), xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	Returns solenoidal part of vector field using projection:

f - grad{p}
s.t. laplacian{p} = div{f}

	
py4DSTEM.process.phase.utils.cartesian_to_polar_transform_2Ddata(im_cart, xy_center, num_theta_bins=90, radius_max=None, corner_centered=False, xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	Quick cartesian to polar conversion.

	
py4DSTEM.process.phase.utils.polar_to_cartesian_transform_2Ddata(im_polar, xy_size, xy_center, corner_centered=False, xp=<module 'numpy' from '/home/docs/checkouts/readthedocs.org/user_builds/py4dstem/envs/stable/lib/python3.10/site-packages/numpy/__init__.py'>)

	Quick polar to cartesian conversion.

	
py4DSTEM.process.phase.utils.regularize_probe_amplitude(probe_init, width_max_pixels=2.0, nearest_angular_neighbor_averaging=5, enforce_constant_intensity=True, corner_centered=False)

	Fits sigmoid for each angular direction.

	Parameters:

	
	probe_init (np.array) – 2D complex image of the probe in Fourier space.

	width_max_pixels (float) – Maximum edge width of the probe in pixels.

	nearest_angular_neighbor_averaging (int) – Number of nearest angular neighbor pixels to average to make aperture less jagged.

	enforce_constant_intensity (bool) – Set to true to make intensity inside the aperture constant.

	corner_centered (bool) – If True, the probe is assumed to be corner-centered

	Returns:

	
	probe_corr (np.ndarray) – 2D complex image of the corrected probe in Fourier space.

	coefs_all (np.ndarray) – coefficients for the sigmoid fits

	
py4DSTEM.process.phase.utils.rotate_point(origin, point, angle)

	Rotate a point (x1, y1) counterclockwise by a given angle around
a given origin (x0, y0).

	Parameters:

	
	origin (2-tuple of floats) – (x0, y0)

	point (2-tuple of floats) – (x1, y1)

	angle (float (radians)) –

	Return type:

	rotated points (2-tuple)

probe

rdf

	
py4DSTEM.process.rdf.amorph.fit_stack(datacube, init_coefs, mask=None)

	This will fit an ellipse using the polar elliptical transform code to all the
diffraction patterns. It will take in a datacube and return a coefficient array which
can then be used to map strain, fit the centers, etc.

	Parameters:

	
	datacute – a datacube of diffraction data

	init_coefs – an initial starting guess for the fit

	mask – a mask, either 2D or 4D, for either one mask for the whole stack, or one
per pattern.

	Returns:

	an array of coefficients of the fit

	
py4DSTEM.process.rdf.amorph.calculate_coef_strain(coef_cube, r_ref)

	This function will calculate the strains from a 3D matrix output by fit_stack

	Coefs order:
	
	I0 the intensity of the first gaussian function

	I1 the intensity of the Janus gaussian

	sigma0 std of first gaussian

	sigma1 inner std of Janus gaussian

	sigma2 outer std of Janus gaussian

	c_bkgd a constant offset

	R center of the Janus gaussian

	x0,y0 the origin

	B,C 1x^2 + Bxy + Cy^2 = 1

	Parameters:

	
	coef_cube – output from fit_stack

	r_ref – a reference 0 strain radius - needed because we fit r as well as B and C

	Returns:

	
	exx: strain in the x axis direction in image coordinates

	eyy: strain in the y axis direction in image coordinates

	exy: shear

	Return type:

	(3-tuple) A 3-tuple containing

	
py4DSTEM.process.rdf.amorph.plot_strains(strains, cmap='RdBu_r', vmin=None, vmax=None, mask=None)

	This function will plot strains with a unified color scale.

	Parameters:

	
	strains (3-tuple of arrays) – (exx, eyy, exy)

	cmap – imshow parameters

	vmin – imshow parameters

	vmax – imshow parameters

	mask – real space mask of values not to show (black)

	
py4DSTEM.process.rdf.amorph.convert_stack_polar(datacube, coef_cube)

	This function will take the coef_cube from fit_stack and apply it to the image stack,
to return polar transformed images.

	Parameters:

	
	datacube – data in datacube format

	coef_cube – coefs from fit_stack

	Returns:

	polar transformed datacube

	
py4DSTEM.process.rdf.amorph.compute_polar_stack_symmetries(datacube_polar)

	This function will take in a datacube of polar-transformed diffraction patterns, and
do the autocorrelation, before taking the fourier transform along the theta
direction, such that symmetries can be measured. They will be plotted by a different
function

	Parameters:

	datacube_polar – diffraction pattern cube that has been polar transformed

	Returns:

	the normalized fft along the theta direction of the autocorrelated patterns in
datacube_polar

	
py4DSTEM.process.rdf.amorph.plot_symmetries(datacube_symmetries, sym_order)

	This function will take in a datacube from compute_polar_stack_symmetries and plot a
specific symmetry order.

	Parameters:

	
	datacube_symmetries – result of compute_polar_stack_symmetries, the stack of
fft’d autocorrelated diffraction patterns

	sym_order – symmetry order desired to plot

	Returns:

	None

	
py4DSTEM.process.rdf.rdf.get_radial_intensity(polar_img, polar_mask)

	Takes in a radial transformed image and the radial mask (if any) applied to that image.
Designed to be compatible with polar-elliptical transforms from utils

	
py4DSTEM.process.rdf.rdf.fit_scattering_factor(scale, elements, composition, q_arr, units)

	Scale is linear factor
Elements is an 1D array of atomic numbers.
Composition is a 1D array, same length as elements, describing the average atomic
composition of the sample. If the Q_coords is a 1D array of Fourier coordinates,
given in inverse Angstroms. Units is a string of ‘VA’ or ‘A’, which returns the
scattering factor in volt angtroms or in angstroms.

	
py4DSTEM.process.rdf.rdf.get_phi(radialIntensity, scatter, q_arr)

	ymean
scale*scatter.fe**2

	
py4DSTEM.process.rdf.rdf.get_mask(left, right, midpoint, slopes, q_arr)

	start is float
stop is float
midpoint is float
slopes is [float,float]

	
py4DSTEM.process.rdf.rdf.get_rdf(phi, q_arr)

	phi can be masked or not masked

utils

	
py4DSTEM.process.utils.cross_correlate.get_cross_correlation(ar, template, corrPower=1, _returnval='real')

	Get the cross/phase/hybrid correlation of ar with template, where
the latter is in real space.

If _returnval is ‘real’, returns the real-valued cross-correlation.
Otherwise, returns the complex valued result.

	
py4DSTEM.process.utils.cross_correlate.get_cross_correlation_FT(ar, template_FT, corrPower=1, _returnval='real')

	Get the cross/phase/hybrid correlation of ar with template_FT, where
the latter is already in Fourier space (i.e. template_FT is
np.conj(np.fft.fft2(template)).

If _returnval is ‘real’, returns the real-valued cross-correlation.
Otherwise, returns the complex valued result.

	
py4DSTEM.process.utils.cross_correlate.get_shift(ar1, ar2, corrPower=1)

	
Determine the relative shift between a pair of arrays giving the best overlap.

Shift determination uses the brightest pixel in the cross correlation, and is

thus limited to pixel resolution. corrPower specifies the cross correlation
power, with 1 corresponding to a cross correlation and 0 a phase correlation.

	Args:
	ar1,ar2 (2D ndarrays):

	corrPower (float between 0 and 1, inclusive): 1=cross correlation, 0=phase
	correlation

	Returns:

	(shiftx,shifty) - the relative image shift, in pixels

	Return type:

	(2-tuple)

	
py4DSTEM.process.utils.cross_correlate.align_images_fourier(G1, G2, upsample_factor, device='cpu')

	Alignment of two images using DFT upsampling of cross correlation.

	Parameters:

	
	G1 (ndarray) – fourier transform of image 1

	G2 (ndarray) – fourier transform of image 2

	upsample_factor (float) – upsampling for correlation. Must be greater than 2.

	device (str, optional) – calculation device will be perfomed on. Must be ‘cpu’ or ‘gpu’

	Returns – xy_shift [pixels]

	
py4DSTEM.process.utils.cross_correlate.align_and_shift_images(image_1, image_2, upsample_factor, device='cpu')

	Alignment of two images using DFT upsampling of cross correlation.

	Parameters:

	
	image_1 (ndarray) – image 1

	image_2 (ndarray) – image 2

	upsample_factor (float) – upsampling for correlation. Must be greater than 2.

	device (str, optional) – calculation device will be perfomed on. Must be ‘cpu’ or ‘gpu’.

	Returns – shifted image [pixels]

Contains functions relating to polar-elliptical calculations.

	This includes
	
	transforming data from cartesian to polar-elliptical coordinates

	converting between ellipse representations

	radial and polar-elliptical radial integration

Functions for measuring/fitting elliptical distortions are found in
process/calibration/ellipse.py. Functions for computing radial and
polar-elliptical radial backgrounds are found in process/preprocess/ellipse.py.

py4DSTEM uses 2 ellipse representations - one user-facing representation, and
one internal representation. The user-facing represenation is in terms of the
following 5 parameters:

x0,y0 the center of the ellipse
a the semimajor axis length
b the semiminor axis length
theta the (positive, right handed) tilt of the a-axis

to the x-axis, in radians

Internally, fits are performed using the canonical ellipse parameterization,
in terms of the parameters (x0,y0,A,B,C):

A(x-x0)^2 + B(x-x0)(y-y0) C(y-y0)^2 = 1

It is possible to convert between (a,b,theta) <–> (A,B,C) using
the convert_ellipse_params() and convert_ellipse_params_r() methods.

Transformation from cartesian to polar-elliptical space is done using

x = x0 + a*r*cos(phi)*cos(theta) + b*r*sin(phi)*sin(theta)
y = y0 + a*r*cos(phi)*sin(theta) - b*r*sin(phi)*cos(theta)

where (r,phi) are the polar-elliptical coordinates. All angular quantities are in
radians.

	
py4DSTEM.process.utils.elliptical_coords.convert_ellipse_params(A, B, C)

	Converts ellipse parameters from canonical form (A,B,C) into semi-axis lengths and
tilt (a,b,theta).
See module docstring for more info.

	Parameters:

	
	A (floats) – parameters of an ellipse in the form:
Ax^2 + Bxy + Cy^2 = 1

	B (floats) – parameters of an ellipse in the form:
Ax^2 + Bxy + Cy^2 = 1

	C (floats) – parameters of an ellipse in the form:
Ax^2 + Bxy + Cy^2 = 1

	Returns:

	A 3-tuple consisting of:

	a: (float) the semimajor axis length

	b: (float) the semiminor axis length

	theta: (float) the tilt of the ellipse semimajor axis with respect to
the x-axis, in radians

	Return type:

	(3-tuple)

	
py4DSTEM.process.utils.elliptical_coords.convert_ellipse_params_r(a, b, theta)

	Converts from ellipse parameters (a,b,theta) to (A,B,C).
See module docstring for more info.

	Parameters:

	
	a (floats) – parameters of an ellipse, where a/b are the
semimajor/semiminor axis lengths, and theta is the tilt of the semimajor axis
with respect to the x-axis, in radians.

	b (floats) – parameters of an ellipse, where a/b are the
semimajor/semiminor axis lengths, and theta is the tilt of the semimajor axis
with respect to the x-axis, in radians.

	theta (floats) – parameters of an ellipse, where a/b are the
semimajor/semiminor axis lengths, and theta is the tilt of the semimajor axis
with respect to the x-axis, in radians.

	Returns:

	
	A 3-tuple consisting of (A,B,C), the ellipse parameters in
	canonical form.

	Return type:

	(3-tuple)

	
py4DSTEM.process.utils.elliptical_coords.cartesian_to_polarelliptical_transform(cartesianData, p_ellipse, dr=1, dphi=0.03490658503988659, r_range=None, mask=None, maskThresh=0.99)

	Transforms an array of data in cartesian coordinates into a data array in
polar-elliptical coordinates.

Discussion of the elliptical parametrization used can be found in the docstring
for the process.utils.elliptical_coords module.

	Parameters:

	
	cartesianData (2D float array) – the data in cartesian coordinates

	p_ellipse (5-tuple) – specifies (qx0,qy0,a,b,theta), the parameters for the
transformation. These are the same 5 parameters which are outputs
of the elliptical fitting functions in the process.calibration
module, e.g. fit_ellipse_amorphous_ring and fit_ellipse_1D. For
more details, see the process.utils.elliptical_coords module docstring

	dr (float) – sampling of the (r,phi) coords: the width of the bins in r

	dphi (float) – sampling of the (r,phi) coords: the width of the bins in phi,
in radians

	r_range (number or length 2 list/tuple or None) – specifies the sampling of the
(r,theta) coords. Precise behavior which depends on the parameter type:

	if None, autoselects max r value

	if r_range is a number, specifies the maximum r value

	if r_range is a length 2 list/tuple, specifies the min/max r values

	mask (2d array of bools) – shape must match cartesianData; where mask==False,
ignore these datapoints in making the polarElliptical data array

	maskThresh (float) – the final data mask is calculated by converting mask (above)
from cartesian to polar elliptical coords. Due to interpolation, this
results in some non-boolean values - this is converted back to a boolean
array by taking polarEllipticalMask = polarTrans(mask) < maskThresh. Cells
where polarTrans is less than 1 (i.e. has at least one masked NN) should
generally be masked, hence the default value of 0.99.

	Returns:

	A 3-tuple, containing:

	polarEllipticalData: (2D masked array) a masked array containing
the data and the data mask, in polarElliptical coordinates

	rr: (2D array) meshgrid of the r coordinates

	pp: (2D array) meshgrid of the phi coordinates

	Return type:

	(3-tuple)

	
py4DSTEM.process.utils.elliptical_coords.elliptical_resample_datacube(datacube, p_ellipse, mask=None, maskThresh=0.99)

	Perform elliptic resamplig on each diffraction pattern in a DataCube
Detailed description of the args is found in elliptical_resample.

NOTE: Only use this function if you need to resample the raw data.
If you only need for Bragg disk positions to be corrected, use the
BraggVector calibration routines, as it is much faster to perform
this on the peak positions than the entire datacube.

	
py4DSTEM.process.utils.elliptical_coords.elliptical_resample(data, p_ellipse, mask=None, maskThresh=0.99)

	Resamples data with elliptic distortion to correct distortion of the
input pattern.

Discussion of the elliptical parametrization used can be found in the docstring
for the process.utils.elliptical_coords module.

	Parameters:

	
	data (2D float array) – the data in cartesian coordinates

	p_ellipse (5-tuple) – specifies (qx0,qy0,a,b,theta), the parameters for the
transformation. These are the same 5 parameters which are outputs
of the elliptical fitting functions in the process.calibration
module, e.g. fit_ellipse_amorphous_ring and fit_ellipse_1D. For
more details, see the process.utils.elliptical_coords module docstring

	dr (float) – sampling of the (r,phi) coords: the width of the bins in r

	dphi (float) – sampling of the (r,phi) coords: the width of the bins in phi,
in radians

	r_range (number or length 2 list/tuple or None) – specifies the sampling of the
(r,theta) coords. Precise behavior which depends on the parameter type:

	if None, autoselects max r value

	if r_range is a number, specifies the maximum r value

	if r_range is a length 2 list/tuple, specifies the min/max r values

	mask (2d array of bools) – shape must match cartesianData; where mask==False,
ignore these datapoints in making the polarElliptical data array

	maskThresh (float) – the final data mask is calculated by converting mask (above)
from cartesian to polar elliptical coords. Due to interpolation, this
results in some non-boolean values - this is converted back to a boolean
array by taking polarEllipticalMask = polarTrans(mask) < maskThresh. Cells
where polarTrans is less than 1 (i.e. has at least one masked NN) should
generally be masked, hence the default value of 0.99.

	Returns:

	A 3-tuple, containing:

	resampled_data: (2D masked array) a masked array containing
the data and the data mask, in polarElliptical coordinates

	Return type:

	(3-tuple)

	
py4DSTEM.process.utils.elliptical_coords.radial_elliptical_integral(ar, dr, p_ellipse, rmax=None)

	Computes the radial integral of array ar from center (x0,y0) with a step size in r of
dr.

	Parameters:

	
	ar (2d array) – the data

	dr (number) – the r sampling

	p_ellipse (5-tuple) – the parameters (x0,y0,a,b,theta) for the ellipse

	r_max (float) – maximum radial value

	Returns:

	A 2-tuple containing:

	rbin_centers: (1d array) the bins centers of the radial integral

	radial_integral: (1d array) the radial integral

radial_integral (1d array) the radial integral

	Return type:

	(2-tuple)

	
py4DSTEM.process.utils.elliptical_coords.radial_integral(ar, x0=None, y0=None, dr=0.1, rmax=None)

	Computes the radial integral of array ar from center (x0,y0) with a step size in r of dr.

	Parameters:

	
	ar (2d array) – the data

	x0 (floats) – the origin

	y0 (floats) – the origin

	dr (number) – radial step size

	rmax (float) – maximum radial dimension

	Returns:

	A 2-tuple containing:

	rbin_centers: (1d array) the bins centers of the radial integral

	radial_integral: (1d array) the radial integral

	Return type:

	(2-tuple)

	
py4DSTEM.process.utils.masks.get_beamstop_mask(dp, qx0, qy0, theta, dtheta=1, w=10, r=10)

	Generates a beamstop shaped mask.

	Parameters:

	
	dp (2d array) – a diffraction pattern

	qx0 (numbers) – the center position of the beamstop

	qy0 (numbers) – the center position of the beamstop

	theta (number) – the orientation of the beamstop, in degrees

	dtheta (number) – angular span of the wedge representing the beamstop, in degrees

	w (integer) – half the width of the beamstop arm, in pixels

	r (number) – the radius of a circle at the end of the beamstop, in pixels

	Returns:

	the mask

	Return type:

	(2d boolean array)

	
py4DSTEM.process.utils.masks.make_circular_mask(shape, qxy0, radius)

	Create a hard circular mask, for use in DPC integration or
or to use as a filter in diffraction or real space.

	Parameters:

	
	shape (2-tuple of ints) –

	qxy0 (2-tuple of floats) center coordinates, in pixels. Must be in (row, column) –

	radius (float) –

	Returns:

	mask (2D boolean array) the mask

loosely based on multicorr.py found at:
https://github.com/ercius/openNCEM/blob/master/ncempy/algo/multicorr.py

	modified by SEZ, May 2019 to integrate with py4DSTEM utility functions
	
	rewrote upsampleFFT (previously did not work correctly)

	modified upsampled_correlation to accept xyShift, the point around which to

upsample the DFT
* eliminated the factor-2 FFT upsample step in favor of using parabolic
for first-pass subpixel (since parabolic is so fast)
* rewrote the matrix multiply DFT to be more pythonic

	
py4DSTEM.process.utils.multicorr.upsampled_correlation(imageCorr, upsampleFactor, xyShift, device='cpu')

	Refine the correlation peak of imageCorr around xyShift by DFT upsampling.

There are two approaches to Fourier upsampling for subpixel refinement: (a) one
can pad an (appropriately shifted) FFT with zeros and take the inverse transform,
or (b) one can compute the DFT by matrix multiplication using modified
transformation matrices. The former approach is straightforward but requires
performing the FFT algorithm (which is fast) on very large data. The latter method
trades one speedup for a slowdown elsewhere: the matrix multiply steps are expensive
but we operate on smaller matrices. Since we are only interested in a very small
region of the FT around a peak of interest, we use the latter method to get
a substantial speedup and enormous decrease in memory requirement. This
“DFT upsampling” approach computes the transformation matrices for the matrix-
multiply DFT around a small 1.5px wide region in the original imageCorr.

Following the matrix multiply DFT we use parabolic subpixel fitting to
get even more precision! (below 1/upsampleFactor pixels)

NOTE: previous versions of multiCorr operated in two steps: using the zero-
padding upsample method for a first-pass factor-2 upsampling, followed by the
DFT upsampling (at whatever user-specified factor). I have implemented it
differently, to better support iterating over multiple peaks. The DFT is always
upsampled around xyShift, which MUST be specified to HALF-PIXEL precision
(no more, no less) to replicate the behavior of the factor-2 step.
(It is possible to refactor this so that peak detection is done on a Fourier
upsampled image rather than using the parabolic subpixel and rounding as now…
I like keeping it this way because all of the parameters and logic will be identical
to the other subpixel methods.)

	Parameters:

	
	imageCorr (complex valued ndarray) – Complex product of the FFTs of the two images to be registered
i.e. m = np.fft.fft2(DP) * probe_kernel_FT;
imageCorr = np.abs(m)**(corrPower) * np.exp(1j*np.angle(m))

	upsampleFactor (int) – Upsampling factor. Must be greater than 2. (To do upsampling
with factor 2, use upsampleFFT, which is faster.)

	xyShift – Location in original image coordinates around which to upsample the
FT. This should be given to exactly half-pixel precision to
replicate the initial FFT step that this implementation skips

	Returns:

	Refined location of the peak in image coordinates.

	Return type:

	(2-element np array)

	
py4DSTEM.process.utils.multicorr.upsampleFFT(cc, device='cpu')

	Zero-padding FFT upsampling. Returns the real IFFT of the input with 2x
upsampling. This may have an error for matrices with an odd size. Takes
a complex np array as input.

	
py4DSTEM.process.utils.multicorr.dftUpsample(imageCorr, upsampleFactor, xyShift, device='cpu')

	This performs a matrix multiply DFT around a small neighboring region of the inital
correlation peak. By using the matrix multiply DFT to do the Fourier upsampling, the
efficiency is greatly improved. This is adapted from the subfuction dftups found in
the dftregistration function on the Matlab File Exchange.

https://www.mathworks.com/matlabcentral/fileexchange/18401-efficient-subpixel-image-registration-by-cross-correlation

The matrix multiplication DFT is from:

Manuel Guizar-Sicairos, Samuel T. Thurman, and James R. Fienup, “Efficient subpixel
image registration algorithms,” Opt. Lett. 33, 156-158 (2008).
http://www.sciencedirect.com/science/article/pii/S0045790612000778

	Parameters:

	
	imageCorr (complex valued ndarray) – Correlation image between two images in Fourier space.

	upsampleFactor (int) – Scalar integer of how much to upsample.

	xyShift (list of 2 floats) – Coordinates in the UPSAMPLED GRID around which to upsample.
These must be single-pixel IN THE UPSAMPLED GRID

	Returns:

	Upsampled image from region around correlation peak.

	Return type:

	(ndarray)

	
py4DSTEM.process.utils.utils.radial_reduction(ar, x0, y0, binsize=1, fn=<function mean>, coords=None)

	Evaluate a reduction function on pixels within annular rings centered on (x0,y0),
with a ring width of binsize.

By default, returns the mean value of pixels within each annulus.
Some other useful reductions include: np.sum, np.std, np.count, np.median, …

When running in a loop, pre-compute the pixel coordinates and pass them in
for improved performance, like so:

coords = np.mgrid[0:ar.shape[0],0:ar.shape[1]]
radial_sums = radial_reduction(ar, x0,y0, coords=coords)

	
py4DSTEM.process.utils.utils.sector_mask(shape, centre, radius, angle_range=(0, 360))

	Return a boolean mask for a circular sector. The start/stop angles in
angle_range should be given in clockwise order.

	Parameters:

	
	shape – 2D shape of the mask

	centre – 2D center of the circular sector

	radius – radius of the circular mask

	angle_range – angular range of the circular mask

	
py4DSTEM.process.utils.utils.get_qx_qy_1d(M, dx=[1, 1], fft_shifted=False)

	Generates 1D Fourier coordinates for a (Nx,Ny)-shaped 2D array.
Specifying the dx argument sets a unit size.

	Parameters:

	
	M – (2,) shape of the returned array

	dx – (2,) tuple, pixel size

	fft_shifted – True if result should be fft_shifted to have the origin in the center of the array

	
py4DSTEM.process.utils.utils.make_Fourier_coords2D(Nx, Ny, pixelSize=1)

	
	Generates Fourier coordinates for a (Nx,Ny)-shaped 2D array.
	Specifying the pixelSize argument sets a unit size.

	
py4DSTEM.process.utils.utils.get_CoM(ar, device='cpu', corner_centered=False)

	Finds and returns the center of mass of array ar.
If corner_centered is True, uses fftfreq for indices.

	
py4DSTEM.process.utils.utils.get_maxima_1D(ar, sigma=0, minSpacing=0, minRelativeIntensity=0, relativeToPeak=0)

	Finds the indices where 1D array ar is a local maximum.
Optional parameters allow blurring the array and filtering the output;
setting each to 0 (default) turns off these functions.

	Parameters:

	
	ar (1D array) –

	sigma (number) – gaussian blur std to apply to ar before finding maxima

	minSpacing (number) – if two maxima are found within minSpacing, the dimmer one
is removed

	minRelativeIntensity (number) – maxima dimmer than minRelativeIntensity compared
to the relativeToPeak’th brightest maximum are removed

	relativeToPeak (int) – 0=brightest maximum. 1=next brightest, etc.

	Returns:

	An array of indices where ar is a local maximum, sorted by intensity.

	Return type:

	(array of ints)

	
py4DSTEM.process.utils.utils.linear_interpolation_1D(ar, x)

	Calculates the 1D linear interpolation of array ar at position x using the two
nearest elements.

	
py4DSTEM.process.utils.utils.add_to_2D_array_from_floats(ar, x, y, I)

	Adds the values I to array ar, distributing the value between the four pixels nearest
(x,y) using linear interpolation. Inputs (x,y,I) may be floats or arrays of floats.

Note that if the same [x,y] coordinate appears more than once in the input array,
only the final value of I at that coordinate will get added.

	
py4DSTEM.process.utils.utils.get_voronoi_vertices(voronoi, nx, ny, dist=10)

	From a scipy.spatial.Voronoi instance, return a list of ndarrays, where each array
is shape (N,2) and contains the (x,y) positions of the vertices of a voronoi region.

The problem this function solves is that in a Voronoi instance, some vertices outside
the field of view of the tesselated region are left unspecified; only the existence
of a point beyond the field is referenced (which may or may not be ‘at infinity’).
This function specifies all points, such that the vertices and edges of the
tesselation may be directly laid over data.

	Parameters:

	
	voronoi (scipy.spatial.Voronoi) – the voronoi tesselation

	nx (int) – the x field-of-view of the tesselated region

	ny (int) – the y field-of-view of the tesselated region

	dist (float, optional) – place new vertices by extending new voronoi edges outside
the frame by a distance of this factor times the distance of its known vertex
from the frame edge

	Returns:

	the (x,y) coords of the vertices of each
voronoi region

	Return type:

	(list of ndarrays of shape (N,2))

	
py4DSTEM.process.utils.utils.get_ewpc_filter_function(Q_Nx, Q_Ny)

	Returns a function for computing the exit wave power cepstrum of a diffraction
pattern using a Hanning window. This can be passed as the filter_function in the
Bragg disk detection functions (with the probe an array of ones) to find the lattice
vectors by the EWPC method (but be careful as the lengths are now in realspace
units!) See https://arxiv.org/abs/1911.00984

	
py4DSTEM.process.utils.utils.fourier_resample(array, scale=None, output_size=None, force_nonnegative=False, bandlimit_nyquist=None, bandlimit_power=2, dtype=<class 'numpy.float32'>)

	Resize a 2D array along any dimension, using Fourier interpolation / extrapolation.
For 4D input arrays, only the final two axes can be resized.

The scaling of the array can be specified by passing either scale, which sets
the scaling factor along both axes to be scaled; or by passing output_size,
which specifies the final dimensions of the scaled axes (and allows for different
scaling along the x,y or kx,ky axes.)

	Parameters:

	
	array (2D/4D numpy array) – Input array, or 4D stack of arrays, to be resized.

	scale (float) – scalar value giving the scaling factor for all dimensions

	output_size (2-tuple of ints) – two values giving either the (x,y) output size for 2D, or (kx,ky) for 4D

	force_nonnegative (bool) – Force all outputs to be nonnegative, after filtering

	bandlimit_nyquist (float) – Gaussian filter information limit in Nyquist units (0.5 max in both directions)

	bandlimit_power (float) – Gaussian filter power law scaling (higher is sharper)

	dtype (numpy dtype) – datatype for binned array. default is single precision float

	Returns:

	the resized array (2D/4D numpy array)

virtualdiffraction

virtualimage

wholepatternfit

	
class py4DSTEM.process.wholepatternfit.wp_models.WPFModelType(value)

	Flags to signify capabilities and other semantics of a Model

	
class py4DSTEM.process.wholepatternfit.wp_models.WPFModel(name: str, params: dict, model_type=WPFModelType.DUMMY)

	Prototype class for a compent of a whole-pattern model.
Holds the following:

name: human-readable name of the model
params: a dict of names and initial (or returned) values of the model parameters
func: a function that takes as arguments:

	the diffraction pattern being built up, which the function should modify in place

	positional arguments in the same order as the params dictionary

	
	keyword arguments. this is to provide some pre-computed information for convenience
	
	kwargs will include:
	
	xArray, yArray meshgrid of the x and y coordinates

	global_x0 global x-coordinate of the pattern center

	global_y0 global y-coordinate of the pattern center

	jacobian: a function that takes as arguments:
	
	the diffraction pattern being built up, which the function should modify in place

	positional arguments in the same order as the params dictionary

	
	offset: the first index (j) that values should be written into
	(the function should ONLY write into 0,1, and offset:offset+nParams)
0 and 1 are the entries for global_x0 and global_y0, respectively
REMEMBER TO ADD TO 0 and 1 SINCE ALL MODELS CAN CONTRIBUTE TO THIS PARTIAL DERIVATIVE

	keyword arguments. this is to provide some pre-computed information for convenience

	
__init__(name: str, params: dict, model_type=WPFModelType.DUMMY)

	

	
class py4DSTEM.process.wholepatternfit.wp_models.DCBackground(background_value=0.0, name='DC Background')

	Model representing constant background intensity.

	Parameters:

	background_value – Background intensity value.
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	
__init__(background_value=0.0, name='DC Background')

	

	
class py4DSTEM.process.wholepatternfit.wp_models.GaussianBackground(WPF, sigma, intensity, global_center=True, x0=0.0, y0=0.0, name='Gaussian Background')

	Model representing a 2D Gaussian intensity distribution

	Parameters:

	
	WPF (WholePatternFit) – Parent WPF object

	sigma – parameter specifying width of the Gaussian
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	intensity – parameter specifying intensity of the Gaussian
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	global_center (bool) – If True, uses same center coordinate as the global model
If False, uses an independent center

	x0 – Center coordinates of model for local origin
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	y0 – Center coordinates of model for local origin
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	
__init__(WPF, sigma, intensity, global_center=True, x0=0.0, y0=0.0, name='Gaussian Background')

	

	
class py4DSTEM.process.wholepatternfit.wp_models.GaussianRing(WPF, radius, sigma, intensity, global_center=True, x0=0.0, y0=0.0, name='Gaussian Ring')

	Model representing a halo with Gaussian falloff

	Parameters:

	
	WPF (WholePatternFit) – parent fitting object

	radius – radius of halo
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	sigma – width of Gaussian falloff
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	intensity – Intensity of the halo
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	global_center (bool) – If True, uses same center coordinate as the global model
If False, uses an independent center

	x0 – Center coordinates of model for local origin
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	y0 – Center coordinates of model for local origin
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	
__init__(WPF, radius, sigma, intensity, global_center=True, x0=0.0, y0=0.0, name='Gaussian Ring')

	

	
class py4DSTEM.process.wholepatternfit.wp_models.SyntheticDiskLattice(WPF, ux: float, uy: float, vx: float, vy: float, disk_radius: float, disk_width: float, u_max: int, v_max: int, intensity_0: float, refine_radius: bool = False, refine_width: bool = False, global_center: bool = True, x0: float = 0.0, y0: float = 0.0, exclude_indices: list = [], include_indices: list | None = None, name='Synthetic Disk Lattice', verbose=False)

	Model representing a lattice of diffraction disks with a soft edge

	Parameters:

	
	WPF (WholePatternFit) – parent fitting object

	ux – x and y components of the lattice vectors u and v.
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	uy – x and y components of the lattice vectors u and v.
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	vx – x and y components of the lattice vectors u and v.
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	vy – x and y components of the lattice vectors u and v.
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	disk_radius – Radius of each diffraction disk.
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	disk_width – Width of the smooth falloff at the edge of the disk
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	u_max – Maximum lattice indices to include in the pattern.
Disks outside the pattern are automatically clipped.

	v_max – Maximum lattice indices to include in the pattern.
Disks outside the pattern are automatically clipped.

	intensity_0 – Initial intensity for each diffraction disk.
Each disk intensity is an independent fit variable in the final model
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	refine_radius (bool) – Flag whether disk radius is made a fitting parameter

	refine_width (bool) – Flag whether disk edge width is made a fitting parameter

	global_center (bool) – If True, uses same center coordinate as the global model
If False, uses an independent center

	x0 – Center coordinates of model for local origin
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	y0 – Center coordinates of model for local origin
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	exclude_indices (list) – Indices to exclude from the pattern

	include_indices (list) – If specified, only the indices in the list are added to the pattern

	
__init__(WPF, ux: float, uy: float, vx: float, vy: float, disk_radius: float, disk_width: float, u_max: int, v_max: int, intensity_0: float, refine_radius: bool = False, refine_width: bool = False, global_center: bool = True, x0: float = 0.0, y0: float = 0.0, exclude_indices: list = [], include_indices: list | None = None, name='Synthetic Disk Lattice', verbose=False)

	

	
class py4DSTEM.process.wholepatternfit.wp_models.SyntheticDiskMoire(WPF, lattice_a: SyntheticDiskLattice, lattice_b: SyntheticDiskLattice, intensity_0: float, decorated_peaks: list | None = None, link_moire_disk_intensities: bool = False, link_disk_parameters: bool = True, refine_width: bool = True, edge_width: list | None = None, refine_radius: bool = True, disk_radius: list | None = None, name: str = 'Moire Lattice')

	Model of diffraction disks arising from interference between two lattices.

The Moire unit cell is determined automatically using the two input lattices.

	Parameters:

	
	WPF (WholePatternFit) – parent fitting object

	lattice_a (SyntheticDiskLattice) – parent lattices for the Moire

	lattice_b (SyntheticDiskLattice) – parent lattices for the Moire

	intensity_0 – Initial guess of Moire disk intensity
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	decorated_peaks (list) – When specified, only the reflections in the list are decorated with Moire spots
If not specified, all peaks are decorated

	link_moire_disk_intensities (bool) – When False, each Moire disk has an independently fit intensity
When True, Moire disks arising from the same order of parent reflection share
the same intensity

	link_disk_parameters (bool) – When True, edge_width and disk_radius are inherited from lattice_a

	refine_width (bool) – Flag whether disk edge width is a fit variable

	edge_width – Width of the soft edge of the diffraction disk.
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	refine_radius (bool) – Flag whether disk radius is a fit variable

	radius (disk) – Radius of the diffraction disks
Specified as initial_value, (initial_value, deviation), or

(initial_value, lower_bound, upper_bound). See
Parameter documentation for details.

	
__init__(WPF, lattice_a: SyntheticDiskLattice, lattice_b: SyntheticDiskLattice, intensity_0: float, decorated_peaks: list | None = None, link_moire_disk_intensities: bool = False, link_disk_parameters: bool = True, refine_width: bool = True, edge_width: list | None = None, refine_radius: bool = True, disk_radius: list | None = None, name: str = 'Moire Lattice')

	

	
class py4DSTEM.process.wholepatternfit.wp_models.ComplexOverlapKernelDiskLattice(WPF, probe_kernel: ndarray, ux: float, uy: float, vx: float, vy: float, u_max: int, v_max: int, intensity_0: float, exclude_indices: list = [], global_center: bool = True, x0=0.0, y0=0.0, name='Complex Overlapped Disk Lattice', verbose=False)

	
	
__init__(WPF, probe_kernel: ndarray, ux: float, uy: float, vx: float, vy: float, u_max: int, v_max: int, intensity_0: float, exclude_indices: list = [], global_center: bool = True, x0=0.0, y0=0.0, name='Complex Overlapped Disk Lattice', verbose=False)

	

	
class py4DSTEM.process.wholepatternfit.wp_models.KernelDiskLattice(WPF, probe_kernel: ndarray, ux: float, uy: float, vx: float, vy: float, u_max: int, v_max: int, intensity_0: float, exclude_indices: list = [], global_center: bool = True, x0=0.0, y0=0.0, name='Custom Kernel Disk Lattice', verbose=False)

	
	
__init__(WPF, probe_kernel: ndarray, ux: float, uy: float, vx: float, vy: float, u_max: int, v_max: int, intensity_0: float, exclude_indices: list = [], global_center: bool = True, x0=0.0, y0=0.0, name='Custom Kernel Disk Lattice', verbose=False)

	

	
py4DSTEM.process.wholepatternfit.wpf_viz.show_lattice_points(self, im=None, vmin=None, vmax=None, power=None, show_vectors=True, crop_to_pattern=False, returnfig=False, moire_origin_idx=[0, 0, 0, 0], *args, **kwargs)

	Plotting utility to show the initial lattice points.

	Parameters:

	
	im (np.ndarray) – Optional: Image to show, defaults to mean CBED

	vmin (float) – Intensity ranges for plotting im

	vmax (float) – Intensity ranges for plotting im

	power (float) – Gamma level for showing im

	show_vectors (bool) – Flag to plot the lattice vectors

	crop_to_pattern (bool) – Flag to limit the field of view to the pattern area. If False,
spots outside the pattern are shown

	returnfig (bool) – If True, (fig,ax) are returned and plt.show() is not called

	moire_origin_idx (list of length 4) – Indices of peak on which to draw Moire vectors, written as
[a_u, a_v, b_u, b_v]

	args – Passed to plt.subplots

	kwargs – Passed to plt.subplots

	Returns:

	fig,ax

	Return type:

	If returnfig=True

visualize

Table of Contents

	visualize

	show

	overlay

	virtualimage

	vis_RQ

	vis_grid

	vis_special

show

	
py4DSTEM.visualize.show(ar, figsize=(5, 5), cmap='gray', scaling='none', intensity_range='ordered', clipvals=None, vmin=None, vmax=None, min=None, max=None, power=None, power_offset=True, combine_images=False, ticks=True, bordercolor=None, borderwidth=5, show_image=True, return_ar_scaled=False, return_intensity_range=False, returncax=False, returnfig=False, figax=None, hist=False, n_bins=256, mask=None, mask_color='k', mask_alpha=0.0, masked_intensity_range=False, rectangle=None, circle=None, annulus=None, ellipse=None, points=None, grid_overlay=None, cartesian_grid=None, polarelliptical_grid=None, rtheta_grid=None, scalebar=None, calibration=None, rx=None, ry=None, space='Q', pixelsize=None, pixelunits=None, x0=None, y0=None, a=None, e=None, theta=None, title=None, show_fft=False, show_cbar=False, **kwargs)

	General visualization function for 2D arrays.

The simplest use of this function is:

>>> show(ar)

which will generate and display a matplotlib figure showing the 2D array ar.
Additional functionality includes:

	scaling the image (log scaling, power law scaling)

	displaying the image histogram

	altering the histogram clip values

	masking some subset of the image

	setting the colormap

	adding geometric overlays (e.g. points, circles, rectangles, annuli)

	adding informational overlays (scalebars, coordinate grids, oriented axes or
vectors)

	further customization tools

These are each discussed in turn below.

	Scaling:
	Setting the parameter scaling will scale the display image. Options are
‘none’, ‘auto’, ‘power’, or ‘log’. If ‘power’ is specified, the parameter power must
also be passed. The underlying data is not altered. Values less than or equal to
zero are set to zero. If the image histogram is displayed using hist=True,
the scaled image histogram is shown.

Examples:

>>> show(ar,scaling='log')
>>> show(ar,power=0.5)
>>> show(ar,scaling='power',power=0.5,hist=True)

	Histogram:
	Setting the argument hist=True will display the image histogram, instead of
the image. The displayed histogram will reflect any scaling requested. The number
of bins can be set with n_bins. The upper and lower clip values, indicating
where the image display will be saturated, are shown with dashed lines.

	Intensity range:
	Controlling the lower and upper values at which the display image will be
saturated is accomplished with the intensity_range parameter, or its
(soon deprecated) alias clipvals, in combination with vmin,
and vmax. The method by which the upper and lower clip values
are determined is controlled by intensity_range, and must be a string in
(‘None’,’ordered’,’minmax’,’absolute’,’std’,’centered’). See the argument
description for intensity_range for a description of the behavior for each.
The clip values can be returned with the return_intensity_range parameter.

	Masking:
	If a numpy masked array is passed to show, the function will automatically
mask the appropriate pixels. Alternatively, a boolean array of the same shape as
the data array may be passed to the mask argument, and these pixels will be
masked. Masked pixels are displayed as a single uniform color, black by default,
and which can be specified with the mask_color argument. Masked pixels
are excluded when displaying the histogram or computing clip values. The mask
can also be blended with the hidden data by setting the mask_alpha argument.

	Overlays (geometric):
	The function natively supports overlaying points, circles, rectangles, annuli,
and ellipses. Each is invoked by passing a dictionary to the appropriate input
variable specifying the geometry and features of the requested overlay. For
example:

>>> show(ar, rectangle={'lims':(10,20,10,20),'color':'r'})

will overlay a single red square, and

>>> show(ar, annulus={'center':[(28,68),(92,160)],
 'radii':[(16,24),(12,36)],
 'fill':True,
 'alpha':[0.9,0.3],
 'color':['r',(0,1,1,1)]})

will overlay two annuli with two different centers, radii, colors, and
transparencies. For a description of the accepted dictionary parameters
for each type of overlay, see the visualize functions add_*, where
* = (‘rectangle’,’circle’,’annulus’,’ellipse’,’points’). (These docstrings
are under construction!)

	Overlays (informational):
	Informational overlays supported by this function include coordinate axes
(cartesian, polar-elliptical, or r-theta) and scalebars. These are added
by passing the appropriate input argument a dictionary of the desired
parameters, as with geometric overlays. However, there are two key differences
between these overlays and the geometric overlays. First, informational
overlays (coordinate systems and scalebars) require information about the
plot - e.g. the position of the origin, the pixel sizes, the pixel units,
any elliptical distortions, etc. The easiest way to pass this information
is by pass a Calibration object containing this info to show as the
keyword calibration. Second, once the coordinate information has been
passed, informational overlays can autoselect their own parameters, thus simply
passing an empty dict to one of these parameters will add that overlay.

For example:

>>> show(dp, scalebar={}, calibration=calibration)

will display the diffraction pattern dp with a scalebar overlaid in the
bottom left corner given the pixel size and units described in calibration,
and

>>> show(dp, calibration=calibration, scalebar={'length':0.5,'width':2,
 'position':'ul','label':True'})

will display a more customized scalebar.

When overlaying coordinate grids, it is important to note that some relevant
parameters, e.g. the position of the origin, may change by scan position.
In these cases, the parameters rx,``ry`` must also be passed to show,
to tell the Calibration object where to look for the relevant parameters.
For example:

>>> show(dp, cartesian_grid={}, calibration=calibration, rx=2,ry=5)

will overlay a cartesian coordinate grid on the diffraction pattern at scan
position (2,5). Adding

>>> show(dp, calibration=calibration, rx=2, ry=5, cartesian_grid={'label':True,
 'alpha':0.7,'color':'r'})

will customize the appearance of the grid further. And

>>> show(im, calibration=calibration, cartesian_grid={}, space='R')

displays a cartesian grid over a real space image. For more details, see the
documentation for the visualize functions add_*, where * = (‘scalebar’,
‘cartesian_grid’, ‘polarelliptical_grid’, ‘rtheta_grid’). (Under construction!)

	Further customization:
	Most parameters accepted by a matplotlib axis will be accepted by show.
Pass a valid matplotlib colormap or a known string indicating a colormap
as the argument cmap to specify the colormap. Pass figsize to
specify the figure size. Etc.

Further customization can be accomplished by either (1) returning the figure
generated by show and then manipulating it using the normal matplotlib
functions, or (2) generating a matplotlib Figure with Axes any way you like
(e.g. with plt.subplots) and then using this function to plot inside a
single one of the Axes of your choice.

Option (1) is accomplished by simply passing this function returnfig=True.
Thus:

>>> fig,ax = show(ar, returnfig=True)

will now give you direct access to the figure and axes to continue to alter.
Option (2) is accomplished by passing an existing figure and axis to show
as a 2-tuple to the figax argument. Thus:

>>> fig,(ax1,ax2) = plt.subplots(1,2)
>>> show(ar, figax=(fig,ax1))
>>> show(ar, figax=(fig,ax2), hist=True)

will generate a 2-axis figure, and then plot the array ar as an image on
the left, while plotting its histogram on the right.

	Parameters:

	
	ar (2D array or a list of 2D arrays) – the data to plot. Normally this
is a 2D array of the data. If a list of 2D arrays is passed, plots
a corresponding grid of images.

	figsize (2-tuple) – size of the plot

	cmap (colormap) – any matplotlib cmap; default is gray

	scaling (str) – selects a scaling scheme for the intensity values. Default is
none. Accepted values:

	’none’: do not scale intensity values

	’full’: fill entire color range with sorted intensity values

	’power’: power law scaling

	’log’: values where ar<=0 are set to 0

	intensity_range (str) –
	method for setting clipvalues (min and max intensities).
	The original name “clipvals” is now deprecated.
Default is ‘ordered’. Accepted values:

	’ordered’: vmin/vmax are set to fractions of the
distribution of pixel values in the array, e.g. vmin=0.02
will set the minumum display value to saturate the lower 2% of pixels

	’minmax’: The vmin/vmax values are np.min(ar)/np.max(r)

	’absolute’: The vmin/vmax values are set to the values of
the vmin,vmax arguments received by this function

	
	’std’: The vmin/vmax values are np.median(ar) -/+ N*np.std(ar), and
	N is this functions min,max vals.

	’centered’: The vmin/vmax values are set to c -/+ m, where by default
‘c’ is zero and m is the max(abs(ar-c), or the two params can be user
specified using the kwargs vmin/vmax -> c/m.

	vmin (number) – min intensity, behavior depends on clipvals

	vmax (number) – max intensity, behavior depends on clipvals

	min – alias’ for vmin,vmax, throws deprecation warning

	max – alias’ for vmin,vmax, throws deprecation warning

	power (number) – specifies the scaling power

	power_offset (bool) – If true, image has min value subtracted before power scaling

	ticks (bool) – Turn outer tick marks on or off

	bordercolor (color or None) – if not None, add a border of this color.
The color can be anything matplotlib recognizes as a color.

	borderwidth (number) –

	returnfig (bool) – if True, the function returns the tuple (figure,axis)

	figax (None or 2-tuple) – controls which matplotlib Axes object draws the image.
If None, generates a new figure with a single Axes instance. Otherwise, ax
must be a 2-tuple containing the matplotlib class instances (Figure,Axes),
with ar then plotted in the specified Axes instance.

	hist (bool) – if True, instead of plotting a 2D image in ax, plots a histogram of
the intensity values of ar, after any scaling this function has performed.
Plots the clipvals as dashed vertical lines

	n_bins (int) – number of hist bins

	mask (None or boolean array) – if not None, must have the same shape as ‘ar’.
Wherever mask==True, plot the pixel normally, and where mask==False,
pixel values are set to mask_color. If hist==True, ignore these values in the
histogram. If mask_alpha is specified, the mask is blended with the array
underneath, with 0 yielding an opaque mask and 1 yielding a fully transparent
mask. If mask_color is set to 'empty' instead of a matplotlib.color,
nothing is done to pixels where mask==False, allowing overlaying multiple
arrays in different regions of an image by invoking the ``figax` kwarg over
multiple calls to show

	mask_color (color) – see ‘mask’

	mask_alpha (float) – see ‘mask’

	masked_intensity_range (bool) – controls if masked pixel values are included when
determining the display value range; False indicates that all pixel values
will be used to determine the intensity range, True indicates only unmasked
pixels will be used

	scalebar (None or dict or Bool) – if None, and a DiffractionSlice or RealSlice
with calibrations is passed, adds a scalebar. If scalebar is not displaying the proper
calibration, check .calibration pixel_size and pixel_units. If None and an array is passed,
does not add a scalebar. If a dict is passed, it is propagated to the add_scalebar function
which will attempt to use it to overlay a scalebar. If True, uses calibraiton or pixelsize/pixelunits
for scalebar. If False, no scalebar is added.

	show_fft (bool) – if True, plots 2D-fft of array

	show_cbar (bool) – if True, adds cbar

	**kwargs – any keywords accepted by matplotlib’s ax.matshow()

	Returns:

	if returnfig==False (default), the figure is plotted and nothing is returned.
if returnfig==True, return the figure and the axis.

	
py4DSTEM.visualize.show_hist(arr, bins=200, vlines=None, vlinecolor='k', vlinestyle='--', returnhist=False, returnfig=False)

	Visualization function to show histogram from any ndarray (arr).

	Accepts:
	arr (ndarray) any array
bins (int) number of bins that the intensity values will be sorted

into for histogram

	returnhist (bool) determines whether or not the histogram values are
	returned (see Returns)

	returnfig (bool) determines whether or not figure and its axis are
	returned (see Returns)

	Returns:

	
	If
	returnhist==False and returnfig==False returns nothing
returnhist==True and returnfig==True returns (counts,bin_edges) the histogram

values and bin edge locations

returnhist==False and returnfig==True returns (fig,ax), the Figure and Axis
returnhist==True and returnfig==True returns (hist,bin_edges),(fig,ax)

	
py4DSTEM.visualize.show_Q(ar, scalebar=True, grid=False, polargrid=False, Q_pixel_size=None, Q_pixel_units=None, calibration=None, rx=None, ry=None, qx0=None, qy0=None, e=None, theta=None, scalebarloc=0, scalebarsize=None, scalebarwidth=None, scalebartext=None, scalebartextloc='above', scalebartextsize=12, gridspacing=None, gridcolor='w', majorgridlines=True, majorgridlw=1, majorgridls=':', minorgridlines=True, minorgridlw=0.5, minorgridls=':', gridlabels=False, gridlabelsize=12, gridlabelcolor='k', alpha=0.35, **kwargs)

	Shows a diffraction space image with options for several overlays to define the scale,
including a scalebar, a cartesian grid, or a polar / polar-elliptical grid.

Regardless of which overlay is requested, the function must recieve either values
for Q_pixel_size and Q_pixel_units, or a Calibration instance containing these values.
If both are passed, the absolutely passed values take precedence.
If a cartesian grid is requested, (qx0,qy0) are required, either passed absolutely or
passed as a Calibration instance with the appropriate (rx,ry) value.
If a polar grid is requested, (qx0,qy0,e,theta) are required, again either absolutely
or via a Calibration instance.

Any arguments accepted by the show() function (e.g. image scaling, clipvalues, etc)
may be passed to this function as kwargs.

	
py4DSTEM.visualize.show_rectangles(ar, lims=(0, 1, 0, 1), color='r', fill=True, alpha=0.25, linewidth=2, returnfig=False, **kwargs)

	Visualization function which plots a 2D array with one or more overlayed rectangles.
lims is specified in the order (x0,xf,y0,yf). The rectangle bounds begin at the upper
left corner of (x0,y0) and end at the upper left corner of (xf,yf) – i.e inclusive
in the lower bound, exclusive in the upper bound – so that the boxed region encloses
the area of array ar specified by ar[x0:xf,y0:yf].

To overlay one rectangle, lims must be a single 4-tuple. To overlay N rectangles,
lims must be a list of N 4-tuples. color, fill, and alpha may each be single values,
which are then applied to all the rectangles, or a length N list.

See the docstring for py4DSTEM.visualize.show() for descriptions of all input
parameters not listed below.

	Accepts:
	lims (4-tuple, or list of N 4-tuples) the rectangle bounds (x0,xf,y0,yf)
color (valid matplotlib color, or list of N colors)
fill (bool or list of N bools) filled in or empty rectangles
alpha (number, 0 to 1) transparency
linewidth (number)

	Returns:

	If returnfig==False (default), the figure is plotted and nothing is returned.
If returnfig==False, the figure and its one axis are returned, and can be
further edited.

	
py4DSTEM.visualize.show_circles(ar, center, R, color='r', fill=True, alpha=0.3, linewidth=2, returnfig=False, **kwargs)

	Visualization function which plots a 2D array with one or more overlayed circles.
To overlay one circle, center must be a single 2-tuple. To overlay N circles,
center must be a list of N 2-tuples. color, fill, and alpha may each be single values,
which are then applied to all the circles, or a length N list.

See the docstring for py4DSTEM.visualize.show() for descriptions of all input
parameters not listed below.

	Accepts:
	ar (2D array) the data
center (2-tuple, or list of N 2-tuples) the center of the circle (x0,y0)
R (number of list of N numbers) the circles radius
color (valid matplotlib color, or list of N colors)
fill (bool or list of N bools) filled in or empty rectangles
alpha (number, 0 to 1) transparency
linewidth (number)

	Returns:

	If returnfig==False (default), the figure is plotted and nothing is returned.
If returnfig==False, the figure and its one axis are returned, and can be
further edited.

	
py4DSTEM.visualize.show_ellipses(ar, center, a, b, theta, color='r', fill=True, alpha=0.3, linewidth=2, returnfig=False, **kwargs)

	Visualization function which plots a 2D array with one or more overlayed ellipses.
To overlay one ellipse, center must be a single 2-tuple. To overlay N circles,
center must be a list of N 2-tuples. Similarly, the remaining ellipse parameters -
a, e, and theta - must each be a single number or a len-N list. color, fill, and
alpha may each be single values, which are then applied to all the circles, or
length N lists.

See the docstring for py4DSTEM.visualize.show() for descriptions of all input
parameters not listed below.

	Accepts:
	center (2-tuple, or list of N 2-tuples) the center of the circle (x0,y0)
a (number or list of N numbers) the semimajor axis length
e (number or list of N numbers) ratio of semiminor/semimajor length
theta (number or list of N numbers) the tilt angle in radians
color (valid matplotlib color, or list of N colors)
fill (bool or list of N bools) filled in or empty rectangles
alpha (number, 0 to 1) transparency
linewidth (number)

	Returns:

	If returnfig==False (default), the figure is plotted and nothing is returned.
If returnfig==False, the figure and its one axis are returned, and can be
further edited.

	
py4DSTEM.visualize.show_annuli(ar, center, radii, color='r', fill=True, alpha=0.3, linewidth=2, returnfig=False, **kwargs)

	Visualization function which plots a 2D array with one or more overlayed annuli.
To overlay one annulus, center must be a single 2-tuple. To overlay N annuli,
center must be a list of N 2-tuples. color, fill, and alpha may each be single values,
which are then applied to all the circles, or a length N list.

See the docstring for py4DSTEM.visualize.show() for descriptions of all input
parameters not listed below.

	Accepts:
	center (2-tuple, or list of N 2-tuples) the center of the annulus (x0,y0)
radii (2-tuple, or list of N 2-tuples) the inner and outer radii
color (string of list of N strings)
fill (bool or list of N bools) filled in or empty rectangles
alpha (number, 0 to 1) transparency
linewidth (number)

	Returns:

	If returnfig==False (default), the figure is plotted and nothing is returned.
If returnfig==False, the figure and its one axis are returned, and can be
further edited.

	
py4DSTEM.visualize.show_points(ar, x, y, s=1, scale=50, alpha=1, pointcolor='r', open_circles=False, title=None, returnfig=False, **kwargs)

	Plots a 2D array with one or more points.
x and y are the point centers and must have the same length, N.
s is the relative point sizes, and must have length 1 or N.
scale is the size of the largest point.
pointcolor have length 1 or N.

	Accepts:
	ar (array) the image
x,y (number or iterable of numbers) the point positions
s (number or iterable of numbers) the relative point sizes
scale (number) the maximum point size
title (str) title for plot
pointcolor
alpha

	Returns:

	If returnfig==False (default), the figure is plotted and nothing is returned.
If returnfig==False, the figure and its one axis are returned, and can be
further edited.

overlay

	
py4DSTEM.visualize.overlay.add_annuli(ax, d)

	Adds one or more annuli to Axis ax using the parameters in dictionary d.

	
py4DSTEM.visualize.overlay.add_bragg_index_labels(ax, d)

	Adds labels for indexed bragg directions to a plot, using the parameters in dict d.

	The dictionary d has required and optional parameters as follows:
	
	bragg_directions (req’d) (PointList) the Bragg directions. This PointList must have
	the fields ‘qx’,’qy’,’h’, and ‘k’, and may optionally have ‘l’

voffset (number) vertical offset for the labels
hoffset (number) horizontal offset for the labels
color (color)
size (number)
points (bool)
pointsize (number)
pointcolor (color)

	
py4DSTEM.visualize.overlay.add_cartesian_grid(ax, d)

	Adds an overlaid cartesian coordinate grid over an image
using the parameters in dictionary d.

	The dictionary d has required and optional parameters as follows:
	x0,y0 (req’d) the origin
Nx,Ny (req’d) the image extent
space (str) ‘Q’ or ‘R’
spacing (number) spacing between gridlines
pixelsize (number)
pixelunits (str)
lw (number)
ls (str)
color (color)
label (bool)
labelsize (number)
labelcolor (color)
alpha (number)

	
py4DSTEM.visualize.overlay.add_circles(ax, d)

	adds one or more circles to axis ax using the parameters in dictionary d.

	
py4DSTEM.visualize.overlay.add_ellipses(ax, d)

	Adds one or more ellipses to axis ax using the parameters in dictionary d.

	Parameters:

	
	center –

	a –

	b –

	theta –

	color –

	fill –

	alpha –

	linewidth –

	linestyle –

	
py4DSTEM.visualize.overlay.add_grid_overlay(ax, d)

	adds an overlaid grid over some subset of pixels in an image
using the parameters in dictionary d.

	The dictionary d has required and optional parameters as follows:
	x0,y0 (req’d) (ints) the corner of the grid
xL,xL (req’d) (ints) the extent of the grid
color (color)
linewidth (number)
alpha (number)

	
py4DSTEM.visualize.overlay.add_pointlabels(ax, d)

	adds number indices for a set of points to axis ax using the parameters in dictionary d.

	
py4DSTEM.visualize.overlay.add_points(ax, d)

	adds one or more points to axis ax using the parameters in dictionary d.

	
py4DSTEM.visualize.overlay.add_polarelliptical_grid(ax, d)

	adds an overlaid polar-ellitpical coordinate grid over an image
using the parameters in dictionary d.

	The dictionary d has required and optional parameters as follows:
	x0,y0 (req’d) the origin
e,theta (req’d) the ellipticity (a/b) and major axis angle (radians)
Nx,Ny (req’d) the image extent
space (str) ‘Q’ or ‘R’
spacing (number) spacing between radial gridlines
N_thetalines (int) the number of theta gridlines
pixelsize (number)
pixelunits (str)
lw (number)
ls (str)
color (color)
label (bool)
labelsize (number)
labelcolor (color)
alpha (number)

	
py4DSTEM.visualize.overlay.add_rectangles(ax, d)

	Adds one or more rectangles to Axis ax using the parameters in dictionary d.

	
py4DSTEM.visualize.overlay.add_rtheta_grid(ar, d)

	

	
py4DSTEM.visualize.overlay.add_scalebar(ax, d)

	Adds an overlaid scalebar to an image, using the parameters in dict d.

	The dictionary d has required and optional parameters as follows:
	Nx,Ny (req’d) the image extent
space (str) ‘Q’ or ‘R’
length (number) the scalebar length
width (number) the scalebar width
pixelsize (number)
pixelunits (str)
color (color)
label (bool)
labelsize (number)
labelcolor (color)
alpha (number)
position (str) ‘ul’,’ur’,’bl’, or ‘br’ for the

upperleft, upperright, bottomleft, bottomright

ticks (bool) if False, turns off image border ticks

	
py4DSTEM.visualize.overlay.add_vector(ax, d)

	Adds a vector to an image, using the parameters in dict d.

	The dictionary d has required and optional parameters as follows:
	x0,y0 (req’d) the tail position
vx,vy (req’d) the vector
color (color)
width (number)
label (str)
labelsize (number)
labelcolor (color)

	
py4DSTEM.visualize.overlay.get_nice_spacing(Nx, Ny, pixelsize)

	Get a nice distance for gridlines, scalebars, etc

	Parameters:

	
	Nx (int) – the image dimensions

	Nx – the image dimensions

	pixelsize (float) – the size of each pixel, in some units

	Returns:

	A 3-tuple containing:

	spacing_units: the spacing in real units

	spacing_pixels:the spacing in pixels

	spacing: the leading digits of the spacing

	Return type:

	(3-tuple)

	
py4DSTEM.visualize.overlay.is_color_like(c)

	Return whether c can be interpreted as an RGB(A) color.

virtualimage

vis_RQ

	
py4DSTEM.visualize.vis_RQ.ax_addaxes(ax, vx, vy, vlength, x0, y0, width=1, color='r', labelaxes=True, labelsize=12, labelcolor='r', righthandedcoords=True)

	Adds a pair of x/y axes to the matplotlib subplot ax. The user supplies
the x-axis direction with (vx,vy), and the y-axis is then chosen
by rotating 90 degrees, in a direction set by righthandedcoords.

	Accepts:
	ax (matplotlib subplot)
vx,vy (numbers) x,y components of the x-axis,

Only the orientation is used; the axis
is normalized and rescaled by

vlength (number) the axis length
x0,y0 (numbers) the origin of the axes
labelaxes (bool) if True, label ‘x’ and ‘y’
righthandedcoords (bool) if True, y-axis is counterclockwise

with respect to x-axis

	
py4DSTEM.visualize.vis_RQ.ax_addaxes_QtoR(ax, vx, vy, vlength, x0, y0, QR_rotation, width=1, color='r', labelaxes=True, labelsize=12, labelcolor='r')

	Adds a pair of x/y axes to the matplotlib subplot ax. The user supplies
the x-axis direction with (vx,vy) in reciprocal space coordinates, and
the function transforms and displays the corresponding vector in real space.

	Accepts:
	ax (matplotlib subplot)
vx,vy (numbers) x,y components of the x-axis,

in reciprocal space coordinates. Only
the orientation is used; the axes
are normalized and rescaled by

vlength (number) the axis length, in real space
x0,y0 (numbers) the origin of the axes, in

real space

labelaxes (bool) if True, label ‘x’ and ‘y’
QR_rotation (number) the offset angle between real and

diffraction space. Specifically, this is
the counterclockwise rotation of real space
with respect to diffraction space. In degrees.

	
py4DSTEM.visualize.vis_RQ.ax_addaxes_RtoQ(ax, vx, vy, vlength, x0, y0, QR_rotation, width=1, color='r', labelaxes=True, labelsize=12, labelcolor='r')

	Adds a pair of x/y axes to the matplotlib subplot ax. The user supplies
the x-axis direction with (vx,vy) in real space coordinates, and the function
transforms and displays the corresponding vector in reciprocal space.

	Accepts:
	ax (matplotlib subplot)
vx,vy (numbers) x,y components of the x-axis,

in real space coordinates. Only
the orientation is used; the axes
are normalized and rescaled by

vlength (number) the axis length, in reciprocal space
x0,y0 (numbers) the origin of the axes, in

reciprocal space

labelaxes (bool) if True, label ‘x’ and ‘y’
QR_rotation (number) the offset angle between real and

diffraction space. Specifically, this is
the counterclockwise rotation of real space
with respect to diffraction space. In degrees.

	
py4DSTEM.visualize.vis_RQ.ax_addvector(ax, vx, vy, vlength, x0, y0, width=1, color='r')

	Adds a vector to the subplot at ax.

	Accepts:
	ax (matplotlib subplot)
vx,vy (numbers) x,y components of the vector

Only the orientation is used, vector is
normalized and rescaled by

vlength (number) the vector length
x0,y0 (numbers) the origin / vector tail position

	
py4DSTEM.visualize.vis_RQ.ax_addvector_QtoR(ax, vx, vy, vlength, x0, y0, QR_rotation, width=1, color='r')

	Adds a vector to the subplot at ax, where the vector (vx,vy) passed
to the function is in reciprocal space and the plotted vector is
transformed into and plotted in real space.

	Accepts:
	ax (matplotlib subplot)
vx,vy (numbers) x,y components of the vector,

in reciprocal space. Only the orientation is
used, vector is normalized and rescaled by

vlength (number) the vector length, in real space
x0,y0 (numbers) the origin / vector tail position,

in real space

	QR_rotation (number) the offset angle between real and
	diffraction space. Specifically, this is
the counterclockwise rotation of real space
with respect to diffraction space. In degrees.

	
py4DSTEM.visualize.vis_RQ.ax_addvector_RtoQ(ax, vx, vy, vlength, x0, y0, QR_rotation, width=1, color='r')

	Adds a vector to the subplot at ax, where the vector (vx,vy) passed
to the function is in real space and the plotted vector is transformed
into and plotted in reciprocal space.

	Accepts:
	ax (matplotlib subplot)
vx,vy (numbers) x,y components of the vector,

in real space. Only the orientation is used,
vector is normalized and rescaled by

	vlength (number) the vector length, in reciprocal
	space

	x0,y0 (numbers) the origin / vector tail position,
	in reciprocal space

	QR_rotation (number) the offset angle between real and
	diffraction space. Specifically, this is
the counterclockwise rotation of real space
with respect to diffraction space. In degrees.

	
py4DSTEM.visualize.vis_RQ.show(ar, figsize=(5, 5), cmap='gray', scaling='none', intensity_range='ordered', clipvals=None, vmin=None, vmax=None, min=None, max=None, power=None, power_offset=True, combine_images=False, ticks=True, bordercolor=None, borderwidth=5, show_image=True, return_ar_scaled=False, return_intensity_range=False, returncax=False, returnfig=False, figax=None, hist=False, n_bins=256, mask=None, mask_color='k', mask_alpha=0.0, masked_intensity_range=False, rectangle=None, circle=None, annulus=None, ellipse=None, points=None, grid_overlay=None, cartesian_grid=None, polarelliptical_grid=None, rtheta_grid=None, scalebar=None, calibration=None, rx=None, ry=None, space='Q', pixelsize=None, pixelunits=None, x0=None, y0=None, a=None, e=None, theta=None, title=None, show_fft=False, show_cbar=False, **kwargs)

	General visualization function for 2D arrays.

The simplest use of this function is:

>>> show(ar)

which will generate and display a matplotlib figure showing the 2D array ar.
Additional functionality includes:

	scaling the image (log scaling, power law scaling)

	displaying the image histogram

	altering the histogram clip values

	masking some subset of the image

	setting the colormap

	adding geometric overlays (e.g. points, circles, rectangles, annuli)

	adding informational overlays (scalebars, coordinate grids, oriented axes or
vectors)

	further customization tools

These are each discussed in turn below.

	Scaling:
	Setting the parameter scaling will scale the display image. Options are
‘none’, ‘auto’, ‘power’, or ‘log’. If ‘power’ is specified, the parameter power must
also be passed. The underlying data is not altered. Values less than or equal to
zero are set to zero. If the image histogram is displayed using hist=True,
the scaled image histogram is shown.

Examples:

>>> show(ar,scaling='log')
>>> show(ar,power=0.5)
>>> show(ar,scaling='power',power=0.5,hist=True)

	Histogram:
	Setting the argument hist=True will display the image histogram, instead of
the image. The displayed histogram will reflect any scaling requested. The number
of bins can be set with n_bins. The upper and lower clip values, indicating
where the image display will be saturated, are shown with dashed lines.

	Intensity range:
	Controlling the lower and upper values at which the display image will be
saturated is accomplished with the intensity_range parameter, or its
(soon deprecated) alias clipvals, in combination with vmin,
and vmax. The method by which the upper and lower clip values
are determined is controlled by intensity_range, and must be a string in
(‘None’,’ordered’,’minmax’,’absolute’,’std’,’centered’). See the argument
description for intensity_range for a description of the behavior for each.
The clip values can be returned with the return_intensity_range parameter.

	Masking:
	If a numpy masked array is passed to show, the function will automatically
mask the appropriate pixels. Alternatively, a boolean array of the same shape as
the data array may be passed to the mask argument, and these pixels will be
masked. Masked pixels are displayed as a single uniform color, black by default,
and which can be specified with the mask_color argument. Masked pixels
are excluded when displaying the histogram or computing clip values. The mask
can also be blended with the hidden data by setting the mask_alpha argument.

	Overlays (geometric):
	The function natively supports overlaying points, circles, rectangles, annuli,
and ellipses. Each is invoked by passing a dictionary to the appropriate input
variable specifying the geometry and features of the requested overlay. For
example:

>>> show(ar, rectangle={'lims':(10,20,10,20),'color':'r'})

will overlay a single red square, and

>>> show(ar, annulus={'center':[(28,68),(92,160)],
 'radii':[(16,24),(12,36)],
 'fill':True,
 'alpha':[0.9,0.3],
 'color':['r',(0,1,1,1)]})

will overlay two annuli with two different centers, radii, colors, and
transparencies. For a description of the accepted dictionary parameters
for each type of overlay, see the visualize functions add_*, where
* = (‘rectangle’,’circle’,’annulus’,’ellipse’,’points’). (These docstrings
are under construction!)

	Overlays (informational):
	Informational overlays supported by this function include coordinate axes
(cartesian, polar-elliptical, or r-theta) and scalebars. These are added
by passing the appropriate input argument a dictionary of the desired
parameters, as with geometric overlays. However, there are two key differences
between these overlays and the geometric overlays. First, informational
overlays (coordinate systems and scalebars) require information about the
plot - e.g. the position of the origin, the pixel sizes, the pixel units,
any elliptical distortions, etc. The easiest way to pass this information
is by pass a Calibration object containing this info to show as the
keyword calibration. Second, once the coordinate information has been
passed, informational overlays can autoselect their own parameters, thus simply
passing an empty dict to one of these parameters will add that overlay.

For example:

>>> show(dp, scalebar={}, calibration=calibration)

will display the diffraction pattern dp with a scalebar overlaid in the
bottom left corner given the pixel size and units described in calibration,
and

>>> show(dp, calibration=calibration, scalebar={'length':0.5,'width':2,
 'position':'ul','label':True'})

will display a more customized scalebar.

When overlaying coordinate grids, it is important to note that some relevant
parameters, e.g. the position of the origin, may change by scan position.
In these cases, the parameters rx,``ry`` must also be passed to show,
to tell the Calibration object where to look for the relevant parameters.
For example:

>>> show(dp, cartesian_grid={}, calibration=calibration, rx=2,ry=5)

will overlay a cartesian coordinate grid on the diffraction pattern at scan
position (2,5). Adding

>>> show(dp, calibration=calibration, rx=2, ry=5, cartesian_grid={'label':True,
 'alpha':0.7,'color':'r'})

will customize the appearance of the grid further. And

>>> show(im, calibration=calibration, cartesian_grid={}, space='R')

displays a cartesian grid over a real space image. For more details, see the
documentation for the visualize functions add_*, where * = (‘scalebar’,
‘cartesian_grid’, ‘polarelliptical_grid’, ‘rtheta_grid’). (Under construction!)

	Further customization:
	Most parameters accepted by a matplotlib axis will be accepted by show.
Pass a valid matplotlib colormap or a known string indicating a colormap
as the argument cmap to specify the colormap. Pass figsize to
specify the figure size. Etc.

Further customization can be accomplished by either (1) returning the figure
generated by show and then manipulating it using the normal matplotlib
functions, or (2) generating a matplotlib Figure with Axes any way you like
(e.g. with plt.subplots) and then using this function to plot inside a
single one of the Axes of your choice.

Option (1) is accomplished by simply passing this function returnfig=True.
Thus:

>>> fig,ax = show(ar, returnfig=True)

will now give you direct access to the figure and axes to continue to alter.
Option (2) is accomplished by passing an existing figure and axis to show
as a 2-tuple to the figax argument. Thus:

>>> fig,(ax1,ax2) = plt.subplots(1,2)
>>> show(ar, figax=(fig,ax1))
>>> show(ar, figax=(fig,ax2), hist=True)

will generate a 2-axis figure, and then plot the array ar as an image on
the left, while plotting its histogram on the right.

	Parameters:

	
	ar (2D array or a list of 2D arrays) – the data to plot. Normally this
is a 2D array of the data. If a list of 2D arrays is passed, plots
a corresponding grid of images.

	figsize (2-tuple) – size of the plot

	cmap (colormap) – any matplotlib cmap; default is gray

	scaling (str) – selects a scaling scheme for the intensity values. Default is
none. Accepted values:

	’none’: do not scale intensity values

	’full’: fill entire color range with sorted intensity values

	’power’: power law scaling

	’log’: values where ar<=0 are set to 0

	intensity_range (str) –
	method for setting clipvalues (min and max intensities).
	The original name “clipvals” is now deprecated.
Default is ‘ordered’. Accepted values:

	’ordered’: vmin/vmax are set to fractions of the
distribution of pixel values in the array, e.g. vmin=0.02
will set the minumum display value to saturate the lower 2% of pixels

	’minmax’: The vmin/vmax values are np.min(ar)/np.max(r)

	’absolute’: The vmin/vmax values are set to the values of
the vmin,vmax arguments received by this function

	
	’std’: The vmin/vmax values are np.median(ar) -/+ N*np.std(ar), and
	N is this functions min,max vals.

	’centered’: The vmin/vmax values are set to c -/+ m, where by default
‘c’ is zero and m is the max(abs(ar-c), or the two params can be user
specified using the kwargs vmin/vmax -> c/m.

	vmin (number) – min intensity, behavior depends on clipvals

	vmax (number) – max intensity, behavior depends on clipvals

	min – alias’ for vmin,vmax, throws deprecation warning

	max – alias’ for vmin,vmax, throws deprecation warning

	power (number) – specifies the scaling power

	power_offset (bool) – If true, image has min value subtracted before power scaling

	ticks (bool) – Turn outer tick marks on or off

	bordercolor (color or None) – if not None, add a border of this color.
The color can be anything matplotlib recognizes as a color.

	borderwidth (number) –

	returnfig (bool) – if True, the function returns the tuple (figure,axis)

	figax (None or 2-tuple) – controls which matplotlib Axes object draws the image.
If None, generates a new figure with a single Axes instance. Otherwise, ax
must be a 2-tuple containing the matplotlib class instances (Figure,Axes),
with ar then plotted in the specified Axes instance.

	hist (bool) – if True, instead of plotting a 2D image in ax, plots a histogram of
the intensity values of ar, after any scaling this function has performed.
Plots the clipvals as dashed vertical lines

	n_bins (int) – number of hist bins

	mask (None or boolean array) – if not None, must have the same shape as ‘ar’.
Wherever mask==True, plot the pixel normally, and where mask==False,
pixel values are set to mask_color. If hist==True, ignore these values in the
histogram. If mask_alpha is specified, the mask is blended with the array
underneath, with 0 yielding an opaque mask and 1 yielding a fully transparent
mask. If mask_color is set to 'empty' instead of a matplotlib.color,
nothing is done to pixels where mask==False, allowing overlaying multiple
arrays in different regions of an image by invoking the ``figax` kwarg over
multiple calls to show

	mask_color (color) – see ‘mask’

	mask_alpha (float) – see ‘mask’

	masked_intensity_range (bool) – controls if masked pixel values are included when
determining the display value range; False indicates that all pixel values
will be used to determine the intensity range, True indicates only unmasked
pixels will be used

	scalebar (None or dict or Bool) – if None, and a DiffractionSlice or RealSlice
with calibrations is passed, adds a scalebar. If scalebar is not displaying the proper
calibration, check .calibration pixel_size and pixel_units. If None and an array is passed,
does not add a scalebar. If a dict is passed, it is propagated to the add_scalebar function
which will attempt to use it to overlay a scalebar. If True, uses calibraiton or pixelsize/pixelunits
for scalebar. If False, no scalebar is added.

	show_fft (bool) – if True, plots 2D-fft of array

	show_cbar (bool) – if True, adds cbar

	**kwargs – any keywords accepted by matplotlib’s ax.matshow()

	Returns:

	if returnfig==False (default), the figure is plotted and nothing is returned.
if returnfig==True, return the figure and the axis.

	
py4DSTEM.visualize.vis_RQ.show_RQ(realspace_image, diffractionspace_image, realspace_pdict={}, diffractionspace_pdict={'scaling': 'log'}, figsize=(12, 6), returnfig=False)

	Shows side-by-side real/reciprocal space images.

	Accepts:
	realspace_image (2D array)
diffractionspace_image (2D array)
realspace_pdict (dictionary) arguments and values to pass

to the show() fn for the real space image

diffractionspace_pdict (dictionary)

	
py4DSTEM.visualize.vis_RQ.show_RQ_axes(realspace_image, diffractionspace_image, realspace_pdict, diffractionspace_pdict, vx, vy, vlength_R, vlength_Q, x0_R, y0_R, x0_Q, y0_Q, QR_rotation, vector_space='R', width_R=1, color_R='r', width_Q=1, color_Q='r', labelaxes=True, labelcolor_R='r', labelcolor_Q='r', labelsize_R=12, labelsize_Q=12, figsize=(12, 6), returnfig=False)

	Shows side-by-side real/reciprocal space images with a set of corresponding
coordinate axes overlaid in each. (vx,vy) specifies the x-axis, and the y-axis
is rotated 90 degrees counterclockwise in reciprocal space (relevant in case of
an R/Q transposition).

	Accepts:
	realspace_image (2D array)
diffractionspace_image (2D array)
realspace_pdict (dictionary) arguments and values to pass

to the show() fn for the real space image

diffractionspace_pdict (dictionary)
vx,vy (numbers) x,y components of the x-axis

in either real or diffraction space,
depending on the value of vector_space.
Note (vx,vy) is used for the orientation
only - the vectors are normalized
and rescaled by

	vlength_R,vlength_Q (number or 1D arrays) the vector length in each
	space, in pixels

x0_R,y0_R,x0_Q,y0_Q (number) the origins / vector tail positions
QR_rotation (number) the offset angle between real and

diffraction space. Specifically, this is
the counterclockwise rotation of real space
with respect to diffraction space. In degrees.

	vector_space (string) must be ‘R’ or ‘Q’. Specifies
	whether the (vx,vy) values passed to this
function describes a real or diffracation
space vector.

	
py4DSTEM.visualize.vis_RQ.show_RQ_vector(realspace_image, diffractionspace_image, realspace_pdict, diffractionspace_pdict, vx, vy, vlength_R, vlength_Q, x0_R, y0_R, x0_Q, y0_Q, QR_rotation, vector_space='R', width_R=1, color_R='r', width_Q=1, color_Q='r', figsize=(12, 6), returnfig=False)

	Shows side-by-side real/reciprocal space images with a vector
overlaid in each showing corresponding directions.

	Accepts:
	realspace_image (2D array)
diffractionspace_image (2D array)
realspace_pdict (dictionary) arguments and values to pass

to the show() fn for the real space image

diffractionspace_pdict (dictionary)
vx,vy (numbers) x,y components of the vector

in either real or diffraction space,
depending on the value of vector_space.
Note (vx,vy) is used for the orientation
only - the two vectors are normalized
and rescaled by

	vlength_R,vlength_Q (number) the vector length in each
	space, in pixels

x0_R,y0_R,x0_Q,y0_Q (numbers) the origins / vector tail positions
QR_rotation (number) the offset angle between real and

diffraction space. Specifically, this is
the counterclockwise rotation of real space
with respect to diffraction space. In degrees.

	vector_space (string) must be ‘R’ or ‘Q’. Specifies
	whether the (vx,vy) values passed to this
function describes a real or diffracation
space vector.

	
py4DSTEM.visualize.vis_RQ.show_RQ_vectors(realspace_image, diffractionspace_image, realspace_pdict, diffractionspace_pdict, vx, vy, vlength_R, vlength_Q, x0_R, y0_R, x0_Q, y0_Q, QR_rotation, vector_space='R', width_R=1, color_R='r', width_Q=1, color_Q='r', figsize=(12, 6), returnfig=False)

	Shows side-by-side real/reciprocal space images with several vectors
overlaid in each showing corresponding directions.

	Accepts:
	realspace_image (2D array)
diffractionspace_image (2D array)
realspace_pdict (dictionary) arguments and values to pass

to the show() fn for the real space image

diffractionspace_pdict (dictionary)
vx,vy (1D arrays) x,y components of the vectors

in either real or diffraction space,
depending on the value of vector_space.
Note (vx,vy) is used for the orientation
only - the two vectors are normalized
and rescaled by

	vlength_R,vlenght_Q (number) the vector length in each
	space, in pixels

x0_R,y0_R,x0_Q,y0_Q (numbers) the origins / vector tail positions
QR_rotation (number) the offset angle between real and

diffraction space. Specifically, this is
the counterclockwise rotation of real space
with respect to diffraction space. In degrees.

	vector_space (string) must be ‘R’ or ‘Q’. Specifies
	whether the (vx,vy) values passed to this
function describes a real or diffracation
space vector.

	
py4DSTEM.visualize.vis_RQ.show_points(ar, x, y, s=1, scale=50, alpha=1, pointcolor='r', open_circles=False, title=None, returnfig=False, **kwargs)

	Plots a 2D array with one or more points.
x and y are the point centers and must have the same length, N.
s is the relative point sizes, and must have length 1 or N.
scale is the size of the largest point.
pointcolor have length 1 or N.

	Accepts:
	ar (array) the image
x,y (number or iterable of numbers) the point positions
s (number or iterable of numbers) the relative point sizes
scale (number) the maximum point size
title (str) title for plot
pointcolor
alpha

	Returns:

	If returnfig==False (default), the figure is plotted and nothing is returned.
If returnfig==False, the figure and its one axis are returned, and can be
further edited.

	
py4DSTEM.visualize.vis_RQ.show_selected_dp(datacube, image, rx, ry, figsize=(12, 6), returnfig=False, pointsize=50, pointcolor='r', scaling='log', **kwargs)

	

vis_grid

	
py4DSTEM.visualize.vis_grid._show_grid_overlay(image, x0, y0, xL, yL, color='k', linewidth=1, alpha=1, returnfig=False, **kwargs)

	Shows the image with an overlaid boxgrid outline about the pixels
beginning at (x0,y0) and with extent xL,yL in the two directions.

	Accepts:
	image the image array
x0,y0 the corner of the grid
xL,xL the extent of the grid

	
py4DSTEM.visualize.vis_grid.add_grid_overlay(ax, d)

	adds an overlaid grid over some subset of pixels in an image
using the parameters in dictionary d.

	The dictionary d has required and optional parameters as follows:
	x0,y0 (req’d) (ints) the corner of the grid
xL,xL (req’d) (ints) the extent of the grid
color (color)
linewidth (number)
alpha (number)

	
py4DSTEM.visualize.vis_grid.show(ar, figsize=(5, 5), cmap='gray', scaling='none', intensity_range='ordered', clipvals=None, vmin=None, vmax=None, min=None, max=None, power=None, power_offset=True, combine_images=False, ticks=True, bordercolor=None, borderwidth=5, show_image=True, return_ar_scaled=False, return_intensity_range=False, returncax=False, returnfig=False, figax=None, hist=False, n_bins=256, mask=None, mask_color='k', mask_alpha=0.0, masked_intensity_range=False, rectangle=None, circle=None, annulus=None, ellipse=None, points=None, grid_overlay=None, cartesian_grid=None, polarelliptical_grid=None, rtheta_grid=None, scalebar=None, calibration=None, rx=None, ry=None, space='Q', pixelsize=None, pixelunits=None, x0=None, y0=None, a=None, e=None, theta=None, title=None, show_fft=False, show_cbar=False, **kwargs)

	General visualization function for 2D arrays.

The simplest use of this function is:

>>> show(ar)

which will generate and display a matplotlib figure showing the 2D array ar.
Additional functionality includes:

	scaling the image (log scaling, power law scaling)

	displaying the image histogram

	altering the histogram clip values

	masking some subset of the image

	setting the colormap

	adding geometric overlays (e.g. points, circles, rectangles, annuli)

	adding informational overlays (scalebars, coordinate grids, oriented axes or
vectors)

	further customization tools

These are each discussed in turn below.

	Scaling:
	Setting the parameter scaling will scale the display image. Options are
‘none’, ‘auto’, ‘power’, or ‘log’. If ‘power’ is specified, the parameter power must
also be passed. The underlying data is not altered. Values less than or equal to
zero are set to zero. If the image histogram is displayed using hist=True,
the scaled image histogram is shown.

Examples:

>>> show(ar,scaling='log')
>>> show(ar,power=0.5)
>>> show(ar,scaling='power',power=0.5,hist=True)

	Histogram:
	Setting the argument hist=True will display the image histogram, instead of
the image. The displayed histogram will reflect any scaling requested. The number
of bins can be set with n_bins. The upper and lower clip values, indicating
where the image display will be saturated, are shown with dashed lines.

	Intensity range:
	Controlling the lower and upper values at which the display image will be
saturated is accomplished with the intensity_range parameter, or its
(soon deprecated) alias clipvals, in combination with vmin,
and vmax. The method by which the upper and lower clip values
are determined is controlled by intensity_range, and must be a string in
(‘None’,’ordered’,’minmax’,’absolute’,’std’,’centered’). See the argument
description for intensity_range for a description of the behavior for each.
The clip values can be returned with the return_intensity_range parameter.

	Masking:
	If a numpy masked array is passed to show, the function will automatically
mask the appropriate pixels. Alternatively, a boolean array of the same shape as
the data array may be passed to the mask argument, and these pixels will be
masked. Masked pixels are displayed as a single uniform color, black by default,
and which can be specified with the mask_color argument. Masked pixels
are excluded when displaying the histogram or computing clip values. The mask
can also be blended with the hidden data by setting the mask_alpha argument.

	Overlays (geometric):
	The function natively supports overlaying points, circles, rectangles, annuli,
and ellipses. Each is invoked by passing a dictionary to the appropriate input
variable specifying the geometry and features of the requested overlay. For
example:

>>> show(ar, rectangle={'lims':(10,20,10,20),'color':'r'})

will overlay a single red square, and

>>> show(ar, annulus={'center':[(28,68),(92,160)],
 'radii':[(16,24),(12,36)],
 'fill':True,
 'alpha':[0.9,0.3],
 'color':['r',(0,1,1,1)]})

will overlay two annuli with two different centers, radii, colors, and
transparencies. For a description of the accepted dictionary parameters
for each type of overlay, see the visualize functions add_*, where
* = (‘rectangle’,’circle’,’annulus’,’ellipse’,’points’). (These docstrings
are under construction!)

	Overlays (informational):
	Informational overlays supported by this function include coordinate axes
(cartesian, polar-elliptical, or r-theta) and scalebars. These are added
by passing the appropriate input argument a dictionary of the desired
parameters, as with geometric overlays. However, there are two key differences
between these overlays and the geometric overlays. First, informational
overlays (coordinate systems and scalebars) require information about the
plot - e.g. the position of the origin, the pixel sizes, the pixel units,
any elliptical distortions, etc. The easiest way to pass this information
is by pass a Calibration object containing this info to show as the
keyword calibration. Second, once the coordinate information has been
passed, informational overlays can autoselect their own parameters, thus simply
passing an empty dict to one of these parameters will add that overlay.

For example:

>>> show(dp, scalebar={}, calibration=calibration)

will display the diffraction pattern dp with a scalebar overlaid in the
bottom left corner given the pixel size and units described in calibration,
and

>>> show(dp, calibration=calibration, scalebar={'length':0.5,'width':2,
 'position':'ul','label':True'})

will display a more customized scalebar.

When overlaying coordinate grids, it is important to note that some relevant
parameters, e.g. the position of the origin, may change by scan position.
In these cases, the parameters rx,``ry`` must also be passed to show,
to tell the Calibration object where to look for the relevant parameters.
For example:

>>> show(dp, cartesian_grid={}, calibration=calibration, rx=2,ry=5)

will overlay a cartesian coordinate grid on the diffraction pattern at scan
position (2,5). Adding

>>> show(dp, calibration=calibration, rx=2, ry=5, cartesian_grid={'label':True,
 'alpha':0.7,'color':'r'})

will customize the appearance of the grid further. And

>>> show(im, calibration=calibration, cartesian_grid={}, space='R')

displays a cartesian grid over a real space image. For more details, see the
documentation for the visualize functions add_*, where * = (‘scalebar’,
‘cartesian_grid’, ‘polarelliptical_grid’, ‘rtheta_grid’). (Under construction!)

	Further customization:
	Most parameters accepted by a matplotlib axis will be accepted by show.
Pass a valid matplotlib colormap or a known string indicating a colormap
as the argument cmap to specify the colormap. Pass figsize to
specify the figure size. Etc.

Further customization can be accomplished by either (1) returning the figure
generated by show and then manipulating it using the normal matplotlib
functions, or (2) generating a matplotlib Figure with Axes any way you like
(e.g. with plt.subplots) and then using this function to plot inside a
single one of the Axes of your choice.

Option (1) is accomplished by simply passing this function returnfig=True.
Thus:

>>> fig,ax = show(ar, returnfig=True)

will now give you direct access to the figure and axes to continue to alter.
Option (2) is accomplished by passing an existing figure and axis to show
as a 2-tuple to the figax argument. Thus:

>>> fig,(ax1,ax2) = plt.subplots(1,2)
>>> show(ar, figax=(fig,ax1))
>>> show(ar, figax=(fig,ax2), hist=True)

will generate a 2-axis figure, and then plot the array ar as an image on
the left, while plotting its histogram on the right.

	Parameters:

	
	ar (2D array or a list of 2D arrays) – the data to plot. Normally this
is a 2D array of the data. If a list of 2D arrays is passed, plots
a corresponding grid of images.

	figsize (2-tuple) – size of the plot

	cmap (colormap) – any matplotlib cmap; default is gray

	scaling (str) – selects a scaling scheme for the intensity values. Default is
none. Accepted values:

	’none’: do not scale intensity values

	’full’: fill entire color range with sorted intensity values

	’power’: power law scaling

	’log’: values where ar<=0 are set to 0

	intensity_range (str) –
	method for setting clipvalues (min and max intensities).
	The original name “clipvals” is now deprecated.
Default is ‘ordered’. Accepted values:

	’ordered’: vmin/vmax are set to fractions of the
distribution of pixel values in the array, e.g. vmin=0.02
will set the minumum display value to saturate the lower 2% of pixels

	’minmax’: The vmin/vmax values are np.min(ar)/np.max(r)

	’absolute’: The vmin/vmax values are set to the values of
the vmin,vmax arguments received by this function

	
	’std’: The vmin/vmax values are np.median(ar) -/+ N*np.std(ar), and
	N is this functions min,max vals.

	’centered’: The vmin/vmax values are set to c -/+ m, where by default
‘c’ is zero and m is the max(abs(ar-c), or the two params can be user
specified using the kwargs vmin/vmax -> c/m.

	vmin (number) – min intensity, behavior depends on clipvals

	vmax (number) – max intensity, behavior depends on clipvals

	min – alias’ for vmin,vmax, throws deprecation warning

	max – alias’ for vmin,vmax, throws deprecation warning

	power (number) – specifies the scaling power

	power_offset (bool) – If true, image has min value subtracted before power scaling

	ticks (bool) – Turn outer tick marks on or off

	bordercolor (color or None) – if not None, add a border of this color.
The color can be anything matplotlib recognizes as a color.

	borderwidth (number) –

	returnfig (bool) – if True, the function returns the tuple (figure,axis)

	figax (None or 2-tuple) – controls which matplotlib Axes object draws the image.
If None, generates a new figure with a single Axes instance. Otherwise, ax
must be a 2-tuple containing the matplotlib class instances (Figure,Axes),
with ar then plotted in the specified Axes instance.

	hist (bool) – if True, instead of plotting a 2D image in ax, plots a histogram of
the intensity values of ar, after any scaling this function has performed.
Plots the clipvals as dashed vertical lines

	n_bins (int) – number of hist bins

	mask (None or boolean array) – if not None, must have the same shape as ‘ar’.
Wherever mask==True, plot the pixel normally, and where mask==False,
pixel values are set to mask_color. If hist==True, ignore these values in the
histogram. If mask_alpha is specified, the mask is blended with the array
underneath, with 0 yielding an opaque mask and 1 yielding a fully transparent
mask. If mask_color is set to 'empty' instead of a matplotlib.color,
nothing is done to pixels where mask==False, allowing overlaying multiple
arrays in different regions of an image by invoking the ``figax` kwarg over
multiple calls to show

	mask_color (color) – see ‘mask’

	mask_alpha (float) – see ‘mask’

	masked_intensity_range (bool) – controls if masked pixel values are included when
determining the display value range; False indicates that all pixel values
will be used to determine the intensity range, True indicates only unmasked
pixels will be used

	scalebar (None or dict or Bool) – if None, and a DiffractionSlice or RealSlice
with calibrations is passed, adds a scalebar. If scalebar is not displaying the proper
calibration, check .calibration pixel_size and pixel_units. If None and an array is passed,
does not add a scalebar. If a dict is passed, it is propagated to the add_scalebar function
which will attempt to use it to overlay a scalebar. If True, uses calibraiton or pixelsize/pixelunits
for scalebar. If False, no scalebar is added.

	show_fft (bool) – if True, plots 2D-fft of array

	show_cbar (bool) – if True, adds cbar

	**kwargs – any keywords accepted by matplotlib’s ax.matshow()

	Returns:

	if returnfig==False (default), the figure is plotted and nothing is returned.
if returnfig==True, return the figure and the axis.

	
py4DSTEM.visualize.vis_grid.show_DP_grid(datacube, x0, y0, xL, yL, axsize=(6, 6), returnfig=False, space=0, **kwargs)

	Shows a grid of diffraction patterns from DataCube datacube, starting from
scan position (x0,y0) and extending xL,yL.

	Accepts:
	datacube (DataCube) the 4D-STEM data
(x0,y0) the corner of the grid of DPs to display
xL,yL the extent of the grid
axsize the size of each diffraction pattern
space (number) controls the space between subplots

	Returns:

	if returnfig==false (default), the figure is plotted and nothing is returned.
if returnfig==false, the figure and its one axis are returned, and can be
further edited.

	
py4DSTEM.visualize.vis_grid.show_grid_overlay(image, x0, y0, xL, yL, color='k', linewidth=1, alpha=1, returnfig=False, **kwargs)

	Shows the image with an overlaid boxgrid outline about the pixels
beginning at (x0,y0) and with extent xL,yL in the two directions.

	Accepts:
	image the image array
x0,y0 the corner of the grid
xL,xL the extent of the grid

	
py4DSTEM.visualize.vis_grid.show_image_grid(get_ar, H, W, axsize=(6, 6), returnfig=False, figax=None, title=None, title_index=False, suptitle=None, get_bordercolor=None, get_x=None, get_y=None, get_pointcolors=None, get_s=None, open_circles=False, **kwargs)

	Displays a set of images in a grid.

The images are specified by some function get_ar(i), which returns an
image for values of some integer index i. The values of i passed to
get_ar are 0 through HW-1.

To display the first 4 two-dimensional slices of some 3D array ar
some 3D array ar, you can do

>>> show_image_grid(lambda i:ar[:,:,i], H=2, W=2)

Its also possible to add colored borders, or overlaid points,
using similar functions to get_ar, i.e. functions which return
the color or set of points of interest as a function of index
i, which must be defined in the range [0,HW-1].

	Accepts:
	
	get_ar a function which returns a 2D array when passed
	the integers 0 through HW-1

H,W integers, the dimensions of the grid
axsize the size of each image
figax controls which matplotlib Axes object draws the image.

If None, generates a new figure with a single Axes instance.
Otherwise, ax must be a 2-tuple containing the matplotlib class instances
(Figure,Axes), with ar then plotted in the specified Axes instance.

	title if title is sting, then prints title as suptitle. If a suptitle is also provided,
	the suptitle is printed insead.
if title is a list of strings (ex: [‘title 1’,’title 2’]), each array has
corresponding title in list.

title_index if True, prints the index i passed to get_ar over each image
suptitle string, suptitle on plot
get_bordercolor

if not None, should be a function defined over
the same i as get_ar, and which returns a
valid matplotlib color for each i. Adds
a colored bounding box about each image. E.g.
if colors is an array of colors:

>>> show_image_grid(lambda i:ar[:,:,i],H=2,W=2,
 get_bordercolor=lambda i:colors[i])

	get_x,get_y functions which returns sets of x/y positions
	as a function of index i

	get_s function which returns a set of point sizes
	as a function of index i

	get_pointcolors a function which returns a color or list of colors
	as a function of index i

	Returns:

	if returnfig==false (default), the figure is plotted and nothing is returned.
if returnfig==false, the figure and its one axis are returned, and can be
further edited.

	
py4DSTEM.visualize.vis_grid.show_points(ar, x, y, s=1, scale=50, alpha=1, pointcolor='r', open_circles=False, title=None, returnfig=False, **kwargs)

	Plots a 2D array with one or more points.
x and y are the point centers and must have the same length, N.
s is the relative point sizes, and must have length 1 or N.
scale is the size of the largest point.
pointcolor have length 1 or N.

	Accepts:
	ar (array) the image
x,y (number or iterable of numbers) the point positions
s (number or iterable of numbers) the relative point sizes
scale (number) the maximum point size
title (str) title for plot
pointcolor
alpha

	Returns:

	If returnfig==False (default), the figure is plotted and nothing is returned.
If returnfig==False, the figure and its one axis are returned, and can be
further edited.

vis_special

	
py4DSTEM.visualize.vis_special.Complex2RGB(complex_data, vmin=None, vmax=None, power=None, chroma_boost=1)

	complex_data (array): complex array to plot
vmin (float) : minimum absolute value
vmax (float) : maximum absolute value
power (float) : power to raise amplitude to
chroma_boost (float): boosts chroma for higher-contrast (~1-2.5)

	
py4DSTEM.visualize.vis_special.add_bragg_index_labels(ax, d)

	Adds labels for indexed bragg directions to a plot, using the parameters in dict d.

	The dictionary d has required and optional parameters as follows:
	
	bragg_directions (req’d) (PointList) the Bragg directions. This PointList must have
	the fields ‘qx’,’qy’,’h’, and ‘k’, and may optionally have ‘l’

voffset (number) vertical offset for the labels
hoffset (number) horizontal offset for the labels
color (color)
size (number)
points (bool)
pointsize (number)
pointcolor (color)

	
py4DSTEM.visualize.vis_special.add_ellipses(ax, d)

	Adds one or more ellipses to axis ax using the parameters in dictionary d.

	Parameters:

	
	center –

	a –

	b –

	theta –

	color –

	fill –

	alpha –

	linewidth –

	linestyle –

	
py4DSTEM.visualize.vis_special.add_pointlabels(ax, d)

	adds number indices for a set of points to axis ax using the parameters in dictionary d.

	
py4DSTEM.visualize.vis_special.add_points(ax, d)

	adds one or more points to axis ax using the parameters in dictionary d.

	
py4DSTEM.visualize.vis_special.add_scalebar(ax, d)

	Adds an overlaid scalebar to an image, using the parameters in dict d.

	The dictionary d has required and optional parameters as follows:
	Nx,Ny (req’d) the image extent
space (str) ‘Q’ or ‘R’
length (number) the scalebar length
width (number) the scalebar width
pixelsize (number)
pixelunits (str)
color (color)
label (bool)
labelsize (number)
labelcolor (color)
alpha (number)
position (str) ‘ul’,’ur’,’bl’, or ‘br’ for the

upperleft, upperright, bottomleft, bottomright

ticks (bool) if False, turns off image border ticks

	
py4DSTEM.visualize.vis_special.add_vector(ax, d)

	Adds a vector to an image, using the parameters in dict d.

	The dictionary d has required and optional parameters as follows:
	x0,y0 (req’d) the tail position
vx,vy (req’d) the vector
color (color)
width (number)
label (str)
labelsize (number)
labelcolor (color)

	
py4DSTEM.visualize.vis_special.ax_addaxes(ax, vx, vy, vlength, x0, y0, width=1, color='r', labelaxes=True, labelsize=12, labelcolor='r', righthandedcoords=True)

	Adds a pair of x/y axes to the matplotlib subplot ax. The user supplies
the x-axis direction with (vx,vy), and the y-axis is then chosen
by rotating 90 degrees, in a direction set by righthandedcoords.

	Accepts:
	ax (matplotlib subplot)
vx,vy (numbers) x,y components of the x-axis,

Only the orientation is used; the axis
is normalized and rescaled by

vlength (number) the axis length
x0,y0 (numbers) the origin of the axes
labelaxes (bool) if True, label ‘x’ and ‘y’
righthandedcoords (bool) if True, y-axis is counterclockwise

with respect to x-axis

	
py4DSTEM.visualize.vis_special.ax_addaxes_QtoR(ax, vx, vy, vlength, x0, y0, QR_rotation, width=1, color='r', labelaxes=True, labelsize=12, labelcolor='r')

	Adds a pair of x/y axes to the matplotlib subplot ax. The user supplies
the x-axis direction with (vx,vy) in reciprocal space coordinates, and
the function transforms and displays the corresponding vector in real space.

	Accepts:
	ax (matplotlib subplot)
vx,vy (numbers) x,y components of the x-axis,

in reciprocal space coordinates. Only
the orientation is used; the axes
are normalized and rescaled by

vlength (number) the axis length, in real space
x0,y0 (numbers) the origin of the axes, in

real space

labelaxes (bool) if True, label ‘x’ and ‘y’
QR_rotation (number) the offset angle between real and

diffraction space. Specifically, this is
the counterclockwise rotation of real space
with respect to diffraction space. In degrees.

	
py4DSTEM.visualize.vis_special.make_axes_locatable(axes)

	

	
py4DSTEM.visualize.vis_special.select_point(ar, x, y, i, color='lightblue', color_selected='r', size=20, returnfig=False, **kwargs)

	Show enumerated index labels for a set of points, with one selected point highlighted

	
py4DSTEM.visualize.vis_special.show(ar, figsize=(5, 5), cmap='gray', scaling='none', intensity_range='ordered', clipvals=None, vmin=None, vmax=None, min=None, max=None, power=None, power_offset=True, combine_images=False, ticks=True, bordercolor=None, borderwidth=5, show_image=True, return_ar_scaled=False, return_intensity_range=False, returncax=False, returnfig=False, figax=None, hist=False, n_bins=256, mask=None, mask_color='k', mask_alpha=0.0, masked_intensity_range=False, rectangle=None, circle=None, annulus=None, ellipse=None, points=None, grid_overlay=None, cartesian_grid=None, polarelliptical_grid=None, rtheta_grid=None, scalebar=None, calibration=None, rx=None, ry=None, space='Q', pixelsize=None, pixelunits=None, x0=None, y0=None, a=None, e=None, theta=None, title=None, show_fft=False, show_cbar=False, **kwargs)

	General visualization function for 2D arrays.

The simplest use of this function is:

>>> show(ar)

which will generate and display a matplotlib figure showing the 2D array ar.
Additional functionality includes:

	scaling the image (log scaling, power law scaling)

	displaying the image histogram

	altering the histogram clip values

	masking some subset of the image

	setting the colormap

	adding geometric overlays (e.g. points, circles, rectangles, annuli)

	adding informational overlays (scalebars, coordinate grids, oriented axes or
vectors)

	further customization tools

These are each discussed in turn below.

	Scaling:
	Setting the parameter scaling will scale the display image. Options are
‘none’, ‘auto’, ‘power’, or ‘log’. If ‘power’ is specified, the parameter power must
also be passed. The underlying data is not altered. Values less than or equal to
zero are set to zero. If the image histogram is displayed using hist=True,
the scaled image histogram is shown.

Examples:

>>> show(ar,scaling='log')
>>> show(ar,power=0.5)
>>> show(ar,scaling='power',power=0.5,hist=True)

	Histogram:
	Setting the argument hist=True will display the image histogram, instead of
the image. The displayed histogram will reflect any scaling requested. The number
of bins can be set with n_bins. The upper and lower clip values, indicating
where the image display will be saturated, are shown with dashed lines.

	Intensity range:
	Controlling the lower and upper values at which the display image will be
saturated is accomplished with the intensity_range parameter, or its
(soon deprecated) alias clipvals, in combination with vmin,
and vmax. The method by which the upper and lower clip values
are determined is controlled by intensity_range, and must be a string in
(‘None’,’ordered’,’minmax’,’absolute’,’std’,’centered’). See the argument
description for intensity_range for a description of the behavior for each.
The clip values can be returned with the return_intensity_range parameter.

	Masking:
	If a numpy masked array is passed to show, the function will automatically
mask the appropriate pixels. Alternatively, a boolean array of the same shape as
the data array may be passed to the mask argument, and these pixels will be
masked. Masked pixels are displayed as a single uniform color, black by default,
and which can be specified with the mask_color argument. Masked pixels
are excluded when displaying the histogram or computing clip values. The mask
can also be blended with the hidden data by setting the mask_alpha argument.

	Overlays (geometric):
	The function natively supports overlaying points, circles, rectangles, annuli,
and ellipses. Each is invoked by passing a dictionary to the appropriate input
variable specifying the geometry and features of the requested overlay. For
example:

>>> show(ar, rectangle={'lims':(10,20,10,20),'color':'r'})

will overlay a single red square, and

>>> show(ar, annulus={'center':[(28,68),(92,160)],
 'radii':[(16,24),(12,36)],
 'fill':True,
 'alpha':[0.9,0.3],
 'color':['r',(0,1,1,1)]})

will overlay two annuli with two different centers, radii, colors, and
transparencies. For a description of the accepted dictionary parameters
for each type of overlay, see the visualize functions add_*, where
* = (‘rectangle’,’circle’,’annulus’,’ellipse’,’points’). (These docstrings
are under construction!)

	Overlays (informational):
	Informational overlays supported by this function include coordinate axes
(cartesian, polar-elliptical, or r-theta) and scalebars. These are added
by passing the appropriate input argument a dictionary of the desired
parameters, as with geometric overlays. However, there are two key differences
between these overlays and the geometric overlays. First, informational
overlays (coordinate systems and scalebars) require information about the
plot - e.g. the position of the origin, the pixel sizes, the pixel units,
any elliptical distortions, etc. The easiest way to pass this information
is by pass a Calibration object containing this info to show as the
keyword calibration. Second, once the coordinate information has been
passed, informational overlays can autoselect their own parameters, thus simply
passing an empty dict to one of these parameters will add that overlay.

For example:

>>> show(dp, scalebar={}, calibration=calibration)

will display the diffraction pattern dp with a scalebar overlaid in the
bottom left corner given the pixel size and units described in calibration,
and

>>> show(dp, calibration=calibration, scalebar={'length':0.5,'width':2,
 'position':'ul','label':True'})

will display a more customized scalebar.

When overlaying coordinate grids, it is important to note that some relevant
parameters, e.g. the position of the origin, may change by scan position.
In these cases, the parameters rx,``ry`` must also be passed to show,
to tell the Calibration object where to look for the relevant parameters.
For example:

>>> show(dp, cartesian_grid={}, calibration=calibration, rx=2,ry=5)

will overlay a cartesian coordinate grid on the diffraction pattern at scan
position (2,5). Adding

>>> show(dp, calibration=calibration, rx=2, ry=5, cartesian_grid={'label':True,
 'alpha':0.7,'color':'r'})

will customize the appearance of the grid further. And

>>> show(im, calibration=calibration, cartesian_grid={}, space='R')

displays a cartesian grid over a real space image. For more details, see the
documentation for the visualize functions add_*, where * = (‘scalebar’,
‘cartesian_grid’, ‘polarelliptical_grid’, ‘rtheta_grid’). (Under construction!)

	Further customization:
	Most parameters accepted by a matplotlib axis will be accepted by show.
Pass a valid matplotlib colormap or a known string indicating a colormap
as the argument cmap to specify the colormap. Pass figsize to
specify the figure size. Etc.

Further customization can be accomplished by either (1) returning the figure
generated by show and then manipulating it using the normal matplotlib
functions, or (2) generating a matplotlib Figure with Axes any way you like
(e.g. with plt.subplots) and then using this function to plot inside a
single one of the Axes of your choice.

Option (1) is accomplished by simply passing this function returnfig=True.
Thus:

>>> fig,ax = show(ar, returnfig=True)

will now give you direct access to the figure and axes to continue to alter.
Option (2) is accomplished by passing an existing figure and axis to show
as a 2-tuple to the figax argument. Thus:

>>> fig,(ax1,ax2) = plt.subplots(1,2)
>>> show(ar, figax=(fig,ax1))
>>> show(ar, figax=(fig,ax2), hist=True)

will generate a 2-axis figure, and then plot the array ar as an image on
the left, while plotting its histogram on the right.

	Parameters:

	
	ar (2D array or a list of 2D arrays) – the data to plot. Normally this
is a 2D array of the data. If a list of 2D arrays is passed, plots
a corresponding grid of images.

	figsize (2-tuple) – size of the plot

	cmap (colormap) – any matplotlib cmap; default is gray

	scaling (str) – selects a scaling scheme for the intensity values. Default is
none. Accepted values:

	’none’: do not scale intensity values

	’full’: fill entire color range with sorted intensity values

	’power’: power law scaling

	’log’: values where ar<=0 are set to 0

	intensity_range (str) –
	method for setting clipvalues (min and max intensities).
	The original name “clipvals” is now deprecated.
Default is ‘ordered’. Accepted values:

	’ordered’: vmin/vmax are set to fractions of the
distribution of pixel values in the array, e.g. vmin=0.02
will set the minumum display value to saturate the lower 2% of pixels

	’minmax’: The vmin/vmax values are np.min(ar)/np.max(r)

	’absolute’: The vmin/vmax values are set to the values of
the vmin,vmax arguments received by this function

	
	’std’: The vmin/vmax values are np.median(ar) -/+ N*np.std(ar), and
	N is this functions min,max vals.

	’centered’: The vmin/vmax values are set to c -/+ m, where by default
‘c’ is zero and m is the max(abs(ar-c), or the two params can be user
specified using the kwargs vmin/vmax -> c/m.

	vmin (number) – min intensity, behavior depends on clipvals

	vmax (number) – max intensity, behavior depends on clipvals

	min – alias’ for vmin,vmax, throws deprecation warning

	max – alias’ for vmin,vmax, throws deprecation warning

	power (number) – specifies the scaling power

	power_offset (bool) – If true, image has min value subtracted before power scaling

	ticks (bool) – Turn outer tick marks on or off

	bordercolor (color or None) – if not None, add a border of this color.
The color can be anything matplotlib recognizes as a color.

	borderwidth (number) –

	returnfig (bool) – if True, the function returns the tuple (figure,axis)

	figax (None or 2-tuple) – controls which matplotlib Axes object draws the image.
If None, generates a new figure with a single Axes instance. Otherwise, ax
must be a 2-tuple containing the matplotlib class instances (Figure,Axes),
with ar then plotted in the specified Axes instance.

	hist (bool) – if True, instead of plotting a 2D image in ax, plots a histogram of
the intensity values of ar, after any scaling this function has performed.
Plots the clipvals as dashed vertical lines

	n_bins (int) – number of hist bins

	mask (None or boolean array) – if not None, must have the same shape as ‘ar’.
Wherever mask==True, plot the pixel normally, and where mask==False,
pixel values are set to mask_color. If hist==True, ignore these values in the
histogram. If mask_alpha is specified, the mask is blended with the array
underneath, with 0 yielding an opaque mask and 1 yielding a fully transparent
mask. If mask_color is set to 'empty' instead of a matplotlib.color,
nothing is done to pixels where mask==False, allowing overlaying multiple
arrays in different regions of an image by invoking the ``figax` kwarg over
multiple calls to show

	mask_color (color) – see ‘mask’

	mask_alpha (float) – see ‘mask’

	masked_intensity_range (bool) – controls if masked pixel values are included when
determining the display value range; False indicates that all pixel values
will be used to determine the intensity range, True indicates only unmasked
pixels will be used

	scalebar (None or dict or Bool) – if None, and a DiffractionSlice or RealSlice
with calibrations is passed, adds a scalebar. If scalebar is not displaying the proper
calibration, check .calibration pixel_size and pixel_units. If None and an array is passed,
does not add a scalebar. If a dict is passed, it is propagated to the add_scalebar function
which will attempt to use it to overlay a scalebar. If True, uses calibraiton or pixelsize/pixelunits
for scalebar. If False, no scalebar is added.

	show_fft (bool) – if True, plots 2D-fft of array

	show_cbar (bool) – if True, adds cbar

	**kwargs – any keywords accepted by matplotlib’s ax.matshow()

	Returns:

	if returnfig==False (default), the figure is plotted and nothing is returned.
if returnfig==True, return the figure and the axis.

	
py4DSTEM.visualize.vis_special.show_amorphous_ring_fit(dp, fitradii, p_dsg, N=12, cmap=('gray', 'gray'), fitborder=True, fitbordercolor='k', fitborderlw=0.5, scaling='log', ellipse=False, ellipse_color='r', ellipse_alpha=0.7, ellipse_lw=2, returnfig=False, **kwargs)

	Display a diffraction pattern with a fit to its amorphous ring, interleaving
the data and the fit in a pinwheel pattern.

	Parameters:

	
	dp (array) – the diffraction pattern

	fitradii (2-tuple of numbers) – the min/max distances of the fitting annulus

	p_dsg (11-tuple) – the fit parameters to the double-sided gaussian
function returned by fit_ellipse_amorphous_ring

	N (int) – the number of pinwheel sections

	cmap (colormap or 2-tuple of colormaps) – if passed a single cmap, uses this
colormap for both the data and the fit; if passed a 2-tuple of cmaps, uses
the first for the data and the second for the fit

	fitborder (bool) – if True, plots a border line around the fit data

	fitbordercolor (color) – color of the fitborder

	fitborderlw (number) – linewidth of the fitborder

	scaling (str) – the normal scaling param – see docstring for visualize.show

	ellipse (bool) – if True, overlay an ellipse

	returnfig (bool) – if True, returns the figure

	
py4DSTEM.visualize.vis_special.show_class_BPs(ar, x, y, s, s2, color='r', color2='y', **kwargs)

	words

	
py4DSTEM.visualize.vis_special.show_class_BPs_grid(ar, H, W, x, y, get_s, s2, color='r', color2='y', returnfig=False, axsize=(6, 6), titlesize=0, get_bordercolor=None, **kwargs)

	words

	
py4DSTEM.visualize.vis_special.show_complex(ar_complex, vmin=None, vmax=None, power=None, chroma_boost=1, cbar=True, scalebar=False, pixelunits='pixels', pixelsize=1, returnfig=False, **kwargs)

	Function to plot complex arrays

	Parameters:

	
	ar_complex (2D array) – complex array to be plotted. If ar_complex is list of complex arrarys
such as [array1, array2], then arrays are horizonally plotted in one figure

	vmin (float, optional) – minimum absolute value

	vmax (float, optional) – maximum absolute value
if None, vmin/vmax are set to fractions of the distribution of pixel values in the array,
e.g. vmin=0.02 will set the minumum display value to saturate the lower 2% of pixels

	power (float,optional) – power to raise amplitude to

	chroma_boost (float) – boosts chroma for higher-contrast (~1-2.25)

	cbar (bool, optional) – if True, include color bar

	scalebar (bool, optional) – if True, adds scale bar

	pixelunits (str, optional) – units for scalebar

	pixelsize (float, optional) – size of one pixel in pixelunits for scalebar

	returnfig (bool, optional) – if True, the function returns the tuple (figure,axis)

	Returns:

	if returnfig==False (default), the figure is plotted and nothing is returned.
if returnfig==True, return the figure and the axis.

	
py4DSTEM.visualize.vis_special.show_elliptical_fit(ar, fitradii, p_ellipse, fill=True, color_ann='y', color_ell='r', alpha_ann=0.2, alpha_ell=0.7, linewidth_ann=2, linewidth_ell=2, returnfig=False, **kwargs)

	Plots an elliptical curve over its annular fit region.

	Parameters:

	
	center (2-tuple) – the center

	fitradii (2-tuple of numbers) – the annulus inner and outer fit radii

	p_ellipse (5-tuple) – the parameters of the fit ellipse, (qx0,qy0,a,b,theta).
See the module docstring for utils.elliptical_coords for more details.

	fill (bool) – if True, fills in the annular fitting region,
else shows only inner/outer edges

	color_ann (color) – annulus color

	color_ell (color) – ellipse color

	alpha_ann – transparency for the annulus

	alpha_ell – transparency forn the fit ellipse

	linewidth_ann –

	linewidth_ell –

	
py4DSTEM.visualize.vis_special.show_image_grid(get_ar, H, W, axsize=(6, 6), returnfig=False, figax=None, title=None, title_index=False, suptitle=None, get_bordercolor=None, get_x=None, get_y=None, get_pointcolors=None, get_s=None, open_circles=False, **kwargs)

	Displays a set of images in a grid.

The images are specified by some function get_ar(i), which returns an
image for values of some integer index i. The values of i passed to
get_ar are 0 through HW-1.

To display the first 4 two-dimensional slices of some 3D array ar
some 3D array ar, you can do

>>> show_image_grid(lambda i:ar[:,:,i], H=2, W=2)

Its also possible to add colored borders, or overlaid points,
using similar functions to get_ar, i.e. functions which return
the color or set of points of interest as a function of index
i, which must be defined in the range [0,HW-1].

	Accepts:
	
	get_ar a function which returns a 2D array when passed
	the integers 0 through HW-1

H,W integers, the dimensions of the grid
axsize the size of each image
figax controls which matplotlib Axes object draws the image.

If None, generates a new figure with a single Axes instance.
Otherwise, ax must be a 2-tuple containing the matplotlib class instances
(Figure,Axes), with ar then plotted in the specified Axes instance.

	title if title is sting, then prints title as suptitle. If a suptitle is also provided,
	the suptitle is printed insead.
if title is a list of strings (ex: [‘title 1’,’title 2’]), each array has
corresponding title in list.

title_index if True, prints the index i passed to get_ar over each image
suptitle string, suptitle on plot
get_bordercolor

if not None, should be a function defined over
the same i as get_ar, and which returns a
valid matplotlib color for each i. Adds
a colored bounding box about each image. E.g.
if colors is an array of colors:

>>> show_image_grid(lambda i:ar[:,:,i],H=2,W=2,
 get_bordercolor=lambda i:colors[i])

	get_x,get_y functions which returns sets of x/y positions
	as a function of index i

	get_s function which returns a set of point sizes
	as a function of index i

	get_pointcolors a function which returns a color or list of colors
	as a function of index i

	Returns:

	if returnfig==false (default), the figure is plotted and nothing is returned.
if returnfig==false, the figure and its one axis are returned, and can be
further edited.

	
py4DSTEM.visualize.vis_special.show_kernel(kernel, R, L, W, figsize=(12, 6), returnfig=False, **kwargs)

	Plots, side by side, the probe kernel and its line profile.
R is the kernel plot’s window size.
L and W are the length and width of the lineprofile.

	
py4DSTEM.visualize.vis_special.show_max_peak_spacing(ar, spacing, braggdirections, color='g', lw=2, returnfig=False, **kwargs)

	Show a circle of radius spacing about each Bragg direction

	
py4DSTEM.visualize.vis_special.show_origin_fit(data)

	Show the measured, fit, and residuals of the origin positions.

	Parameters:

	data (DataCube or Calibration or (3,2) – ((qx0_meas,qy0_meas),(qx0_fit,qy0_fit),(qx0_residuals,qy0_residuals))

	
py4DSTEM.visualize.vis_special.show_origin_meas(data)

	Show the measured positions of the origin.

	Parameters:

	data (DataCube or Calibration or 2-tuple of arrays (qx0,qy0)) –

	
py4DSTEM.visualize.vis_special.show_pointlabels(ar, x, y, color='lightblue', size=20, alpha=1, returnfig=False, **kwargs)

	Show enumerated index labels for a set of points

	
py4DSTEM.visualize.vis_special.show_qprofile(q, intensity, ymax=None, figsize=(12, 4), returnfig=False, color='k', xlabel='q (pixels)', ylabel='Intensity (A.U.)', labelsize=16, ticklabelsize=14, grid=True, label=None, **kwargs)

	Plots a diffraction space radial profile.
Params:

q (1D array) the diffraction coordinate / x-axis
intensity (1D array) the y-axis values
ymax (number) max value for the yaxis
color (matplotlib color) profile color
xlabel (str)
ylabel
labelsize size of x and y labels
ticklabelsize
grid True or False
label a legend label for the plotted curve

	
py4DSTEM.visualize.vis_special.show_selected_dps(datacube, positions, im, bragg_pos=None, colors=None, HW=None, figsize_im=(6, 6), figsize_dp=(4, 4), **kwargs)

	Shows two plots: first, a real space image overlaid with colored dots
at the specified positions; second, a grid of diffraction patterns
corresponding to these scan positions.

	Parameters:

	
	datacube (DataCube) –

	positions (len N list or tuple of 2-tuples) – the scan positions

	im (2d array) – a real space image

	bragg_pos (len N list of pointlistarrays) – bragg disk positions
for each position. if passed, overlays the disk positions,
and supresses plot of the real space image

	colors (len N list of colors or None) –

	HW (2-tuple of ints) – diffraction pattern grid shape

	figsize_im (2-tuple) – size of the image figure

	figsize_dp (2-tuple) – size of each diffraction pattern panel

	**kwargs (dict) – arguments passed to visualize.show for the
diffraction patterns. Default is scaling=’log’

	
py4DSTEM.visualize.vis_special.show_voronoi(ar, x, y, color_points='r', color_lines='w', max_dist=None, returnfig=False, **kwargs)

	words

emd

Table of Contents

	emd

	Classes

	Functions

Classes

	
class emdfile.Array(data: ndarray, name: str | None = 'array', units: str | None = '', dims: list | None = None, dim_names: list | None = None, dim_units: list | None = None, slicelabels=None)

	A class which stores any N-dimensional array-like data, plus basic metadata:
a name and units, as well as calibrations for each axis of the array, and names
and units for those axis calibrations.

In the simplest usage, only a data array is passed:

>>> ar = Array(np.ones((20,20,256,256)))

will create an array instance whose data is the numpy array passed, and with
automatically populated dimension calibrations in units of pixels.

Additional arguments may be passed to populate the object metadata:

>>> ar = Array(
>>> np.ones((20,20,256,256)),
>>> name = 'test_array',
>>> units = 'intensity',
>>> dims = [
>>> [0,5],
>>> [0,5],
>>> [0,0.01],
>>> [0,0.01]
>>>],
>>> dim_units = [
>>> 'nm',
>>> 'nm',
>>> 'A^-1',
>>> 'A^-1'
>>>],
>>> dim_names = [
>>> 'rx',
>>> 'ry',
>>> 'qx',
>>> 'qy'
>>>],
>>>)

will create an array with a name and units for its data, where its first two
dimensions are in units of nanometers, have pixel sizes of 5nm, and are
described by the handles ‘rx’ and ‘ry’, and where its last two dimensions
are in units of inverse Angstroms, have pixels sizes of 0.01A^-1, and are
described by the handles ‘qx’ and ‘qy’.

Arrays in which the length of each pixel is non-constant are also
supported. For instance,

>>> x = np.logspace(0,1,100)
>>> y = np.sin(x)
>>> ar = Array(
>>> y,
>>> dims = [
>>> x
>>>]
>>>)

generates an array representing the values of the sine function sampled
100 times along a logarithmic interval from 1 to 10. In this example,
this data could then be plotted with, e.g.

>>> plt.scatter(ar.dims[0], ar.data)

If the slicelabels keyword is passed, the first N-1 dimensions of the
array are treated normally, while the final dimension is used to represent
distinct arrays which share a common shape and set of dim vectors. Thus

>>> ar = Array(
>>> np.ones((50,50,4)),
>>> name = 'test_array_stack',
>>> units = 'intensity',
>>> dims = [
>>> [0,2],
>>> [0,2]
>>>],
>>> dim_units = [
>>> 'nm',
>>> 'nm'
>>>],
>>> dim_names = [
>>> 'rx',
>>> 'ry'
>>>],
>>> slicelabels = [
>>> 'a',
>>> 'b',
>>> 'c',
>>> 'd'
>>>]
>>>)

will generate a single Array instance containing 4 arrays which each have
a shape (50,50) and a common set of dim vectors [‘rx’,’ry’], and which
can be indexed into with the names assigned in slicelabels using

>>> ar.get_slice('a')

which will return a 2D (non-stack-like) Array instance with shape (50,50)
and the dims assigned above. The Array attribute .rank is equal to the
number of dimensions for a non-stack-like Array, and is equal to N-1
for stack-like arrays.

	
__init__(data: ndarray, name: str | None = 'array', units: str | None = '', dims: list | None = None, dim_names: list | None = None, dim_units: list | None = None, slicelabels=None)

	
	Accepts:
	data (np.ndarray): the data
name (str): the name of the Array
units (str): units for the pixel values
dims (variable): calibration vectors for each of the axes of the data

array. Valid values for each element of the list are None,
a number, a 2-element list/array, or an M-element list/array
where M is the data array. If None is passed, the dim will be
populated with integer values starting at 0 and its units will
be set to pixels. If a number is passed, the dim is populated
with a vector beginning at zero and increasing linearly by this
step size. If a 2-element list/array is passed, the dim is
populated with a linear vector with these two numbers as the first
two elements. If a list/array of length M is passed, this is used
as the dim vector, (and must therefore match this dimension’s
length). If dims recieves a list of fewer than N arguments for an
N-dimensional data array, the extra dimensions are populated as if
None were passed, using integer pixel values. If the dims
parameter is not passed, all dim vectors are populated this way.

	dim_units (list): the units for the calibration dim vectors. If
	nothing is passed, dims vectors which have been populated
automatically with integers corresponding to pixel numbers
will be assigned units of ‘pixels’, and any other dim vectors
will be assigned units of ‘unknown’. If a list with length <
the array dimensions, the passed values are assumed to apply
to the first N dimensions, and the remaining values are
populated with ‘pixels’ or ‘unknown’ as above.

	dim_names (list): labels for each axis of the data array. Values
	which are not passed, following the same logic as described
above, will be autopopulated with the name “dim#” where #
is the axis number.

	slicelabels (None or True or list): if not None, must be True or a
	list of strings, indicating a “stack-like” array. In this case,
the first N-1 dimensions of the array are treated normally, in
the sense of populating dims, dim_names, and dim_units, while the
final dimension is treated distinctly: it indexes into
distinct arrays which share a set of dimension attributes, and
can be sliced into using the string labels from the slicelabels
list, with the syntax array[‘label’] or array.get_slice(‘label’).
If slicelabels is True or is a list with length less than the
final dimension length, unassigned dimensions are autopopulated
with labels array{i}. The flag array.is_stack is set to True
and the array.rank attribute is set to N-1.

	Returns:

	A new Array instance

	
get_dim(n)

	Return the n’th dim vector

	
dim(n)

	Return the n’th dim vector

	
set_dim(n: int, dim: list | ndarray, units: str | None = None, name: str | None = None)

	Sets the n’th dim vector, using dim as described in the Array
documentation. If units and/or name are passed, sets these
values for the n’th dim vector.

	Accepts:
	n (int): specifies which dim vector
dim (list or array): length must be either 2, or equal to the

length of the n’th axis of the data array

units (Optional, str):
name: (Optional, str):

	
get_dim_units(n)

	Return the n’th dim vector units

	
set_dim_units(n: int, units: str)

	Sets the n’th dim vector units to units.

	Accepts:
	n (int): specifies which dim vector
units (str): new units

	
get_dim_name(n)

	Get the n’th dim vector name

	
set_dim_name(n: int, name: str)

	Sets the n’th dim vector name to name.

	Accepts:
	n (int): specifies which dim vector
name (str): new name

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this Array, tags indicating its EMD type and Python class,
and the array’s data and metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new array’s Group

	
class emdfile.Custom(name='custom')

	
	
__init__(name='custom')

	

	
to_h5(group)

	Constructs an h5 group, adds metadata, and adds all attributes
which point to EMD nodes.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new node’s Group

	
class emdfile.Metadata(name: str | None = 'metadata', data: dict | None = None)

	Stores metadata in the form of a flat (non-nested) dictionary.
Keys are arbitrary strings. Values may be strings, numbers, arrays,
or lists of the above types.

Usage:

>>> meta = Metadata()
>>> meta['param'] = value
>>> val = meta['param']

If the parameter has not been set, the getter methods return None.

	
__init__(name: str | None = 'metadata', data: dict | None = None)

	
	Parameters:

	name (Optional, string) –

	
copy(name=None)

	

	
to_h5(group)

	Accepts an h5py Group which is open in write or append mode. Writes
a new group with this object’s name and saves its metadata in it.

	Accepts:
	group (h5py Group)

	
classmethod from_h5(group)

	Accepts an h5py Group which is open in read mode, confirms that
it represents an EMD MetadataDict group, then loads and returns it
as a Metadata instance.

	Accepts:
	group (HDF5 group)

	Returns:

	(Metadata)

	
class emdfile.Node(name: str | None = 'node')

	Nodes contain attributes and methods paralleling
the EMD 1.0 file specification in Python runtime objects.

EMD 1.0 is a singly-rooted file format. That is to say:
An EMD data object can and must exist in one and only one
EMD tree. An EMD file can contain any number of EMD trees, each
containing data and metadata which is, within the limits of
the EMD group specifications, of some arbitrary complexity.
An EMD 1.0 file thus represents, stores, and enables
access to some arbitrary data in long term storage on a file
system in the form of an HDF5 file. The Node class provides
machinery for building trees of data and metadata which mirror
the EMD tree format but which exist in a live Python instance,
rather than on the file system. This facilitates ease of
transfer between Python and the file system.

Nodes are intended to be used a base class on which other, more
complex classes can be biult. Nodes themselves contain the
machinery for managing a tree heirarchy of other Nodes and
Metadata instances, and for reading and writing those trees.
They do not contain any particular data. Classes storing data
and analysis methods which inherit from Node will inherit its
tree management and EMD i/o functionality.

Below, the 4 elements of the node class are each described in turn:
roots, trees, metadata, and i/o.

ROOTS

EMD data objects can and must exist in one and only one EMD tree,
each of which must have a single, named root node. To parallel this in
our runtime objects, each Node has a root property, which can be found
by calling self.root.

By default new nodes have their root set to None. If a node
with .root == None is saved to file, it is placed inside a
new root with the same name as the object itself, and this
is then saved to the file as a new (minimal) EMD tree.

A new root node can be instantiated by calling

>>> rootnode = Root(name=some_name).

Objects added to an existing rooted tree (including a new root node)
automatically have their root assigned to the root of that tree.
Adding objects to trees is discussed below.

TREES

The tree associated with a node can be manipulated with the .tree
method. If we have some rooted node node1 and some unrooted node
node2, the unrooted node can be added to the existing tree as a
child of the rooted node with

>>> node1.tree(node2)

If we have a rooted node node1 and another rooted node node2,
we can’t simply add node2 with the code above, as this would
create a conflict between the two roots. In this case, we can
move node2 from its current tree to the new tree using

>>> node1.tree(graft=node2)

The .tree method has various additional functionalities, including
printing the tree, retrieving objects from the tree, and cutting
branches from the tree. These are summarized below:

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keep root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string), i.e.
in most cases, the keyword can be dropped. So

>>> .tree()
>>> .tree(node)
>>> .tree(True)
>>> .tree('some/node')

will, respectively, print the tree from the current node to screen,
add the node node to the tree, pring the tree from the root node
to screen, and return the node at the emdpath ‘some/node’.

If a node needs to be added to a tree and it may or may not
already have its own root, calling

>>> .tree(add=node, force=True)

or

>>> .tree(node, force=True)

will add the node to the tree, using a simple add if node has no
root, and grafting it if it does have a root.

METADATA

Nodes can contain any number of Metadata instances, each of which
wraps a Python dictionary of some arbitrary complexity (to within
the limits of the Metadata group EMD specification, which limits
permissible values somewhat).

The code:

>>> md1 = Metadata(name='md1')
>>> md2 = Metadata(name='md2')
>>> <<< some code populating md1 + md2 >>>
>>> node.metadata = md1
>>> node.metadata = md2

will create two Metadata objects, populate them with data, then
add them to the node. Note that Node.metadata is not a Python
attribute, it is specially defined property, such that the last
line of code does not overwrite the line before it - rather,
assigning to the .metadata property adds the new metadata object
to a running dictionary of arbitrarily many metadata objects.
Both of these two metadata instances can therefore still be
retrieved, using:

>>> x = node.metadata['md1']
>>> y = node.metadata['md2']

Note, however, that if the second metadata instance has an identical
name to the first instance, then in will overwrite the old instance.

I/O

TODO

	
__init__(name: str | None = 'node')

	

	
show_tree(root=False)

	Display the object tree. If root is False, displays the branch
of the tree downstream from this node. If root is True, displays
the full tree from the root node.

	
add_to_tree(node)

	Add an unrooted node as a child of the current, rooted node.
To move an already rooted node/branch, use .graft().
To create a rooted node, use Root().

	
force_add_to_tree(node)

	Add node node as a child of the current node, whether or not
node is rooted. If it’s unrooted, performs a simple add. If
it is rooted, performs a graft, excluding the root metadata
from node.

	
get_from_tree(name)

	Finds and returns an object from an EMD tree using the string
key name, with ‘/’ delimiters between ‘parent/child’ nodes.
Search from the root node by adding a leading ‘/’; otherwise,
searches from the current node.

	
graft(node, merge_metadata=True)

	Moves the branch beginning node onto this tree at this node.

For the reverse (i.e. grafting from this tree onto another tree)
either use that tree’s .graft method, or use this tree’s ._graft.

	Accepts:
	node (Node):
merge_metadata (True, False, or ‘copy’): if True adds the old root’s

metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) this tree’s root node

	
cut_from_tree(root_metadata=True)

	Removes a branch from an object tree at this node.

A new root node is created under this object
with this object’s name. Metadata from
the current root is transferred/not transferred
to the new root according to the value of root_metadata.

	Accepts:
	
	root_metadata (True, False, or ‘copy’): if True adds the old root’s
	metadata to the new root; if False adds no metadata to the new
root; if ‘copy’ adds copies of all metadata from the old root to
the new root.

	Returns:

	(Node) the new root node

	
tree(arg=None, **kwargs)

	Usages -

>>> .tree() # show tree from current node
>>> .tree(show=True) # show from root
>>> .tree(show=False) # show from current node
>>> .tree(add=node) # add a child node
>>> .tree(get='path') # return a '/' delimited child node
>>> .tree(get='/path') # as above, starting at root
>>> .tree(cut=True) # remove/return a branch, keep root metadata
>>> .tree(cut=False) # remove/return a branch, discard root md
>>> .tree(cut='copy') # remove/return a branch, copy root metadata
>>> .tree(graft=node) # remove/graft a branch, keeping root metadata
>>> .tree(graft=(node,True)) # as above
>>> .tree(graft=(node,False)) # as above, discard root metadata
>>> .tree(graft=(node,'copy')) # as above, copy root metadata

The show, add, and get methods can be accessed directly with

>>> .tree(arg)

for an arg of the appropriate type (bool, Node, and string).

	
static newnode(method)

	Decorator which may be added to node methods which product and
return a new node. If such a method is decorated with

>>> @newnode

then the new node is added to the parent node’s tree, and a
Metadata instance is added to the new node’s metadata which
stores information about how the node was created, namely:
method’s name, the parent’s class and name, and all
the arguments passed to method.

	
classmethod from_h5(group)

	Takes an h5py Group which is open in read mode. Confirms that a
a Node of this name exists in this group, and loads and returns it
with it’s metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(Node)

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this node, tags indicating the groups EMD type and Python class,
and any metadata in this node.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new node’s Group

	
class emdfile.PointList(data: ndarray, name: str | None = 'pointlist')

	A wrapper around structured numpy arrays, with read/write functionality in/out of
EMD formatted HDF5 files.

	
__init__(data: ndarray, name: str | None = 'pointlist')

	
Instantiate a PointList.

	Parameters:

	
	data (structured numpy ndarray) – the data; the dtype of this array will
specify the fields of the PointList.

	name (str) – name for the PointList

	Returns:

	a PointList instance

	
add(data)

	Appends a numpy structured array. Its dtypes must agree with the existing data.

	
remove(mask)

	Removes points wherever mask==True

	
sort(field, order='ascending')

	Sorts the point list according to field,
which must be a field in self.dtype.
order should be ‘descending’ or ‘ascending’.

	
copy(name=None)

	Returns a copy of the PointList. If name=None, sets to {name}_copy

	
add_fields(new_fields, name='')

	Creates a copy of the PointList, but with additional fields given by new_fields.

	Parameters:

	
	new_fields – a list of 2-tuples, (‘name’, dtype)

	name – a name for the new pointlist

	
add_data_by_field(data, fields=None)

	Add a list of data arrays to the PointList, in the fields
given by fields. If fields is not specified, assumes the data
arrays are in the same order as self.fields

	Parameters:

	data (list) – arrays of data to add to each field

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this PointList, tags indicating its EMD type and Python class,
and the pointlist’s data and metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new pointlist’s group

	
class emdfile.PointListArray(dtype, shape, name: str | None = 'pointlistarray')

	An 2D array of PointLists which share common coordinates.

	
__init__(dtype, shape, name: str | None = 'pointlistarray')

	
Creates an empty PointListArray.

	Parameters:

	
	dtype – the dtype of the numpy structured arrays which will comprise
the data of each PointList

	shape (2-tuple of ints) – the shape of the array of PointLists

	name (str) – a name for the PointListArray

	Returns:

	a PointListArray instance

	
get_pointlist(i, j, name=None)

	Returns the pointlist at i,j

	
copy(name='')

	Returns a copy of itself.

	
add_fields(new_fields, name='')

	Creates a copy of the PointListArray, but with additional fields given
by new_fields.

	Parameters:

	
	new_fields – a list of 2-tuples, (‘name’, dtype)

	name – a name for the new pointlist

	
to_h5(group)

	Takes an h5py Group instance and creates a subgroup containing
this PointListArray, tags indicating its EMD type and Python class,
and the pointlistarray’s data and metadata.

	Accepts:
	group (h5py Group)

	Returns:

	(h5py Group) the new pointlistarray’s group

	
class emdfile.Root(name='root')

	A Node instance with its .root property set to itself.

	
__init__(name='root')

	

Functions

	
emdfile._get_EMD_version(filepath, rootgroup=None)

	Returns the version (major,minor,release) of an EMD file.

	
emdfile._is_EMD_file(filepath)

	Returns True iff filepath points to a valid EMD 1.0 file.

	
emdfile._version_is_geq(current, minimum)

	Returns True iff current version (major,minor,release) is greater than or equal to minimum.”

	
emdfile.dirname(p)

	Returns the directory component of a pathname

	
emdfile.join(a, *p)

	Join two or more pathname components, inserting ‘/’ as needed.
If any component is an absolute path, all previous path components
will be discarded. An empty last part will result in a path that
ends with a separator.

	
emdfile.print_h5_tree(filepath, show_metadata=False)

	Prints the contents of an h5 file from a filepath.

	
emdfile.read(filepath, emdpath: str | None = None, tree: bool | str | None = True, **legacy_options)

	File reader for EMD 1.0+ files.

	Parameters:

	
	filepath (str or Path) – the file path

	emdpath (str) – path to the node in an EMD object tree to read
from. May be a root node or some downstream node. Use ‘/’
delimiters between node names. If emdpath is None, checks to
see how many root nodes are present. If there is one, loads
this tree. If there are several, returns a list of the root names.

	tree (True or False or 'branch') – indicates what data should be loaded,
relative to the node specified by emdpath. If set to False,
only data/metadata in the specified node is loaded, plus any
root metadata. If set to True, loads that node plus the
subtree of data objects it contains (and their metadata, and
the root metadata). If set to ‘branch’, loads the branch
under this node as above, but does not load the node itself.
If emdpath points to a root node, setting tree to ‘branch’
or True are equivalent - both return the whole data tree.

	Returns:

	
	(Root) returns a Root instance containing (1) any root metadata from
	the EMD tree loaded from, and (2) a tree of one or more pieces
of data/metadata

	
emdfile.save(filepath, data, mode='w', emdpath=None, tree=True)

	Saves data to a .h5 file at filepath.

Calling

>>> save(path, data)

if data is a Root instance saves this root and its entire tree to a new
file. If data is any other type of rooted node (i.e. a node inside of
some runtime data tree), this code writes a new file with a single tree
using this node’s root (even if this node is far downstream of the root
node), placing this node and the tree branch underneath it inside that
root. In both cases, the root metadata is stored in the new H5 root node.
If data is an unrooted node (i.e. a freestanding node not connected to
a tree), this code creates a new root node with no metadata and this node’s
name, and places this node inside that root in a new file.

If data is a numpy array or Python dictionary, wraps data in either an
emd.Array or emd.Metadata instance, assigns the name ‘np.array’ or
‘dictionary’, places the object in a root of this name and saves. If
data is a list of objects which are all numpy arrays, Python dictionaries,
or emd.Node instances, places all these objects into a single root, assigns
the roots name according to the first object in the list, and saves.

To write a single node from a tree, set tree to False. To write the
tree underneath a node but exclude the node itself set tree to None.

To add to an existing EMD file, use the mode argument to set append or
appendover mode. If the emdpath variable is not set and data has a
runtime root that does not exist in the EMD root groups already present,
adds the new root and writes as described above. If emdpath is not set
and the runtime root group matches a root group that’s already present,
this function performs a diff operation between the root metadata and
data nodes from data and those already in the H5 file. Append mode adds
any data/metadata groups with no equivalent (i.e. same name and tree
location) in the H5 tree, while skipping any data/metadata already found
in the tree. Appendover adds any data/metadata with no equivalent already
in the H5 tree, and overwrites any data/metadata groups that are already
represented in the HDF5 with the new data. Note that this function does
not attempt to take a diff between the contents of the groups and the
runtime data groups - it only considers the names and their locations in
the tree. If append or appendover mode are used and filepath is set to
a location that does not already contain a file on the filesystem,
behavior is identical to write mode. When appendover mode overwrites
data, it is erasing the old links and creating new links to new data;
however, the HDF5 file does not release the space on the filesystem.
To free up storage, set mode to ‘appendover’, and this function will
add a final step to re-write then delete the old file.

The emdpath argument is used to append to a specific location in an
extant EMD file downstream of some extant root. If passed, it must point
to a valid location in the EMD file. This function will then perform a
diff and write as described in the prior paragraph, except beginning
from the H5 node specified in emdpath. Note that in this case the root
metadata is still compared to and added or overwritten in the H5 root node,
even if the remaining data is being added to some downstream branch.

	Parameters:

	
	filepath – path where the file will be saved

	data – an EMD data class instance

	mode (str) –
	supported modes and their keys are:
	
	write (‘w’,’write’)

	overwrite (‘o’,’overwrite’)

	append (‘a’,’+’,’append’)

	appendover (‘ao’,’oa’,’o+’,’+o’,’appendover’)

Write mode writes a new file, and raises an exception if a file
of this name already exists. Overwrite mode deletes any file of
this name that already exists and writes a new file. Append and
appendover mode write a new file if no file of this name exists,
or if a file of this name does exist, adds new data to the file.
The specific behavior of append and appendover depend on the
data,`emdpath`, and tree arguments as discussed in more detail
above. Broadly, both modes attempt to detemine the difference
between the data passed and that present in the extent HDF5 file
tree, add any data not already in the H5, and then either skips
or overwrites conflicting nodes in append or appendover mode,
respectively.

	tree – indicates how the object tree nested inside data should
be treated. If True (default), the entire tree is saved.
If False, only this object is saved, without its tree. If
None, saves the entire tree underneath data, but not
the node at data itself.

	emdpath (str or None) – optional parameter used in conjunction with
append or appendover mode; if passed in write or overwrite mode,
this argument is ignored. Indicates where in an existing EMD
file tree to place the data. Must be a ‘/’ delimited string
pointing to an existing EMD file tree node.

	
emdfile.set_author(author)

	Accepts a string, which will be written to the “authoring_user” field in any EMD file headers
written during this Python session

	
emdfile.tqdmnd(*args, **kwargs)

	An N-dimensional extension of tqdm providing an iterator and
progress bar over the product of multiple iterators.

Example Usage:

>>> for x,y in tqdmnd(5,6):
>>> <expression>

is equivalent to

>>> for x in range(5):
>>> for y in range(6):
>>> <expression>

with a tqdmnd-style progress bar printed to standard output.

	Accepts:
	
	*args: Any number of integers or iterators. Each integer N
	is converted to a range(N) iterator. Then a loop is
constructed from the Cartesian product of all iterables.

	**kwargs: keyword arguments passed through directly to tqdm.
	Full details are available at https://tqdm.github.io
A few useful ones:

disable (bool): if True, hide the progress bar
keep (bool): if True, delete the progress bar after completion
unit (str): unit name for the display of iteration speed
unit_scale (bool): whether to scale the displayed units and add

SI prefixes

desc (str): message displayed in front of the progress bar

	Returns:

	At each iteration, a tuple of indices is returned, corresponding to the
values of each input iterator (in the same order as the inputs).

Graphical User Interface

Overview

There is a GUI for viewing and performing some basic analysis of your 4D-STEM dataset.
This feature is currently in development and must be installed separately. For more details you can checkout the git repositoary here [https://github.com/sezelt/py4D-browser]

[image: py4DSTEM-Browser]

Installation

Currently there are no pip or conda packages and it must be install in one of two ways:

git clone https://github.com/sezelt/py4D-browser.git
cd py4D-browser
python setupy.py

Alternatively,

pip install git+https://github.com/sezelt/py4D-browser

Support & Contributions

Support

Think you’ve found a bug or are facing issues using a feature? Please let us know by creating an issue on github [https://github.com/py4dstem/py4DSTEM/issues]

Contributions

Looking to contirbute? Awesome we love people contributing, and it’s a simple process.

	Submit feature request on github [https://github.com/py4dstem/py4DSTEM/issues]

	Follow the developer install instructions

	Make any change alterations and document all functions (All code should be readable, so clarity beats cleverness)

	Submit a PR on github.

License

py4DSTEM is released under the GNU GPV version 3 license.

GPLv3

 GNU GENERAL PUBLIC LICENSE
 Version 3, 29 June 2007

 Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The GNU General Public License is a free, copyleft license for
software and other kinds of works.

 The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

 To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

 Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

 For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

 Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

 Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

 The precise terms and conditions for copying, distribution and
modification follow.

 TERMS AND CONDITIONS

 0. Definitions.

 "This License" refers to version 3 of the GNU General Public License.

 "Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

 "The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

 To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

 A "covered work" means either the unmodified Program or a work based
on the Program.

 To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

 To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

 An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

 1. Source Code.

 The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

 A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

 The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

 The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

 The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

 The Corresponding Source for a work in source code form is that
same work.

 2. Basic Permissions.

 All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

 You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

 Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

 3. Protecting Users' Legal Rights From Anti-Circumvention Law.

 No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

 When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

 4. Conveying Verbatim Copies.

 You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

 You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

 5. Conveying Modified Source Versions.

 You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

 a) The work must carry prominent notices stating that you modified
 it, and giving a relevant date.

 b) The work must carry prominent notices stating that it is
 released under this License and any conditions added under section
 7. This requirement modifies the requirement in section 4 to
 "keep intact all notices".

 c) You must license the entire work, as a whole, under this
 License to anyone who comes into possession of a copy. This
 License will therefore apply, along with any applicable section 7
 additional terms, to the whole of the work, and all its parts,
 regardless of how they are packaged. This License gives no
 permission to license the work in any other way, but it does not
 invalidate such permission if you have separately received it.

 d) If the work has interactive user interfaces, each must display
 Appropriate Legal Notices; however, if the Program has interactive
 interfaces that do not display Appropriate Legal Notices, your
 work need not make them do so.

 A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

 6. Conveying Non-Source Forms.

 You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

 a) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by the
 Corresponding Source fixed on a durable physical medium
 customarily used for software interchange.

 b) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by a
 written offer, valid for at least three years and valid for as
 long as you offer spare parts or customer support for that product
 model, to give anyone who possesses the object code either (1) a
 copy of the Corresponding Source for all the software in the
 product that is covered by this License, on a durable physical
 medium customarily used for software interchange, for a price no
 more than your reasonable cost of physically performing this
 conveying of source, or (2) access to copy the
 Corresponding Source from a network server at no charge.

 c) Convey individual copies of the object code with a copy of the
 written offer to provide the Corresponding Source. This
 alternative is allowed only occasionally and noncommercially, and
 only if you received the object code with such an offer, in accord
 with subsection 6b.

 d) Convey the object code by offering access from a designated
 place (gratis or for a charge), and offer equivalent access to the
 Corresponding Source in the same way through the same place at no
 further charge. You need not require recipients to copy the
 Corresponding Source along with the object code. If the place to
 copy the object code is a network server, the Corresponding Source
 may be on a different server (operated by you or a third party)
 that supports equivalent copying facilities, provided you maintain
 clear directions next to the object code saying where to find the
 Corresponding Source. Regardless of what server hosts the
 Corresponding Source, you remain obligated to ensure that it is
 available for as long as needed to satisfy these requirements.

 e) Convey the object code using peer-to-peer transmission, provided
 you inform other peers where the object code and Corresponding
 Source of the work are being offered to the general public at no
 charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

 A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

 "Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

 If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

 The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

 Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

 7. Additional Terms.

 "Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

 When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

 Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

 a) Disclaiming warranty or limiting liability differently from the
 terms of sections 15 and 16 of this License; or

 b) Requiring preservation of specified reasonable legal notices or
 author attributions in that material or in the Appropriate Legal
 Notices displayed by works containing it; or

 c) Prohibiting misrepresentation of the origin of that material, or
 requiring that modified versions of such material be marked in
 reasonable ways as different from the original version; or

 d) Limiting the use for publicity purposes of names of licensors or
 authors of the material; or

 e) Declining to grant rights under trademark law for use of some
 trade names, trademarks, or service marks; or

 f) Requiring indemnification of licensors and authors of that
 material by anyone who conveys the material (or modified versions of
 it) with contractual assumptions of liability to the recipient, for
 any liability that these contractual assumptions directly impose on
 those licensors and authors.

 All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

 If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

 Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

 8. Termination.

 You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

 However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

 Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

 Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

 9. Acceptance Not Required for Having Copies.

 You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

 10. Automatic Licensing of Downstream Recipients.

 Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

 An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

 You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

 11. Patents.

 A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

 A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

 Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

 In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

 If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

 If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

 A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

 Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

 12. No Surrender of Others' Freedom.

 If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

 13. Use with the GNU Affero General Public License.

 Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

 14. Revised Versions of this License.

 The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

 Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

 If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

 Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

 15. Disclaimer of Warranty.

 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. Limitation of Liability.

 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

 17. Interpretation of Sections 15 and 16.

 If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program. If not, see <https://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

 If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

 <program> Copyright (C) <year> <name of author>
 This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".

 You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.

 The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

Acknowledgements

	If you use py4DSTEM for a scientific study, please cite our open access py4DSTEM publication [https://doi.org/10.1017/S1431927621000477] [1] in Microscopy and Microanalysis.

	py4DSTEM: A Software Package for Four-Dimensional Scanning Transmission Electron Microscopy Data Analysis

[image: _images/DOI-BADGE-978-3-319-76207-4_15.svg]
 [https://doi.org/10.1017/S1431927621000477]

	Check out the Py4DSTEM Github [http://github.com/py4DSTEM/py4DSTEM] [2]

	We’d like to thank The developers gratefully acknowledge the financial support of the Toyota Research Institute for the research and development time which made this project possible.

[image: _images/toyota_research_institute.png]

	Additional funding has been provided by the US Department of Energy, Office of Science, Basic Energy Sciences.

[image: _images/DOE_logo.png]

	You are also free to use the py4DSTEM logo in PDF format or logo in PNG format for presentations or posters.

References

[1]
https://doi.org/10.1017/S1431927621000477

[2]
http://github.com/py4DSTEM/py4DSTEM

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 py4DSTEM	

 	
 	
 py4DSTEM.io	

 	
 	
 py4DSTEM.io.filereaders	

 	
 	
 py4DSTEM.io.filereaders.empad	

 	
 	
 py4DSTEM.io.filereaders.read_K2	

 	
 	
 py4DSTEM.io.filereaders.read_mib	

 	
 	
 py4DSTEM.io.google_drive_downloader	

 	
 	
 py4DSTEM.io.google_drive_downloader.gdown	

 	
 	
 py4DSTEM.io.importfile	

 	
 	
 py4DSTEM.io.legacy	

 	
 	
 py4DSTEM.io.legacy.h5py	

 	
 	
 py4DSTEM.io.legacy.legacy12	

 	
 	
 py4DSTEM.io.legacy.legacy13	

 	
 	
 py4DSTEM.io.legacy.read_legacy_12	

 	
 	
 py4DSTEM.io.legacy.read_legacy_13	

 	
 	
 py4DSTEM.io.legacy.read_utils	

 	
 	
 py4DSTEM.io.parsefiletype	

 	
 	
 py4DSTEM.preprocess.darkreference	

 	
 	
 py4DSTEM.preprocess.electroncount	

 	
 	
 py4DSTEM.preprocess.preprocess	

 	
 	
 py4DSTEM.preprocess.radialbkgrd	

 	
 	
 py4DSTEM.preprocess.utils	

 	
 	
 py4DSTEM.process	

 	
 	
 py4DSTEM.process.calibration	

 	
 	
 py4DSTEM.process.calibration.ellipse	

 	
 	
 py4DSTEM.process.calibration.origin	

 	
 	
 py4DSTEM.process.calibration.probe	

 	
 	
 py4DSTEM.process.calibration.qpixelsize	

 	
 	
 py4DSTEM.process.calibration.rotation	

 	
 	
 py4DSTEM.process.classification	

 	
 	
 py4DSTEM.process.classification.braggvectorclassification	

 	
 	
 py4DSTEM.process.classification.classutils	

 	
 	
 py4DSTEM.process.classification.featurization	

 	
 	
 py4DSTEM.process.diffraction	

 	
 	
 py4DSTEM.process.diffraction.crystal	

 	
 	
 py4DSTEM.process.diffraction.crystal_ACOM	

 	
 	
 py4DSTEM.process.diffraction.crystal_bloch	

 	
 	
 py4DSTEM.process.diffraction.crystal_calibrate	

 	
 	
 py4DSTEM.process.diffraction.crystal_phase	

 	
 	
 py4DSTEM.process.diffraction.crystal_viz	

 	
 	
 py4DSTEM.process.diffraction.flowlines	

 	
 	
 py4DSTEM.process.diffraction.sys	

 	
 	
 py4DSTEM.process.diffraction.utils	

 	
 	
 py4DSTEM.process.diffraction.WK_scattering_factors	

 	
 	
 py4DSTEM.process.fit	

 	
 	
 py4DSTEM.process.fit.fit	

 	
 	
 py4DSTEM.process.phase	

 	
 	
 py4DSTEM.process.phase.iterative_base_class	

 	
 	
 py4DSTEM.process.phase.iterative_dpc	

 	
 	
 py4DSTEM.process.phase.iterative_mixedstate_ptychography	

 	
 	
 py4DSTEM.process.phase.iterative_multislice_ptychography	

 	
 	
 py4DSTEM.process.phase.iterative_overlap_tomography	

 	
 	
 py4DSTEM.process.phase.iterative_parallax	

 	
 	
 py4DSTEM.process.phase.iterative_simultaneous_ptychography	

 	
 	
 py4DSTEM.process.phase.utils	

 	
 	
 py4DSTEM.process.rdf.amorph	

 	
 	
 py4DSTEM.process.rdf.rdf	

 	
 	
 py4DSTEM.process.utils	

 	
 	
 py4DSTEM.process.utils.cross_correlate	

 	
 	
 py4DSTEM.process.utils.elliptical_coords	

 	
 	
 py4DSTEM.process.utils.masks	

 	
 	
 py4DSTEM.process.utils.multicorr	

 	
 	
 py4DSTEM.process.utils.utils	

 	
 	
 py4DSTEM.process.wholepatternfit	

 	
 	
 py4DSTEM.process.wholepatternfit.wp_models	

 	
 	
 py4DSTEM.process.wholepatternfit.wpf	

 	
 	
 py4DSTEM.process.wholepatternfit.wpf_viz	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

_

 	
 	__init__() (emdfile.Array method)

 	(emdfile.Custom method)

 	(emdfile.Metadata method)

 	(emdfile.Node method)

 	(emdfile.PointList method)

 	(emdfile.PointListArray method)

 	(emdfile.Root method)

 	(py4DSTEM.Array method)

 	(py4DSTEM.BraggVectors method)

 	(py4DSTEM.Calibration method)

 	(py4DSTEM.Custom method)

 	(py4DSTEM.Data method)

 	(py4DSTEM.DataCube method)

 	(py4DSTEM.DiffractionSlice method)

 	(py4DSTEM.io.filereaders.read_K2.K2DataArray method)

 	(py4DSTEM.Metadata method)

 	(py4DSTEM.Node method)

 	(py4DSTEM.PointList method)

 	(py4DSTEM.PointListArray method)

 	(py4DSTEM.Probe method)

 	(py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification method)

 	(py4DSTEM.process.classification.featurization.Featurization method)

 	(py4DSTEM.process.diffraction.crystal.Crystal method)

 	(py4DSTEM.process.diffraction.crystal_bloch.DynamicalMatrixCache method)

 	(py4DSTEM.process.diffraction.crystal_phase.Crystal_Phase method)

 	(py4DSTEM.process.diffraction.utils.Orientation method)

 	(py4DSTEM.process.diffraction.utils.OrientationMap method)

 	(py4DSTEM.process.phase.iterative_dpc.DPCReconstruction method)

 	(py4DSTEM.process.phase.iterative_mixedstate_ptychography.MixedstatePtychographicReconstruction method)

 	(py4DSTEM.process.phase.iterative_multislice_ptychography.MultislicePtychographicReconstruction method)

 	(py4DSTEM.process.phase.iterative_overlap_tomography.OverlapTomographicReconstruction method)

 	(py4DSTEM.process.phase.iterative_parallax.ParallaxReconstruction method)

 	(py4DSTEM.process.phase.iterative_simultaneous_ptychography.SimultaneousPtychographicReconstruction method)

 	(py4DSTEM.process.phase.utils.AffineTransform method)

 	(py4DSTEM.process.phase.utils.ComplexProbe method)

 	(py4DSTEM.process.wholepatternfit.wp_models.ComplexOverlapKernelDiskLattice method)

 	(py4DSTEM.process.wholepatternfit.wp_models.DCBackground method)

 	(py4DSTEM.process.wholepatternfit.wp_models.GaussianBackground method)

 	(py4DSTEM.process.wholepatternfit.wp_models.GaussianRing method)

 	(py4DSTEM.process.wholepatternfit.wp_models.KernelDiskLattice method)

 	(py4DSTEM.process.wholepatternfit.wp_models.SyntheticDiskLattice method)

 	(py4DSTEM.process.wholepatternfit.wp_models.SyntheticDiskMoire method)

 	(py4DSTEM.process.wholepatternfit.wp_models.WPFModel method)

 	(py4DSTEM.QPoints method)

 	(py4DSTEM.RealSlice method)

 	(py4DSTEM.VirtualDiffraction method)

 	(py4DSTEM.VirtualImage method)

 	
 	_get_EMD_version() (in module emdfile)

 	_is_EMD_file() (in module emdfile)

 	_show_grid_overlay() (in module py4DSTEM.visualize.vis_grid)

 	_version_is_geq() (in module emdfile)

A

 	
 	aberration_correct() (py4DSTEM.process.phase.iterative_parallax.ParallaxReconstruction method)

 	aberration_fit() (py4DSTEM.process.phase.iterative_parallax.ParallaxReconstruction method)

 	accept() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification method)

 	add() (emdfile.PointList method)

 	(py4DSTEM.DataCube method)

 	(py4DSTEM.PointList method)

 	(py4DSTEM.QPoints method)

 	add_annuli() (in module py4DSTEM.visualize.overlay)

 	add_bragg_index_labels() (in module py4DSTEM.visualize.overlay)

 	(in module py4DSTEM.visualize.vis_special)

 	add_cartesian_grid() (in module py4DSTEM.visualize.overlay)

 	add_circles() (in module py4DSTEM.visualize.overlay)

 	add_data_by_field() (emdfile.PointList method)

 	(py4DSTEM.PointList method)

 	(py4DSTEM.QPoints method)

 	add_ellipses() (in module py4DSTEM.visualize.overlay)

 	(in module py4DSTEM.visualize.vis_special)

 	add_features() (py4DSTEM.process.classification.featurization.Featurization method)

 	add_fields() (emdfile.PointList method)

 	(emdfile.PointListArray method)

 	(py4DSTEM.PointList method)

 	(py4DSTEM.PointListArray method)

 	(py4DSTEM.QPoints method)

 	add_grid_overlay() (in module py4DSTEM.visualize.overlay)

 	(in module py4DSTEM.visualize.vis_grid)

 	add_pointlabels() (in module py4DSTEM.visualize.overlay)

 	(in module py4DSTEM.visualize.vis_special)

 	add_points() (in module py4DSTEM.visualize.overlay)

 	(in module py4DSTEM.visualize.vis_special)

 	add_polarelliptical_grid() (in module py4DSTEM.visualize.overlay)

 	add_rectangles() (in module py4DSTEM.visualize.overlay)

 	add_rtheta_grid() (in module py4DSTEM.visualize.overlay)

 	add_scalebar() (in module py4DSTEM.visualize.overlay)

 	(in module py4DSTEM.visualize.vis_special)

 	add_to_2D_array_from_floats() (in module py4DSTEM.process.utils.utils)

 	add_to_tree() (emdfile.Node method)

 	(py4DSTEM.Array method)

 	(py4DSTEM.BraggVectors method)

 	(py4DSTEM.Custom method)

 	(py4DSTEM.DataCube method)

 	(py4DSTEM.DiffractionSlice method)

 	(py4DSTEM.Node method)

 	(py4DSTEM.PointList method)

 	(py4DSTEM.PointListArray method)

 	(py4DSTEM.Probe method)

 	(py4DSTEM.QPoints method)

 	(py4DSTEM.RealSlice method)

 	(py4DSTEM.VirtualDiffraction method)

 	(py4DSTEM.VirtualImage method)

 	
 	add_vector() (in module py4DSTEM.visualize.overlay)

 	(in module py4DSTEM.visualize.vis_special)

 	AffineTransform (class in py4DSTEM.process.phase.utils)

 	align_and_shift_images() (in module py4DSTEM.process.utils.cross_correlate)

 	align_images_fourier() (in module py4DSTEM.process.utils.cross_correlate)

 	angular_sampling (py4DSTEM.process.phase.iterative_base_class.PtychographicReconstruction property)

 	Array (class in emdfile)

 	(class in py4DSTEM)

 	array_slice() (in module py4DSTEM.process.phase.utils)

 	asarray() (py4DSTEM.process.phase.utils.AffineTransform method)

 	asarray3() (py4DSTEM.process.phase.utils.AffineTransform method)

 	astuple() (py4DSTEM.process.phase.utils.AffineTransform method)

 	atomic_colors() (in module py4DSTEM.process.diffraction.crystal_viz)

 	attach() (py4DSTEM.BraggVectors method)

 	(py4DSTEM.Calibration method)

 	(py4DSTEM.Data method)

 	(py4DSTEM.DataCube method)

 	(py4DSTEM.DiffractionSlice method)

 	(py4DSTEM.Probe method)

 	(py4DSTEM.QPoints method)

 	(py4DSTEM.RealSlice method)

 	(py4DSTEM.VirtualDiffraction method)

 	(py4DSTEM.VirtualImage method)

 	attach_datacube() (py4DSTEM.process.phase.iterative_base_class.PhaseReconstruction method)

 	ax_addaxes() (in module py4DSTEM.visualize.vis_RQ)

 	(in module py4DSTEM.visualize.vis_special)

 	ax_addaxes_QtoR() (in module py4DSTEM.visualize.vis_RQ)

 	(in module py4DSTEM.visualize.vis_special)

 	ax_addaxes_RtoQ() (in module py4DSTEM.visualize.vis_RQ)

 	ax_addvector() (in module py4DSTEM.visualize.vis_RQ)

 	ax_addvector_QtoR() (in module py4DSTEM.visualize.vis_RQ)

 	ax_addvector_RtoQ() (in module py4DSTEM.visualize.vis_RQ)

B

 	
 	bin2D() (in module py4DSTEM.preprocess.utils)

 	bin_data_diffraction() (in module py4DSTEM.preprocess.preprocess)

 	bin_data_mmap() (in module py4DSTEM.preprocess.preprocess)

 	bin_data_real() (in module py4DSTEM.preprocess.preprocess)

 	bin_Q() (py4DSTEM.DataCube method)

 	
 	bin_Q_mmap() (py4DSTEM.DataCube method)

 	bin_R() (py4DSTEM.DataCube method)

 	braggpeak_labels (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification attribute)

 	BraggVectorClassification (class in py4DSTEM.process.classification.braggvectorclassification)

 	BraggVectors (class in py4DSTEM)

 	build() (py4DSTEM.process.phase.utils.ComplexProbe method)

C

 	
 	cal (py4DSTEM.BraggVectors property)

 	calc_1D_profile() (in module py4DSTEM.process.diffraction.utils)

 	calculate_bragg_peak_histogram() (py4DSTEM.process.diffraction.crystal.Crystal method)

 	calculate_coef_strain() (in module py4DSTEM.process.rdf.amorph)

 	calculate_dynamical_structure_factors() (in module py4DSTEM.process.diffraction.crystal_bloch)

 	(py4DSTEM.process.diffraction.crystal.Crystal method)

 	calculate_strain() (in module py4DSTEM.process.diffraction.crystal_ACOM)

 	(py4DSTEM.process.diffraction.crystal.Crystal method)

 	calculate_structure_factors() (py4DSTEM.process.diffraction.crystal.Crystal method)

 	calculate_thresholds() (in module py4DSTEM.preprocess.electroncount)

 	calibrate() (py4DSTEM.BraggVectors method)

 	(py4DSTEM.DataCube method)

 	calibrate_pixel_size() (in module py4DSTEM.process.diffraction.crystal_calibrate)

 	(py4DSTEM.process.diffraction.crystal.Crystal method)

 	calibrate_unit_cell() (in module py4DSTEM.process.diffraction.crystal_calibrate)

 	(py4DSTEM.process.diffraction.crystal.Crystal method)

 	Calibration (class in py4DSTEM)

 	cartesian_to_polar_transform_2Ddata() (in module py4DSTEM.process.phase.utils)

 	cartesian_to_polarelliptical_transform() (in module py4DSTEM.process.utils.elliptical_coords)

 	check_config() (in module py4DSTEM)

 	cluster_grains() (in module py4DSTEM.process.diffraction.crystal_ACOM)

 	(py4DSTEM.process.diffraction.crystal.Crystal method)

 	cluster_orientation_map() (in module py4DSTEM.process.diffraction.crystal_ACOM)

 	(py4DSTEM.process.diffraction.crystal.Crystal method)

 	compare_QR_rotation() (in module py4DSTEM.process.calibration.rotation)

 	Complex2RGB() (in module py4DSTEM.visualize.vis_special)

 	ComplexOverlapKernelDiskLattice (class in py4DSTEM.process.wholepatternfit.wp_models)

 	ComplexProbe (class in py4DSTEM.process.phase.utils)

 	compute_divergence() (in module py4DSTEM.process.phase.utils)

 	compute_gradient() (in module py4DSTEM.process.phase.utils)

 	compute_polar_stack_symmetries() (in module py4DSTEM.process.rdf.amorph)

 	compute_WK_factor() (in module py4DSTEM.process.diffraction.WK_scattering_factors)

 	concatenate_features() (py4DSTEM.process.classification.featurization.Featurization method)

 	consensus() (py4DSTEM.process.classification.featurization.Featurization method)

 	
 	constrain_degenerate_ellipse() (in module py4DSTEM.process.calibration.ellipse)

 	convert_ellipse_params() (in module py4DSTEM.process.utils.elliptical_coords)

 	convert_ellipse_params_r() (in module py4DSTEM.process.utils.elliptical_coords)

 	convert_stack_polar() (in module py4DSTEM.process.rdf.amorph)

 	copy() (emdfile.Metadata method)

 	(emdfile.PointList method)

 	(emdfile.PointListArray method)

 	(py4DSTEM.DataCube method)

 	(py4DSTEM.Metadata method)

 	(py4DSTEM.PointList method)

 	(py4DSTEM.PointListArray method)

 	(py4DSTEM.QPoints method)

 	counted_datacube_to_pointlistarray() (in module py4DSTEM.preprocess.electroncount)

 	counted_pointlistarray_to_datacube() (in module py4DSTEM.preprocess.electroncount)

 	crop_Q() (py4DSTEM.DataCube method)

 	crop_R() (py4DSTEM.DataCube method)

 	Crystal (class in py4DSTEM.process.diffraction.crystal)

 	Crystal_Phase (class in py4DSTEM.process.diffraction.crystal_phase)

 	Custom (class in emdfile)

 	(class in py4DSTEM)

 	cut_from_tree() (emdfile.Node method)

 	(py4DSTEM.Array method)

 	(py4DSTEM.BraggVectors method)

 	(py4DSTEM.Custom method)

 	(py4DSTEM.DataCube method)

 	(py4DSTEM.DiffractionSlice method)

 	(py4DSTEM.Node method)

 	(py4DSTEM.PointList method)

 	(py4DSTEM.PointListArray method)

 	(py4DSTEM.Probe method)

 	(py4DSTEM.QPoints method)

 	(py4DSTEM.RealSlice method)

 	(py4DSTEM.VirtualDiffraction method)

 	(py4DSTEM.VirtualImage method)

D

 	
 	Data (class in py4DSTEM)

 	DataCube (class in py4DSTEM)

 	datacube_diffraction_shift() (in module py4DSTEM.preprocess.preprocess)

 	DCBackground (class in py4DSTEM.process.wholepatternfit.wp_models)

 	delete_features() (py4DSTEM.process.classification.featurization.Featurization method)

 	depth_section() (py4DSTEM.process.phase.iterative_parallax.ParallaxReconstruction method)

 	dftUpsample() (in module py4DSTEM.process.utils.multicorr)

 	DiffractionSlice (class in py4DSTEM)

 	dim() (emdfile.Array method)

 	(py4DSTEM.Array method)

 	(py4DSTEM.DataCube method)

 	(py4DSTEM.DiffractionSlice method)

 	(py4DSTEM.Probe method)

 	(py4DSTEM.RealSlice method)

 	(py4DSTEM.VirtualDiffraction method)

 	(py4DSTEM.VirtualImage method)

 	
 	dirname() (in module emdfile)

 	double_sided_gaussian() (in module py4DSTEM.process.calibration.ellipse)

 	double_sided_gaussian_fiterr() (in module py4DSTEM.process.calibration.ellipse)

 	DPCReconstruction (class in py4DSTEM.process.phase.iterative_dpc)

 	dst_I() (in module py4DSTEM.process.phase.utils)

 	DynamicalMatrixCache (class in py4DSTEM.process.diffraction.crystal_bloch)

E

 	
 	electron_count() (in module py4DSTEM.preprocess.electroncount)

 	electron_count_GPU() (in module py4DSTEM.preprocess.electroncount)

 	ellipse_err() (in module py4DSTEM.process.calibration.ellipse)

 	elliptical_resample() (in module py4DSTEM.process.utils.elliptical_coords)

 	
 	elliptical_resample_datacube() (in module py4DSTEM.process.utils.elliptical_coords)

 	estimate_global_transformation() (in module py4DSTEM.process.phase.utils)

 	estimate_global_transformation_ransac() (in module py4DSTEM.process.phase.utils)

 	excitation_errors() (py4DSTEM.process.diffraction.crystal.Crystal method)

F

 	
 	Featurization (class in py4DSTEM.process.classification.featurization)

 	fft_shift() (in module py4DSTEM.process.phase.utils)

 	filter_2D_maxima() (in module py4DSTEM.preprocess.utils)

 	filter_hot_pixels() (in module py4DSTEM.preprocess.preprocess)

 	(py4DSTEM.DataCube method)

 	find_Bragg_disks() (py4DSTEM.DataCube method)

 	fit_1D_gaussian() (in module py4DSTEM.process.fit.fit)

 	fit_2D() (in module py4DSTEM.process.fit.fit)

 	fit_2D_polar_gaussian() (in module py4DSTEM.process.fit.fit)

 	fit_ellipse_1D() (in module py4DSTEM.process.calibration.ellipse)

 	fit_ellipse_amorphous_ring() (in module py4DSTEM.process.calibration.ellipse)

 	fit_origin() (in module py4DSTEM.process.calibration.origin)

 	(py4DSTEM.BraggVectors method)

 	fit_p_ellipse() (py4DSTEM.BraggVectors method)

 	fit_scattering_factor() (in module py4DSTEM.process.rdf.rdf)

 	fit_stack() (in module py4DSTEM.process.rdf.amorph)

 	force_add_to_tree() (emdfile.Node method)

 	(py4DSTEM.Array method)

 	(py4DSTEM.BraggVectors method)

 	(py4DSTEM.Custom method)

 	(py4DSTEM.DataCube method)

 	(py4DSTEM.DiffractionSlice method)

 	(py4DSTEM.Node method)

 	(py4DSTEM.PointList method)

 	(py4DSTEM.PointListArray method)

 	(py4DSTEM.Probe method)

 	(py4DSTEM.QPoints method)

 	(py4DSTEM.RealSlice method)

 	(py4DSTEM.VirtualDiffraction method)

 	(py4DSTEM.VirtualImage method)

 	
 	fourier_resample() (in module py4DSTEM.process.utils.utils)

 	fourier_ring_correlation() (in module py4DSTEM.process.phase.utils)

 	fourier_rotate_real_volume() (in module py4DSTEM.process.phase.utils)

 	fourier_translation_operator() (in module py4DSTEM.process.phase.utils)

 	from_braggvectors() (py4DSTEM.process.classification.featurization.Featurization method)

 	from_CIF() (py4DSTEM.process.diffraction.crystal.Crystal method)

 	from_h5() (emdfile.Metadata class method)

 	(emdfile.Node class method)

 	(py4DSTEM.Array class method)

 	(py4DSTEM.BraggVectors class method)

 	(py4DSTEM.Calibration class method)

 	(py4DSTEM.Custom class method)

 	(py4DSTEM.DataCube class method)

 	(py4DSTEM.DiffractionSlice class method)

 	(py4DSTEM.Metadata class method)

 	(py4DSTEM.Node class method)

 	(py4DSTEM.PointList class method)

 	(py4DSTEM.PointListArray class method)

 	(py4DSTEM.Probe class method)

 	(py4DSTEM.QPoints class method)

 	(py4DSTEM.RealSlice class method)

 	(py4DSTEM.VirtualDiffraction class method)

 	(py4DSTEM.VirtualImage class method)

 	from_pymatgen_structure() (py4DSTEM.process.diffraction.crystal.Crystal method)

 	from_unitcell_parameters() (py4DSTEM.process.diffraction.crystal.Crystal method)

 	from_vacuum_data() (py4DSTEM.Probe class method)

 	fromarray() (py4DSTEM.process.phase.utils.AffineTransform class method)

G

 	
 	GaussianBackground (class in py4DSTEM.process.wholepatternfit.wp_models)

 	GaussianRing (class in py4DSTEM.process.wholepatternfit.wp_models)

 	gdrive_download() (in module py4DSTEM.io.google_drive_downloader)

 	generate_CBED() (in module py4DSTEM.process.diffraction.crystal_bloch)

 	(py4DSTEM.process.diffraction.crystal.Crystal method)

 	generate_diffraction_pattern() (py4DSTEM.process.diffraction.crystal.Crystal method)

 	generate_dynamical_diffraction_pattern() (in module py4DSTEM.process.diffraction.crystal_bloch)

 	(py4DSTEM.process.diffraction.crystal.Crystal method)

 	generate_moire_diffraction_pattern() (in module py4DSTEM.process.diffraction.crystal)

 	generate_ring_pattern() (py4DSTEM.process.diffraction.crystal.Crystal method)

 	generate_synthetic_probe() (py4DSTEM.Probe class method)

 	get_1D_polar_background() (in module py4DSTEM.preprocess.radialbkgrd)

 	get_2D_polar_background() (in module py4DSTEM.preprocess.radialbkgrd)

 	get_background_streaks() (in module py4DSTEM.preprocess.darkreference)

 	get_background_streaks_x() (in module py4DSTEM.preprocess.darkreference)

 	get_background_streaks_y() (in module py4DSTEM.preprocess.darkreference)

 	get_beamstop_mask() (in module py4DSTEM.process.utils.masks)

 	(py4DSTEM.DataCube method)

 	get_bksbtr_DP() (in module py4DSTEM.preprocess.darkreference)

 	get_bragg_vector_map() (py4DSTEM.BraggVectors method)

 	get_braggmask() (py4DSTEM.DataCube method)

 	get_braggpeak_labels_by_scan_position() (in module py4DSTEM.process.classification.braggvectorclassification)

 	get_bvm() (py4DSTEM.BraggVectors method)

 	get_calibrated_detector_geometry() (py4DSTEM.DataCube static method)

 	get_candidate_class() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification method)

 	get_candidate_class_BPs() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification method)

 	get_candidate_class_image() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification method)

 	get_class() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification method)

 	get_class_BPs() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification method)

 	get_class_DP() (in module py4DSTEM.process.classification.classutils)

 	get_class_DP_without_Bragg_scattering() (in module py4DSTEM.process.classification.classutils)

 	get_class_DPs() (py4DSTEM.process.classification.featurization.Featurization method)

 	get_class_image() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification method)

 	get_class_ims() (py4DSTEM.process.classification.featurization.Featurization method)

 	get_CoM() (in module py4DSTEM.process.utils.utils)

 	get_cross_correlation() (in module py4DSTEM.process.utils.cross_correlate)

 	get_cross_correlation_FT() (in module py4DSTEM.process.utils.cross_correlate)

 	get_darkreference() (in module py4DSTEM.preprocess.darkreference)

 	get_dim() (emdfile.Array method)

 	(py4DSTEM.Array method)

 	(py4DSTEM.DataCube method)

 	(py4DSTEM.DiffractionSlice method)

 	(py4DSTEM.Probe method)

 	(py4DSTEM.RealSlice method)

 	(py4DSTEM.VirtualDiffraction method)

 	(py4DSTEM.VirtualImage method)

 	get_dim_name() (emdfile.Array method)

 	(py4DSTEM.Array method)

 	(py4DSTEM.DataCube method)

 	(py4DSTEM.DiffractionSlice method)

 	(py4DSTEM.Probe method)

 	(py4DSTEM.RealSlice method)

 	(py4DSTEM.VirtualDiffraction method)

 	(py4DSTEM.VirtualImage method)

 	get_dim_units() (emdfile.Array method)

 	(py4DSTEM.Array method)

 	(py4DSTEM.DataCube method)

 	(py4DSTEM.DiffractionSlice method)

 	(py4DSTEM.Probe method)

 	(py4DSTEM.RealSlice method)

 	(py4DSTEM.VirtualDiffraction method)

 	(py4DSTEM.VirtualImage method)

 	get_dp_max() (py4DSTEM.DataCube method)

 	get_dp_mean() (py4DSTEM.DataCube method)

 	get_dp_median() (py4DSTEM.DataCube method)

 	get_dq_from_indexed_peaks() (in module py4DSTEM.process.calibration.qpixelsize)

 	get_ewpc_filter_function() (in module py4DSTEM.process.utils.utils)

 	get_from_tree() (emdfile.Node method)

 	(py4DSTEM.Array method)

 	(py4DSTEM.BraggVectors method)

 	(py4DSTEM.Custom method)

 	(py4DSTEM.DataCube method)

 	(py4DSTEM.DiffractionSlice method)

 	(py4DSTEM.Node method)

 	(py4DSTEM.PointList method)

 	(py4DSTEM.PointListArray method)

 	(py4DSTEM.Probe method)

 	(py4DSTEM.QPoints method)

 	(py4DSTEM.RealSlice method)

 	(py4DSTEM.VirtualDiffraction method)

 	(py4DSTEM.VirtualImage method)

 	
 	get_hdr_bits() (in module py4DSTEM.io.filereaders.read_mib)

 	get_initial_classes() (in module py4DSTEM.process.classification.braggvectorclassification)

 	get_initial_classes_by_cooccurrence() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification method)

 	get_initial_classes_from_images() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification method)

 	get_kernel() (py4DSTEM.Probe method)

 	get_local_ave_dp() (py4DSTEM.DataCube method)

 	get_mask() (in module py4DSTEM.process.rdf.rdf)

 	get_masked_peaks() (py4DSTEM.BraggVectors method)

 	get_maxima_1D() (in module py4DSTEM.process.utils.utils)

 	get_maxima_2D() (in module py4DSTEM.preprocess.utils)

 	get_mib_depth() (in module py4DSTEM.io.filereaders.read_mib)

 	get_mib_memmap() (in module py4DSTEM.io.filereaders.read_mib)

 	get_N_dataobjects() (in module py4DSTEM.io.legacy.read_utils)

 	get_nice_spacing() (in module py4DSTEM.visualize.overlay)

 	get_origin() (in module py4DSTEM.process.calibration.origin)

 	get_origin_beamstop() (in module py4DSTEM.process.calibration.origin)

 	get_origin_single_dp() (in module py4DSTEM.process.calibration.origin)

 	get_origin_single_dp_beamstop() (in module py4DSTEM.process.calibration.origin)

 	get_phi() (in module py4DSTEM.process.rdf.rdf)

 	get_pointlist() (emdfile.PointListArray method)

 	(py4DSTEM.PointListArray method)

 	get_probe_kernel_edge_gaussian() (py4DSTEM.Probe static method)

 	get_probe_kernel_edge_sigmoid() (py4DSTEM.Probe static method)

 	get_probe_kernel_flat() (py4DSTEM.Probe static method)

 	get_probe_size() (in module py4DSTEM.process.calibration.probe)

 	(py4DSTEM.DataCube method)

 	get_py4DSTEM_topgroups() (in module py4DSTEM.io.legacy.read_utils)

 	get_py4DSTEM_version() (in module py4DSTEM.io.legacy.read_utils)

 	get_Q_pixel_size() (in module py4DSTEM.process.calibration.qpixelsize)

 	get_Qvector_from_Rvector() (in module py4DSTEM.process.calibration.rotation)

 	get_qx_qy_1d() (in module py4DSTEM.process.utils.utils)

 	get_radial_bkgrnd() (py4DSTEM.DataCube method)

 	get_radial_bksb_dp() (py4DSTEM.DataCube method)

 	get_radial_intensity() (in module py4DSTEM.process.rdf.rdf)

 	get_rdf() (in module py4DSTEM.process.rdf.rdf)

 	get_Rvector_from_Qvector() (in module py4DSTEM.process.calibration.rotation)

 	get_shift() (in module py4DSTEM.process.utils.cross_correlate)

 	get_shifted_ar() (in module py4DSTEM.preprocess.utils)

 	get_strained_crystal() (py4DSTEM.process.diffraction.crystal.Crystal method)

 	get_UUID() (in module py4DSTEM.io.legacy.read_utils)

 	get_vacuum_probe() (py4DSTEM.DataCube method)

 	get_vectors() (py4DSTEM.BraggVectors method)

 	get_virtual_diffraction() (py4DSTEM.DataCube method)

 	get_virtual_image() (py4DSTEM.BraggVectors method)

 	(py4DSTEM.DataCube method)

 	get_voronoi_vertices() (in module py4DSTEM.process.utils.utils)

 	GMM() (py4DSTEM.process.classification.featurization.Featurization method)

 	graft() (emdfile.Node method)

 	(py4DSTEM.Array method)

 	(py4DSTEM.BraggVectors method)

 	(py4DSTEM.Custom method)

 	(py4DSTEM.DataCube method)

 	(py4DSTEM.DiffractionSlice method)

 	(py4DSTEM.Node method)

 	(py4DSTEM.PointList method)

 	(py4DSTEM.PointListArray method)

 	(py4DSTEM.Probe method)

 	(py4DSTEM.QPoints method)

 	(py4DSTEM.RealSlice method)

 	(py4DSTEM.VirtualDiffraction method)

 	(py4DSTEM.VirtualImage method)

H

 	
 	histogram() (py4DSTEM.BraggVectors method)

I

 	
 	ICA() (py4DSTEM.process.classification.featurization.Featurization method)

 	idst_I() (in module py4DSTEM.process.phase.utils)

 	import_file() (in module py4DSTEM)

 	(in module py4DSTEM.io.importfile)

 	
 	is_color_like() (in module py4DSTEM.visualize.overlay)

 	is_py4DSTEM_file() (in module py4DSTEM.io.legacy.read_utils)

 	is_py4DSTEM_version13() (in module py4DSTEM.io.legacy.read_utils)

J

 	
 	join() (in module emdfile)

 	(in module py4DSTEM)

K

 	
 	K2DataArray (class in py4DSTEM.io.filereaders.read_K2)

 	
 	KernelDiskLattice (class in py4DSTEM.process.wholepatternfit.wp_models)

L

 	
 	linear_interpolation_1D() (in module py4DSTEM.process.utils.utils)

 	
 	linear_interpolation_2D() (in module py4DSTEM.preprocess.utils)

 	load_mib() (in module py4DSTEM.io.filereaders.read_mib)

M

 	
 	make_array_rfft_compatible() (in module py4DSTEM.process.phase.utils)

 	make_axes_locatable() (in module py4DSTEM.visualize.vis_special)

 	make_bragg_mask() (py4DSTEM.DataCube method)

 	make_circular_mask() (in module py4DSTEM.process.utils.masks)

 	make_detector() (py4DSTEM.DataCube static method)

 	make_flowline_combined_image() (in module py4DSTEM.process.diffraction.flowlines)

 	make_flowline_map() (in module py4DSTEM.process.diffraction.flowlines)

 	make_flowline_rainbow_image() (in module py4DSTEM.process.diffraction.flowlines)

 	make_flowline_rainbow_legend() (in module py4DSTEM.process.diffraction.flowlines)

 	make_Fourier_coords2D() (in module py4DSTEM.preprocess.utils)

 	(in module py4DSTEM.process.utils.utils)

 	make_orientation_histogram() (in module py4DSTEM.process.diffraction.flowlines)

 	manageHeader() (in module py4DSTEM.io.filereaders.read_mib)

 	mask_in_Q() (py4DSTEM.BraggVectors method)

 	mask_in_R() (py4DSTEM.BraggVectors method)

 	match_orientations() (in module py4DSTEM.process.diffraction.crystal_ACOM)

 	(py4DSTEM.process.diffraction.crystal.Crystal method)

 	match_single_pattern() (in module py4DSTEM.process.diffraction.crystal_ACOM)

 	(py4DSTEM.process.diffraction.crystal.Crystal method)

 	max_feature() (py4DSTEM.process.classification.featurization.Featurization method)

 	mean_feature() (py4DSTEM.process.classification.featurization.Featurization method)

 	measure_disk() (py4DSTEM.Probe method)

 	measure_origin() (py4DSTEM.BraggVectors method)

 	measure_origin_beamstop() (py4DSTEM.BraggVectors method)

 	median_feature() (py4DSTEM.process.classification.featurization.Featurization method)

 	merge() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification method)

 	merge_by_class_index() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification method)

 	merge_iterative() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification method)

 	Metadata (class in emdfile)

 	(class in py4DSTEM)

 	MinMaxScaler() (py4DSTEM.process.classification.featurization.Featurization method)

 	MixedstatePtychographicReconstruction (class in py4DSTEM.process.phase.iterative_mixedstate_ptychography)

 	
 module

 	py4DSTEM.io

 	py4DSTEM.io.filereaders

 	py4DSTEM.io.filereaders.empad

 	py4DSTEM.io.filereaders.read_K2

 	py4DSTEM.io.filereaders.read_mib

 	py4DSTEM.io.google_drive_downloader

 	py4DSTEM.io.google_drive_downloader.gdown

 	py4DSTEM.io.importfile

 	py4DSTEM.io.legacy

 	py4DSTEM.io.legacy.h5py

 	py4DSTEM.io.legacy.legacy12

 	py4DSTEM.io.legacy.legacy13

 	py4DSTEM.io.legacy.read_legacy_12

 	py4DSTEM.io.legacy.read_legacy_13

 	py4DSTEM.io.legacy.read_utils

 	py4DSTEM.io.parsefiletype

 	py4DSTEM.preprocess.darkreference

 	py4DSTEM.preprocess.electroncount

 	py4DSTEM.preprocess.preprocess

 	py4DSTEM.preprocess.radialbkgrd

 	py4DSTEM.preprocess.utils

 	py4DSTEM.process

 	py4DSTEM.process.calibration

 	py4DSTEM.process.calibration.ellipse

 	py4DSTEM.process.calibration.origin

 	py4DSTEM.process.calibration.probe

 	py4DSTEM.process.calibration.qpixelsize

 	py4DSTEM.process.calibration.rotation

 	py4DSTEM.process.classification

 	py4DSTEM.process.classification.braggvectorclassification

 	py4DSTEM.process.classification.classutils

 	py4DSTEM.process.classification.featurization

 	py4DSTEM.process.diffraction

 	py4DSTEM.process.diffraction.crystal

 	py4DSTEM.process.diffraction.crystal_ACOM

 	py4DSTEM.process.diffraction.crystal_bloch

 	py4DSTEM.process.diffraction.crystal_calibrate

 	py4DSTEM.process.diffraction.crystal_phase

 	py4DSTEM.process.diffraction.crystal_viz

 	py4DSTEM.process.diffraction.flowlines

 	py4DSTEM.process.diffraction.sys

 	py4DSTEM.process.diffraction.utils

 	py4DSTEM.process.diffraction.WK_scattering_factors

 	py4DSTEM.process.fit

 	py4DSTEM.process.fit.fit

 	py4DSTEM.process.phase

 	py4DSTEM.process.phase.iterative_base_class

 	py4DSTEM.process.phase.iterative_dpc

 	py4DSTEM.process.phase.iterative_mixedstate_ptychography

 	py4DSTEM.process.phase.iterative_multislice_ptychography

 	py4DSTEM.process.phase.iterative_overlap_tomography

 	py4DSTEM.process.phase.iterative_parallax

 	py4DSTEM.process.phase.iterative_simultaneous_ptychography

 	py4DSTEM.process.phase.utils

 	py4DSTEM.process.rdf.amorph

 	py4DSTEM.process.rdf.rdf

 	py4DSTEM.process.utils

 	py4DSTEM.process.utils.cross_correlate

 	py4DSTEM.process.utils.elliptical_coords

 	py4DSTEM.process.utils.masks

 	py4DSTEM.process.utils.multicorr

 	py4DSTEM.process.utils.utils

 	py4DSTEM.process.wholepatternfit

 	py4DSTEM.process.wholepatternfit.wp_models

 	py4DSTEM.process.wholepatternfit.wpf

 	py4DSTEM.process.wholepatternfit.wpf_viz

 	
 	MultislicePtychographicReconstruction (class in py4DSTEM.process.phase.iterative_multislice_ptychography)

N

 	
 	N_feat (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification attribute)

 	N_meas (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification attribute)

 	newnode() (emdfile.Node static method)

 	(py4DSTEM.Array static method)

 	(py4DSTEM.BraggVectors static method)

 	(py4DSTEM.Custom static method)

 	(py4DSTEM.DataCube static method)

 	(py4DSTEM.DiffractionSlice static method)

 	(py4DSTEM.Node static method)

 	(py4DSTEM.PointList static method)

 	(py4DSTEM.PointListArray static method)

 	(py4DSTEM.Probe static method)

 	(py4DSTEM.QPoints static method)

 	(py4DSTEM.RealSlice static method)

 	(py4DSTEM.VirtualDiffraction static method)

 	(py4DSTEM.VirtualImage static method)

 	
 	nmf() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification method)

 	NMF() (py4DSTEM.process.classification.featurization.Featurization method)

 	Node (class in emdfile)

 	(class in py4DSTEM)

O

 	
 	object_cropped (py4DSTEM.process.phase.iterative_base_class.PtychographicReconstruction property)

 	(py4DSTEM.process.phase.iterative_parallax.ParallaxReconstruction property)

 	(py4DSTEM.process.phase.iterative_simultaneous_ptychography.SimultaneousPtychographicReconstruction property)

 	object_fft (py4DSTEM.process.phase.iterative_base_class.PtychographicReconstruction property)

 	Orientation (class in py4DSTEM.process.diffraction.utils)

 	
 	orientation_correlation() (in module py4DSTEM.process.diffraction.flowlines)

 	orientation_plan() (in module py4DSTEM.process.diffraction.crystal_ACOM)

 	(py4DSTEM.process.diffraction.crystal.Crystal method)

 	OrientationMap (class in py4DSTEM.process.diffraction.utils)

 	OverlapTomographicReconstruction (class in py4DSTEM.process.phase.iterative_overlap_tomography)

P

 	
 	pad_data_diffraction() (in module py4DSTEM.preprocess.preprocess)

 	pad_Q() (py4DSTEM.DataCube method)

 	ParallaxReconstruction (class in py4DSTEM.process.phase.iterative_parallax)

 	parse_hdr() (in module py4DSTEM.io.filereaders.read_mib)

 	PCA() (py4DSTEM.process.classification.featurization.Featurization method)

 	PhaseReconstruction (class in py4DSTEM.process.phase.iterative_base_class)

 	plot_all_phase_maps() (py4DSTEM.process.diffraction.crystal_phase.Crystal_Phase method)

 	plot_cluster_size() (in module py4DSTEM.process.diffraction.crystal_viz)

 	(py4DSTEM.process.diffraction.crystal.Crystal method)

 	plot_clusters() (in module py4DSTEM.process.diffraction.crystal_viz)

 	(py4DSTEM.process.diffraction.crystal.Crystal method)

 	plot_diffraction_pattern() (in module py4DSTEM.process.diffraction.crystal_viz)

 	plot_fiber_orientation_maps() (in module py4DSTEM.process.diffraction.crystal_viz)

 	(py4DSTEM.process.diffraction.crystal.Crystal method)

 	plot_moire_diffraction_pattern() (in module py4DSTEM.process.diffraction.crystal)

 	plot_orientation_correlation() (in module py4DSTEM.process.diffraction.flowlines)

 	plot_orientation_maps() (in module py4DSTEM.process.diffraction.crystal_viz)

 	(py4DSTEM.process.diffraction.crystal.Crystal method)

 	plot_orientation_plan() (in module py4DSTEM.process.diffraction.crystal_viz)

 	(py4DSTEM.process.diffraction.crystal.Crystal method)

 	plot_orientation_zones() (in module py4DSTEM.process.diffraction.crystal_viz)

 	(py4DSTEM.process.diffraction.crystal.Crystal method)

 	plot_position_correction() (py4DSTEM.process.phase.iterative_base_class.PtychographicReconstruction method)

 	plot_ring_pattern() (in module py4DSTEM.process.diffraction.crystal_viz)

 	plot_scattering_intensity() (in module py4DSTEM.process.diffraction.crystal_viz)

 	(py4DSTEM.process.diffraction.crystal.Crystal method)

 	plot_strains() (in module py4DSTEM.process.rdf.amorph)

 	plot_structure() (in module py4DSTEM.process.diffraction.crystal_viz)

 	(py4DSTEM.process.diffraction.crystal.Crystal method)

 	plot_structure_factors() (in module py4DSTEM.process.diffraction.crystal_viz)

 	(py4DSTEM.process.diffraction.crystal.Crystal method)

 	plot_symmetries() (in module py4DSTEM.process.rdf.amorph)

 	PointList (class in emdfile)

 	(class in py4DSTEM)

 	PointListArray (class in emdfile)

 	(class in py4DSTEM)

 	polar_aliases (in module py4DSTEM.process.phase.utils)

 	polar_coordinates() (py4DSTEM.process.phase.utils.ComplexProbe method)

 	polar_symbols (in module py4DSTEM.process.phase.utils)

 	polar_to_cartesian_transform_2Ddata() (in module py4DSTEM.process.phase.utils)

 	position_detector() (py4DSTEM.DataCube method)

 	positions (py4DSTEM.process.diffraction.crystal.Crystal attribute)

 	(py4DSTEM.process.phase.iterative_base_class.PtychographicReconstruction property)

 	(py4DSTEM.process.phase.iterative_overlap_tomography.OverlapTomographicReconstruction property)

 	preconditioned_laplacian() (in module py4DSTEM.process.phase.utils)

 	preconditioned_poisson_solver() (in module py4DSTEM.process.phase.utils)

 	preprocess() (py4DSTEM.process.phase.iterative_dpc.DPCReconstruction method)

 	(py4DSTEM.process.phase.iterative_mixedstate_ptychography.MixedstatePtychographicReconstruction method)

 	(py4DSTEM.process.phase.iterative_multislice_ptychography.MultislicePtychographicReconstruction method)

 	(py4DSTEM.process.phase.iterative_overlap_tomography.OverlapTomographicReconstruction method)

 	(py4DSTEM.process.phase.iterative_parallax.ParallaxReconstruction method)

 	(py4DSTEM.process.phase.iterative_simultaneous_ptychography.SimultaneousPtychographicReconstruction method)

 	print_h5_tree() (in module emdfile)

 	(in module py4DSTEM)

 	print_v13h5_tree() (in module py4DSTEM.io.legacy.read_legacy_13)

 	print_v13h5pyFile_tree() (in module py4DSTEM.io.legacy.read_legacy_13)

 	Probe (class in py4DSTEM)

 	probe_centered (py4DSTEM.process.phase.iterative_base_class.PtychographicReconstruction property)

 	probe_fourier (py4DSTEM.process.phase.iterative_base_class.PtychographicReconstruction property)

 	project_vector_field_divergence() (in module py4DSTEM.process.phase.utils)

 	PtychographicReconstruction (class in py4DSTEM.process.phase.iterative_base_class)

 	
 py4DSTEM.io

 	module

 	
 py4DSTEM.io.filereaders

 	module

 	
 py4DSTEM.io.filereaders.empad

 	module

 	
 py4DSTEM.io.filereaders.read_K2

 	module

 	
 py4DSTEM.io.filereaders.read_mib

 	module

 	
 py4DSTEM.io.google_drive_downloader

 	module

 	
 py4DSTEM.io.google_drive_downloader.gdown

 	module

 	
 py4DSTEM.io.importfile

 	module

 	
 py4DSTEM.io.legacy

 	module

 	
 py4DSTEM.io.legacy.h5py

 	module

 	
 py4DSTEM.io.legacy.legacy12

 	module

 	
 py4DSTEM.io.legacy.legacy13

 	module

 	
 py4DSTEM.io.legacy.read_legacy_12

 	module

 	
 py4DSTEM.io.legacy.read_legacy_13

 	module

 	
 py4DSTEM.io.legacy.read_utils

 	module

 	
 py4DSTEM.io.parsefiletype

 	module

 	
 py4DSTEM.preprocess.darkreference

 	module

 	
 py4DSTEM.preprocess.electroncount

 	module

 	
 	
 py4DSTEM.preprocess.preprocess

 	module

 	
 py4DSTEM.preprocess.radialbkgrd

 	module

 	
 py4DSTEM.preprocess.utils

 	module

 	
 py4DSTEM.process

 	module

 	
 py4DSTEM.process.calibration

 	module

 	
 py4DSTEM.process.calibration.ellipse

 	module

 	
 py4DSTEM.process.calibration.origin

 	module

 	
 py4DSTEM.process.calibration.probe

 	module

 	
 py4DSTEM.process.calibration.qpixelsize

 	module

 	
 py4DSTEM.process.calibration.rotation

 	module

 	
 py4DSTEM.process.classification

 	module

 	
 py4DSTEM.process.classification.braggvectorclassification

 	module

 	
 py4DSTEM.process.classification.classutils

 	module

 	
 py4DSTEM.process.classification.featurization

 	module

 	
 py4DSTEM.process.diffraction

 	module

 	
 py4DSTEM.process.diffraction.crystal

 	module

 	
 py4DSTEM.process.diffraction.crystal_ACOM

 	module

 	
 py4DSTEM.process.diffraction.crystal_bloch

 	module

 	
 py4DSTEM.process.diffraction.crystal_calibrate

 	module

 	
 py4DSTEM.process.diffraction.crystal_phase

 	module

 	
 py4DSTEM.process.diffraction.crystal_viz

 	module

 	
 py4DSTEM.process.diffraction.flowlines

 	module

 	
 py4DSTEM.process.diffraction.sys

 	module

 	
 py4DSTEM.process.diffraction.utils

 	module

 	
 py4DSTEM.process.diffraction.WK_scattering_factors

 	module

 	
 py4DSTEM.process.fit

 	module

 	
 py4DSTEM.process.fit.fit

 	module

 	
 py4DSTEM.process.phase

 	module

 	
 py4DSTEM.process.phase.iterative_base_class

 	module

 	
 py4DSTEM.process.phase.iterative_dpc

 	module

 	
 py4DSTEM.process.phase.iterative_mixedstate_ptychography

 	module

 	
 py4DSTEM.process.phase.iterative_multislice_ptychography

 	module

 	
 py4DSTEM.process.phase.iterative_overlap_tomography

 	module

 	
 py4DSTEM.process.phase.iterative_parallax

 	module

 	
 py4DSTEM.process.phase.iterative_simultaneous_ptychography

 	module

 	
 py4DSTEM.process.phase.utils

 	module

 	
 py4DSTEM.process.rdf.amorph

 	module

 	
 py4DSTEM.process.rdf.rdf

 	module

 	
 py4DSTEM.process.utils

 	module

 	
 py4DSTEM.process.utils.cross_correlate

 	module

 	
 py4DSTEM.process.utils.elliptical_coords

 	module

 	
 py4DSTEM.process.utils.masks

 	module

 	
 py4DSTEM.process.utils.multicorr

 	module

 	
 py4DSTEM.process.utils.utils

 	module

 	
 py4DSTEM.process.wholepatternfit

 	module

 	
 py4DSTEM.process.wholepatternfit.wp_models

 	module

 	
 py4DSTEM.process.wholepatternfit.wpf

 	module

 	
 py4DSTEM.process.wholepatternfit.wpf_viz

 	module

Q

 	
 	QPoints (class in py4DSTEM)

 	quantify_phase() (py4DSTEM.process.diffraction.crystal_phase.Crystal_Phase method)

 	
 	quantify_phase_pointlist() (py4DSTEM.process.diffraction.crystal_phase.Crystal_Phase method)

 	Qx (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification attribute)

 	Qy (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification attribute)

R

 	
 	R_Nx (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification attribute)

 	R_Ny (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification attribute)

 	radial_elliptical_integral() (in module py4DSTEM.process.utils.elliptical_coords)

 	radial_integral() (in module py4DSTEM.process.utils.elliptical_coords)

 	radial_reduction() (in module py4DSTEM.process.utils.utils)

 	raw (py4DSTEM.BraggVectors property)

 	read() (in module emdfile)

 	(in module py4DSTEM)

 	read_empad() (in module py4DSTEM.io.filereaders.empad)

 	read_gatan_K2_bin() (in module py4DSTEM.io.filereaders.read_K2)

 	read_legacy12() (in module py4DSTEM.io.legacy.read_legacy_12)

 	read_legacy13() (in module py4DSTEM.io.legacy.read_legacy_13)

 	RealSlice (class in py4DSTEM)

 	reconstruct() (py4DSTEM.process.phase.iterative_dpc.DPCReconstruction method)

 	(py4DSTEM.process.phase.iterative_mixedstate_ptychography.MixedstatePtychographicReconstruction method)

 	(py4DSTEM.process.phase.iterative_multislice_ptychography.MultislicePtychographicReconstruction method)

 	(py4DSTEM.process.phase.iterative_overlap_tomography.OverlapTomographicReconstruction method)

 	(py4DSTEM.process.phase.iterative_parallax.ParallaxReconstruction method)

 	(py4DSTEM.process.phase.iterative_simultaneous_ptychography.SimultaneousPtychographicReconstruction method)

 	
 	register_target() (py4DSTEM.Calibration method)

 	regularize_probe_amplitude() (in module py4DSTEM.process.phase.utils)

 	reinitialize_parameters() (py4DSTEM.process.phase.iterative_base_class.PhaseReconstruction method)

 	reject() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification method)

 	remove() (emdfile.PointList method)

 	(py4DSTEM.PointList method)

 	(py4DSTEM.QPoints method)

 	remove_class() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification method)

 	resample_data_diffraction() (in module py4DSTEM.preprocess.preprocess)

 	resample_Q() (py4DSTEM.DataCube method)

 	return_1D_profile() (in module py4DSTEM.process.phase.utils)

 	RIH2() (in module py4DSTEM.process.diffraction.WK_scattering_factors)

 	RobustScaler() (py4DSTEM.process.classification.featurization.Featurization method)

 	Root (class in emdfile)

 	rotate_point() (in module py4DSTEM.process.phase.utils)

S

 	
 	sampling (py4DSTEM.process.phase.iterative_base_class.PtychographicReconstruction property)

 	(py4DSTEM.process.phase.iterative_dpc.DPCReconstruction property)

 	save() (in module emdfile)

 	(in module py4DSTEM)

 	save_ang_file() (in module py4DSTEM.process.diffraction.crystal_ACOM)

 	(py4DSTEM.process.diffraction.crystal.Crystal method)

 	sector_mask() (in module py4DSTEM.process.utils.utils)

 	select_point() (in module py4DSTEM.visualize.vis_special)

 	self_consistency_errors (py4DSTEM.process.phase.iterative_simultaneous_ptychography.SimultaneousPtychographicReconstruction property)

 	set_author() (in module emdfile)

 	set_dim() (emdfile.Array method)

 	(py4DSTEM.Array method)

 	(py4DSTEM.DataCube method)

 	(py4DSTEM.DiffractionSlice method)

 	(py4DSTEM.Probe method)

 	(py4DSTEM.RealSlice method)

 	(py4DSTEM.VirtualDiffraction method)

 	(py4DSTEM.VirtualImage method)

 	set_dim_name() (emdfile.Array method)

 	(py4DSTEM.Array method)

 	(py4DSTEM.DataCube method)

 	(py4DSTEM.DiffractionSlice method)

 	(py4DSTEM.Probe method)

 	(py4DSTEM.RealSlice method)

 	(py4DSTEM.VirtualDiffraction method)

 	(py4DSTEM.VirtualImage method)

 	set_dim_units() (emdfile.Array method)

 	(py4DSTEM.Array method)

 	(py4DSTEM.DataCube method)

 	(py4DSTEM.DiffractionSlice method)

 	(py4DSTEM.Probe method)

 	(py4DSTEM.RealSlice method)

 	(py4DSTEM.VirtualDiffraction method)

 	(py4DSTEM.VirtualImage method)

 	set_origin_meas() (py4DSTEM.Calibration method)

 	set_parameters() (py4DSTEM.process.phase.utils.ComplexProbe method)

 	set_probe_param() (py4DSTEM.Calibration method)

 	set_raw_vectors() (py4DSTEM.BraggVectors method)

 	set_save_defaults() (py4DSTEM.process.phase.iterative_base_class.PhaseReconstruction method)

 	set_scan_shape() (in module py4DSTEM.preprocess.preprocess)

 	(py4DSTEM.DataCube method)

 	setcal() (py4DSTEM.BraggVectors method)

 	setup_diffraction() (py4DSTEM.process.diffraction.crystal.Crystal method)

 	shift_positive() (py4DSTEM.process.classification.featurization.Featurization method)

 	show() (in module py4DSTEM)

 	(in module py4DSTEM.visualize)

 	(in module py4DSTEM.visualize.vis_grid)

 	(in module py4DSTEM.visualize.vis_RQ)

 	(in module py4DSTEM.visualize.vis_special)

 	show_amorphous_ring_fit() (in module py4DSTEM.visualize.vis_special)

 	show_annuli() (in module py4DSTEM.visualize)

 	show_circles() (in module py4DSTEM.visualize)

 	show_class_BPs() (in module py4DSTEM.visualize.vis_special)

 	show_class_BPs_grid() (in module py4DSTEM.visualize.vis_special)

 	show_complex() (in module py4DSTEM.visualize.vis_special)

 	show_complex_CoM() (py4DSTEM.process.phase.iterative_base_class.PhaseReconstruction method)

 	show_depth() (py4DSTEM.process.phase.iterative_multislice_ptychography.MultislicePtychographicReconstruction method)

 	show_DP_grid() (in module py4DSTEM.visualize.vis_grid)

 	show_ellipses() (in module py4DSTEM.visualize)

 	show_elliptical_fit() (in module py4DSTEM.visualize.vis_special)

 	show_fourier_probe() (py4DSTEM.process.phase.iterative_base_class.PtychographicReconstruction method)

 	(py4DSTEM.process.phase.iterative_mixedstate_ptychography.MixedstatePtychographicReconstruction method)

 	show_grid_overlay() (in module py4DSTEM.visualize.vis_grid)

 	
 	show_hist() (in module py4DSTEM.visualize)

 	show_image_grid() (in module py4DSTEM.visualize.vis_grid)

 	(in module py4DSTEM.visualize.vis_special)

 	show_kernel() (in module py4DSTEM.visualize.vis_special)

 	show_lattice_points() (in module py4DSTEM.process.wholepatternfit.wpf_viz)

 	show_max_peak_spacing() (in module py4DSTEM.visualize.vis_special)

 	show_object_fft() (py4DSTEM.process.phase.iterative_base_class.PtychographicReconstruction method)

 	(py4DSTEM.process.phase.iterative_overlap_tomography.OverlapTomographicReconstruction method)

 	show_origin_fit() (in module py4DSTEM.visualize.vis_special)

 	show_origin_meas() (in module py4DSTEM.visualize.vis_special)

 	show_pointlabels() (in module py4DSTEM.visualize.vis_special)

 	show_points() (in module py4DSTEM.visualize)

 	(in module py4DSTEM.visualize.vis_grid)

 	(in module py4DSTEM.visualize.vis_RQ)

 	show_Q() (in module py4DSTEM.visualize)

 	show_qprofile() (in module py4DSTEM.visualize.vis_special)

 	show_rectangles() (in module py4DSTEM.visualize)

 	show_RQ() (in module py4DSTEM.visualize.vis_RQ)

 	show_RQ_axes() (in module py4DSTEM.visualize.vis_RQ)

 	show_RQ_vector() (in module py4DSTEM.visualize.vis_RQ)

 	show_RQ_vectors() (in module py4DSTEM.visualize.vis_RQ)

 	show_selected_dp() (in module py4DSTEM.visualize.vis_RQ)

 	show_selected_dps() (in module py4DSTEM.visualize.vis_special)

 	show_shifts() (py4DSTEM.process.phase.iterative_parallax.ParallaxReconstruction method)

 	show_slices() (py4DSTEM.process.phase.iterative_multislice_ptychography.MultislicePtychographicReconstruction method)

 	show_transmitted_probe() (py4DSTEM.process.phase.iterative_multislice_ptychography.MultislicePtychographicReconstruction method)

 	show_tree() (emdfile.Node method)

 	(py4DSTEM.Array method)

 	(py4DSTEM.BraggVectors method)

 	(py4DSTEM.Custom method)

 	(py4DSTEM.DataCube method)

 	(py4DSTEM.DiffractionSlice method)

 	(py4DSTEM.Node method)

 	(py4DSTEM.PointList method)

 	(py4DSTEM.PointListArray method)

 	(py4DSTEM.Probe method)

 	(py4DSTEM.QPoints method)

 	(py4DSTEM.RealSlice method)

 	(py4DSTEM.VirtualDiffraction method)

 	(py4DSTEM.VirtualImage method)

 	show_uncertainty_visualization() (py4DSTEM.process.phase.iterative_base_class.PtychographicReconstruction method)

 	(py4DSTEM.process.phase.iterative_overlap_tomography.OverlapTomographicReconstruction method)

 	show_voronoi() (in module py4DSTEM.visualize.vis_special)

 	SimultaneousPtychographicReconstruction (class in py4DSTEM.process.phase.iterative_simultaneous_ptychography)

 	sort() (emdfile.PointList method)

 	(py4DSTEM.PointList method)

 	(py4DSTEM.QPoints method)

 	sort_orientation_maps() (in module py4DSTEM.process.diffraction.utils)

 	spatial_frequencies() (in module py4DSTEM.process.phase.utils)

 	spatial_separation() (py4DSTEM.process.classification.featurization.Featurization method)

 	split() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification method)

 	split_by_class_index() (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification method)

 	subdivide_into_batches() (in module py4DSTEM.process.phase.utils)

 	subpixel_alignment() (py4DSTEM.process.phase.iterative_parallax.ParallaxReconstruction method)

 	swap_Qxy() (in module py4DSTEM.preprocess.preprocess)

 	(py4DSTEM.DataCube method)

 	swap_RQ() (in module py4DSTEM.preprocess.preprocess)

 	(py4DSTEM.DataCube method)

 	swap_Rxy() (in module py4DSTEM.preprocess.preprocess)

 	(py4DSTEM.DataCube method)

 	symmetry_reduce_directions() (in module py4DSTEM.process.diffraction.crystal_ACOM)

 	(py4DSTEM.process.diffraction.crystal.Crystal method)

 	SyntheticDiskLattice (class in py4DSTEM.process.wholepatternfit.wp_models)

 	SyntheticDiskMoire (class in py4DSTEM.process.wholepatternfit.wp_models)

T

 	
 	thin_data_real() (in module py4DSTEM.preprocess.preprocess)

 	thin_R() (py4DSTEM.DataCube method)

 	to_h5() (emdfile.Array method)

 	(emdfile.Custom method)

 	(emdfile.Metadata method)

 	(emdfile.Node method)

 	(emdfile.PointList method)

 	(emdfile.PointListArray method)

 	(py4DSTEM.Array method)

 	(py4DSTEM.BraggVectors method)

 	(py4DSTEM.Calibration method)

 	(py4DSTEM.Custom method)

 	(py4DSTEM.DataCube method)

 	(py4DSTEM.DiffractionSlice method)

 	(py4DSTEM.Metadata method)

 	(py4DSTEM.Node method)

 	(py4DSTEM.PointList method)

 	(py4DSTEM.PointListArray method)

 	(py4DSTEM.Probe method)

 	(py4DSTEM.process.phase.iterative_base_class.PtychographicReconstruction method)

 	(py4DSTEM.process.phase.iterative_dpc.DPCReconstruction method)

 	(py4DSTEM.process.phase.iterative_parallax.ParallaxReconstruction method)

 	(py4DSTEM.QPoints method)

 	(py4DSTEM.RealSlice method)

 	(py4DSTEM.VirtualDiffraction method)

 	(py4DSTEM.VirtualImage method)

 	
 	to_strainmap() (py4DSTEM.BraggVectors method)

 	torch_bin() (in module py4DSTEM.preprocess.electroncount)

 	tqdmnd() (in module emdfile)

 	(in module py4DSTEM)

 	tree() (emdfile.Node method)

 	(py4DSTEM.Array method)

 	(py4DSTEM.BraggVectors method)

 	(py4DSTEM.Custom method)

 	(py4DSTEM.DataCube method)

 	(py4DSTEM.DiffractionSlice method)

 	(py4DSTEM.Node method)

 	(py4DSTEM.PointList method)

 	(py4DSTEM.PointListArray method)

 	(py4DSTEM.Probe method)

 	(py4DSTEM.QPoints method)

 	(py4DSTEM.RealSlice method)

 	(py4DSTEM.VirtualDiffraction method)

 	(py4DSTEM.VirtualImage method)

 	tune_angle_and_defocus() (py4DSTEM.process.phase.iterative_base_class.PtychographicReconstruction method)

 	(py4DSTEM.process.phase.iterative_parallax.ParallaxReconstruction method)

 	tune_num_slices_and_thicknesses() (py4DSTEM.process.phase.iterative_multislice_ptychography.MultislicePtychographicReconstruction method)

U

 	
 	unregister_target() (py4DSTEM.Calibration method)

 	
 	upsampled_correlation() (in module py4DSTEM.process.utils.multicorr)

 	upsampleFFT() (in module py4DSTEM.process.utils.multicorr)

V

 	
 	version_is_geq() (in module py4DSTEM.io.legacy.read_utils)

 	VirtualDiffraction (class in py4DSTEM)

 	VirtualImage (class in py4DSTEM)

 	visualize() (py4DSTEM.process.phase.iterative_dpc.DPCReconstruction method)

 	(py4DSTEM.process.phase.iterative_mixedstate_ptychography.MixedstatePtychographicReconstruction method)

 	(py4DSTEM.process.phase.iterative_multislice_ptychography.MultislicePtychographicReconstruction method)

 	(py4DSTEM.process.phase.iterative_overlap_tomography.OverlapTomographicReconstruction method)

 	(py4DSTEM.process.phase.iterative_parallax.ParallaxReconstruction method)

 	(py4DSTEM.process.phase.iterative_simultaneous_ptychography.SimultaneousPtychographicReconstruction method)

 	(py4DSTEM.process.phase.utils.ComplexProbe method)

W

 	
 	WPFModel (class in py4DSTEM.process.wholepatternfit.wp_models)

 	
 	WPFModelType (class in py4DSTEM.process.wholepatternfit.wp_models)

X

 	
 	X (py4DSTEM.process.classification.braggvectorclassification.BraggVectorClassification attribute)

References

Footnotes

[1]
Text of the first footnote

[2]
Py4DSTEM Github [https://github.com/py4DSTEM/py4DSTEM]

[3]

 _static/minus.png

_static/plus.png

_static/toyota_research_institute.png
() TOYOTA

RESEARCH INSTITUTE

_static/py4DSTEM_logo.png
py4DSTEM

_images/demo.gif
iTerm2 Shell Edit View Session Scripts Profiles Toolbelt Window Help

LR] hcp-vI2041-34916:~/git/py4D-browser
IpyaD-browser (-zsh) X2 tmux (tmux)

py4D-browser -> main

polycrystal_2D_WS2.h&
PTODSO_small_128x...4_float_x64.

_strain.mat
imulatedAuNanoplatelet_binned.h5
small_AuAgPd_wire_dataset_04.n5
Ws2.cif

_images/Advanced_plots.png
iter: 10 Phase

_images/DOE_logo.png
S. DEPARTMENT OF Office of

4 ENERGY Science

_images/dp.png

_images/py4DSTEM_logo.png

_images/toyota_research_institute.png
() TOYOTA

RESEARCH INSTITUTE

nav.xhtml

 Table of Contents

 		
 Welcome to the py4DSTEM documentation

 		
 What is 4D-STEM?

 		
 Installation

 		
 Setting up Python

 		
 Recommended Installation

 		
 Anaconda

 		
 Advanced Installation

 		
 Installing optional dependencies:

 		
 Anaconda

 		
 Pip

 		
 Installing from Source

 		
 Docker

 		
 Troubleshooting

 		
 Virtual Environments

 		
 Examples

 		
 First Steps

 		
 Next Steps

 		
 API

 		
 py4DSTEM

 		
 IO

 		
 Plotting

 		
 Utilities

 		
 Classes

 		
 Array

 		
 BraggVectors

 		
 Calibration

 		
 Custom

 		
 Data

 		
 DataCube

 		
 DiffractionSlice

 		
 Metadata

 		
 Node

 		
 PointList

 		
 PointListArray

 		
 Probe

 		
 QPoints

 		
 RealSlice

 		
 VirtualDiffraction

 		
 VirtualImage

 		
 io

 		
 filereaders

 		
 google_drive_downloader

 		
 importfile

 		
 legacy

 		
 parsefiletype

 		
 preprocess

 		
 darkreference

 		
 electroncount

 		
 preprocess

 		
 radialbkgrd

 		
 utils

 		
 process

 		
 calibration

 		
 classification

 		
 diffraction

 		
 diskdetection

 		
 fit

 		
 latticevectors

 		
 phase

 		
 probe

 		
 rdf

 		
 utils

 		
 virtualdiffraction

 		
 virtualimage

 		
 wholepatternfit

 		
 visualize

 		
 show

 		
 overlay

 		
 virtualimage

 		
 vis_RQ

 		
 vis_grid

 		
 vis_special

 		
 emd

 		
 Classes

 		
 Functions

 		
 API Index

 		
 py4DSTEM

 		
 IO

 		
 Plotting

 		
 Utilities

 		
 Classes

 		
 Array

 		
 BraggVectors

 		
 Calibration

 		
 Custom

 		
 Data

 		
 DataCube

 		
 DiffractionSlice

 		
 Metadata

 		
 Node

 		
 PointList

 		
 PointListArray

 		
 Probe

 		
 QPoints

 		
 RealSlice

 		
 VirtualDiffraction

 		
 VirtualImage

 		
 io

 		
 filereaders

 		
 google_drive_downloader

 		
 importfile

 		
 legacy

 		
 parsefiletype

 		
 preprocess

 		
 darkreference

 		
 electroncount

 		
 preprocess

 		
 radialbkgrd

 		
 utils

 		
 process

 		
 calibration

 		
 classification

 		
 diffraction

 		
 diskdetection

 		
 fit

 		
 latticevectors

 		
 phase

 		
 probe

 		
 rdf

 		
 utils

 		
 virtualdiffraction

 		
 virtualimage

 		
 wholepatternfit

 		
 visualize

 		
 show

 		
 overlay

 		
 virtualimage

 		
 vis_RQ

 		
 vis_grid

 		
 vis_special

 		
 emd

 		
 Classes

 		
 Functions

 		
 Graphical User Interface

 		
 Overview

 		
 Installation

 		
 Support & Contributions

 		
 Support

 		
 Contributions

 		
 License

 		
 GPLv3

 		
 Acknowledgements

 		
 References

_static/DOE_logo.png
S. DEPARTMENT OF Office of

4 ENERGY Science

_images/toyota_research_institute1.png
() TOYOTA

RESEARCH INSTITUTE

_static/Advanced_plots.png
iter: 10 Phase

_static/dp.png

_static/demo.gif
iTerm2 Shell Edit View Session Scripts Profiles Toolbelt Window Help

LR] hcp-vI2041-34916:~/git/py4D-browser
IpyaD-browser (-zsh) X2 tmux (tmux)

py4D-browser -> main

polycrystal_2D_WS2.h&
PTODSO_small_128x...4_float_x64.

_strain.mat
imulatedAuNanoplatelet_binned.h5
small_AuAgPd_wire_dataset_04.n5
Ws2.cif

_static/file.png

